Recent advancements in nanocellulose synthesis, characterization, and application: A review

Shamim Ahsan, M. S. Rabbi

Article ID: 4496
Vol 7, Issue 1, 2024

(Abstract)

Abstract


Cellulose nanocrystal, known as CNCs, is a form of material that can be produced by synthesizing carbon from naturally occurring substances, such as plants. Due to the unique properties it possesses, including a large surface area, impressive mechanical strength, and the ability to biodegrade, it draws significant attention from researchers nowadays. Several methods are available to prepare CNC, such as acid hydrolysis, enzymatic hydrolysis, and mechanical procedures. The characteristics of CNC include X-ray diffraction, transmission electron microscopy, dynamic light scattering, etc. In this article, the recent development of CNC preparation and its characterizations are thoroughly discussed. Significant breakthroughs are listed accordingly. Furthermore, a variety of CNC applications, such as paper and packaging, biological applications, energy storage, etc., are illustrated. This study demonstrates the insights gained from using CNC as a potential environmentally friendly material with remarkable properties.


Keywords


Cellulose Nanocrystal (CNC); manufacturing; characterization; application

Full Text:

PDF


References


1. Amirah Badi NS, Zul Hilmey Makmud M, Se Mun C, et al. Synthesis and characterization of cellulose nanocrystal derived from paper as nanofiller for polymer insulation materials. Materials Today: Proceedings. 2024; 97: 69-74. doi: 10.1016/j.matpr.2023.12.059

2. Seddiqi H, Oliaei E, Honarkar H, et al. Cellulose and its derivatives: towards biomedical applications. Cellulose. 2021; 28(4): 1893-1931. doi: 10.1007/s10570-020-03674-w

3. Mali P, Sherje AP. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydrate Polymers. 2022; 275: 118668. doi: 10.1016/j.carbpol.2021.118668

4. Raza M, Abu-Jdayil B, Banat F, et al. Isolation and Characterization of Cellulose Nanocrystals from Date Palm Waste. ACS Omega. 2022; 7(29): 25366-25379. doi: 10.1021/acsomega.2c02333

5. Hasan A, Rabbi MS, Maruf Billah Md. Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials. 2022; 4: 100078. doi: 10.1016/j.clema.2022.100078

6. Moohan J, Stewart SA, Espinosa E, et al. Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Applied Sciences. 2019; 10(1): 65. doi: 10.3390/app10010065

7. Trache D, Tarchoun AF, Derradji M, et al. Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in Chemistry. 2020; 8. doi: 10.3389/fchem.2020.00392

8. Mokhena TC, John MJ. Cellulose nanomaterials: new generation materials for solving global issues. Cellulose. 2019; 27(3): 1149-1194. doi: 10.1007/s10570-019-02889-w

9. Foster EJ, Moon RJ, Agarwal UP, et al. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews. 2018; 47(8): 2609-2679. doi: 10.1039/c6cs00895j

10. Rajinipriya M, Nagalakshmaiah M, Robert M, et al. Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustainable Chemistry & Engineering. 2018; 6(3): 2807-2828. doi: 10.1021/acssuschemeng.7b03437

11. Phanthong P, Reubroycharoen P, Hao X, et al. Nanocellulose: Extraction and application. Carbon Resources Conversion. 2018; 1(1): 32-43. doi: 10.1016/j.crcon.2018.05.004

12. Naz S, Ali JS, Zia M. Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims. Bio-Design and Manufacturing. 2019; 2(3): 187-212. doi: 10.1007/s42242-019-00049-4

13. Köse K, Mavlan M, Youngblood JP. Applications and impact of nanocellulose based adsorbents. Cellulose. 2020; 27(6): 2967-2990. doi: 10.1007/s10570-020-03011-1

14. Klemm D, Cranston ED, Fischer D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Materials Today. 2018; 21(7): 720-748. doi: 10.1016/j.mattod.2018.02.001

15. Chen H, Liu J, Chang X, et al. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology. 2017; 160: 196-206. doi: 10.1016/j.fuproc.2016.12.007

16. Nascimento DM, Nunes YL, Figueirêdo MCB, et al. Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chemistry. 2018; 20(11): 2428-2448. doi: 10.1039/c8gc00205c

17. Wang X, Yao C, Wang F, et al. Cellulose‐Based Nanomaterials for Energy Applications. Small. 2017; 13(42). doi: 10.1002/smll.201702240

18. Wohlhauser S, Delepierre G, Labet M, et al. Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules. 2018; 51(16): 6157-6189. doi: 10.1021/acs.macromol.8b00733

19. Trache D, Hussin MH, Haafiz MKM, et al. Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 2017; 9(5): 1763-1786. doi: 10.1039/c6nr09494e

20. Pennells J, Godwin ID, Amiralian N, et al. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose. 2019; 27(2): 575-593. doi: 10.1007/s10570-019-02828-9

21. Inamuddin, Thomas S, Kumar Mishra R, et al. Sustainable Polymer Composites and Nanocomposites. Springer International Publishing; 2019. doi: 10.1007/978-3-030-05399-4

22. Pires JRA, Souza VGL, Fernando AL. Valorization of energy crops as a source for nanocellulose production – Current knowledge and future prospects. Industrial Crops and Products. 2019; 140: 111642. doi: 10.1016/j.indcrop.2019.111642

23. Salimi S, Sotudeh-Gharebagh R, Zarghami R, et al. Production of Nanocellulose and Its Applications in Drug Delivery: A Critical Review. ACS Sustainable Chemistry & Engineering. 2019; 7(19): 15800-15827. doi: 10.1021/acssuschemeng.9b02744

24. Li J, Cha R, Mou K, et al. Nanocellulose‐Based Antibacterial Materials. Advanced Healthcare Materials. 2018; 7(20). doi: 10.1002/adhm.201800334

25. Vilarinho F, Sanches Silva A, Vaz MF, et al. Nanocellulose in green food packaging. Critical Reviews in Food Science and Nutrition. 2017; 58(9): 1526-1537. doi: 10.1080/10408398.2016.1270254

26. Moon RJ, Schueneman GT, Simonsen J. Overview of Cellulose Nanomaterials, Their Capabilities and Applications. JOM. 2016; 68(9): 2383-2394. doi: 10.1007/s11837-016-2018-7

27. Thomas B, Raj MC, B AK, et al. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews. 2018; 118(24): 11575-11625. doi: 10.1021/acs.chemrev.7b00627

28. Miao C, Hamad WY. Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites. Current Opinion in Solid State and Materials Science. 2019; 23(4): 100761. doi: 10.1016/j.cossms.2019.06.005

29. He X, Deng H, Hwang H. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis. 2019; 27(1): 1-21. doi: 10.1016/j.jfda.2018.12.002

30. Kim J, Lee D, Lee Y, et al. Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials. Advanced Materials. 2018; 31(20). doi: 10.1002/adma.201804826

31. Karimian A, Parsian H, Majidinia M, et al. Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems. International Journal of Biological Macromolecules. 2019; 133: 850-859. doi: 10.1016/j.ijbiomac.2019.04.117

32. Shojaeiarani J, Bajwa D, Shirzadifar A. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydrate Polymers. 2019; 216: 247-259. doi: 10.1016/j.carbpol.2019.04.033

33. Park NM, Choi S, Oh JE, et al. Facile extraction of cellulose nanocrystals. Carbohydrate Polymers. 2019; 223: 115114. doi: 10.1016/j.carbpol.2019.115114

34. Luo H, Cha R, Li J, et al. Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydrate Polymers. 2019; 224: 115144. doi: 10.1016/j.carbpol.2019.115144

35. Dufresne A. Nanocellulose Processing Properties and Potential Applications. Current Forestry Reports. 2019; 5(2): 76-89. doi: 10.1007/s40725-019-00088-1

36. Trache D, Hussin MH, Hui Chuin CT, et al. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules. 2016; 93: 789-804. doi: 10.1016/j.ijbiomac.2016.09.056

37. Gopi S, Balakrishnan P, Chandradhara D, et al. General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry. 2019; 13: 59-78. doi: 10.1016/j.mtchem.2019.04.012

38. Habibi Y, Lucia LA, Rojas OJ. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews. 2010; 110(6): 3479-3500. doi: 10.1021/cr900339w

39. Tarchoun AF, Trache D, Klapötke TM, et al. A Promising Energetic Polymer from Posidonia oceanica Brown Algae: Synthesis, Characterization, and Kinetic Modeling. Macromolecular Chemistry and Physics. 2019; 220(22). doi: 10.1002/macp.201900358

40. Tarchoun AF, Trache D, Klapötke TM. Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. International Journal of Biological Macromolecules. 2019; 138: 837-845. doi: 10.1016/j.ijbiomac.2019.07.176

41. Dufresne A. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017; 376(2112): 20170040. doi: 10.1098/rsta.2017.0040

42. Thakur VK. Nanocellulose polymer nanocomposites: fundamentals and applications. John Wiley & Sons; 2014. doi:10.1002/9781118872246.

43. Thakur VK. Lignocellulosic polymer composites: Processing, characterization, and properties. John Wiley & Sons; 2014. doi:10.1002/9781118773949.

44. Jonoobi M, Oladi R, Davoudpour Y, et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose. 2015; 22(2): 935-969. doi: 10.1007/s10570-015-0551-0

45. A B, B K, J S. Comparative mechanical, thermal, and morphological study of untreated and NaOH-treated bagasse fiber-reinforced cardanol green composites. Advanced Composites and Hybrid Materials. 2019; 2(1): 125-132. doi: 10.1007/s42114-019-00079-7

46. Suryanto H, Marsyahyo E, Irawan YS, et al. Effect of Alkali Treatment on Crystalline Structure of Cellulose Fiber from Mendong (Fimbristylis globulosa) Straw. Key Engineering Materials. 2013; 594-595: 720-724. doi: 10.4028/www.scientific.net/kem.594-595.720

47. Bisanda ETN. The Effect of Alkali Treatment on the Adhesion Characteristics of Sisal Fibres. 2000; 7: 331-339.

48. Nematollahi M, Karevan M, Mosaddegh P, et al. Morphology, thermal and mechanical properties of extruded injection molded kenaf fiber reinforced polypropylene composites. Materials Research Express. 2019; 6(9): 095409. doi: 10.1088/2053-1591/ab2fbd

49. Ahmad Kamal AA, Noriman NZ, Sam ST, et al. Tensile Properties and Impact Strength of RHDPE/BF Composites: The Effects of Chemical Treatment. IOP Conference Series: Materials Science and Engineering. 2019; 557(1): 012041. doi: 10.1088/1757-899x/557/1/012041

50. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo RJIP, Herrera-Franco PJ. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering. 1999; 30(3): 309-320. doi: 10.1013/S1359-8368(98)00054-7

51. Manikandan Nair KC, Thomas S, Groeninckx G. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Available online: www.elsevier.com/locate/compscitech (accessed on 10 December 2023).

52. Diharjo K, Permana A, Arsada R, et al. Effect of acetylation treatment and soaking time to bending strength of sugar palm fiber composite. AIP Conference Proceedings. Published online 2017. doi: 10.1063/1.4968302

53. Annie Paul S, Boudenne A, Ibos L, et al. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites Part A: Applied Science and Manufacturing. 2008; 39(9): 1582-1588. doi: 10.1016/j.compositesa.2008.06.004

54. Kalia S, Kaushik VK, Sharma RK. Effect of Benzoylation and Graft Copolymerization on Morphology, Thermal Stability, and Crystallinity of Sisal Fibers. Journal of Natural Fibers. 2011; 8(1): 27-38. doi: 10.1080/15440478.2011.551002

55. S SK, Srinivasan K, M P, et al. Study of raw and chemically treated Sansevieria ehrenbergii fibers for brake pad application. Materials Research Express. 2020; 7(5): 055102. doi: 10.1088/2053-1591/ab8f48

56. La Mantia FP, Morreale M. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing. 2011; 42(6): 579-588. doi: 10.1016/j.compositesa.2011.01.017

57. Patra A, Bisoyi DK, Manda PK, et al. Electrical and mechanical properties of the potassium permanganate treated short sisal fiber reinforced epoxy composite in correlation to the macromolecular structure of the reinforced fiber. Journal of Applied Polymer Science. 2012; 128(2): 1011-1019. doi: 10.1002/app.38195

58. Mohammed AA, Bachtiar D, Rejab MRM, et al. Effects of KMnO4 Treatment on the Flexural, Impact, and Thermal Properties of Sugar Palm Fiber-Reinforced Thermoplastic Polyurethane Composites. JOM. 2018; 70(7): 1326-1330. doi: 10.1007/s11837-018-2869-1

59. Nickerson RF, Habrle JA. Cellulose intercrystalline structure. Industrial & Engineering Chemistry. 1947; 11(1947): 1507-1512. doi: 10.1021/ie50455a024

60. Nagarajan KJ, Balaji AN, Thanga Kasi Rajan S, et al. Effect of sulfuric acid reaction time on the properties and behavior of cellulose nanocrystals from Cocos nucifera var-Aurantiaca peduncle’s cellulose microfibers. Materials Research Express. 2019; 6(12): 125333. doi: 10.1088/2053-1591/ab5a9d

61. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, et al. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules. 2007; 9(1): 57-65. doi: 10.1021/bm700769p

62. Ioelovich M. Study of Cellulose Interaction with Concentrated Solutions of Sulfuric Acid. ISRN Chemical Engineering. 2012; 2012: 1-7. doi: 10.5402/2012/428974

63. Nagarajan KJ, Balaji AN, Kasi Rajan ST, et al. Preparation of bio-eco based cellulose nanomaterials from used disposal paper cups through citric acid hydrolysis. Carbohydrate Polymers. 2020; 235: 115997. doi: 10.1016/j.carbpol.2020.115997

64. Wang N, Ding E, Cheng R. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer. 2007; 48(12): 3486-3493. doi: 10.1016/j.polymer.2007.03.062

65. Yu H, Qin Z, Liang B, et al. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. Journal of Materials Chemistry A. 2013; 1(12): 3938. doi: 10.1039/c3ta01150j

66. Araki J, Wada M, Kuga S, Okano T, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998; 142(1): 75-82. doi: 10.1016/S0927-7757(98)00404-X

67. Hastuti N, Kanomata K, Kitaoka T. Hydrochloric Acid Hydrolysis of Pulps from Oil Palm Empty Fruit Bunches to Produce Cellulose Nanocrystals. Journal of Polymers and the Environment. 2018; 26(9): 3698-3709. doi: 10.1007/s10924-018-1248-x

68. Camarero Espinosa S, Kuhnt T, Foster EJ, et al. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules. 2013; 14(4): 1223-1230. doi: 10.1021/bm400219u

69. Kalashnikova I, Bizot H, Cathala B, et al. Modulation of Cellulose Nanocrystals Amphiphilic Properties to Stabilize Oil/Water Interface. Biomacromolecules. 2011; 13(1): 267-275. doi: 10.1021/bm201599j

70. Kalashnikova I, Bizot H, Bertoncini P, et al. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter. 2013; 9(3): 952-959. doi: 10.1039/c2sm26472b

71. Vanderfleet OM, Osorio DA, Cranston ED. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017; 376(2112): 20170041. doi: 10.1098/rsta.2017.0041

72. Frost BA, Johan Foster E. Isolation of Thermally Stable Cellulose Nanocrystals from Spent Coffee Grounds via Phosphoric Acid Hydrolysis. Journal of Renewable Materials. 2020; 8(2): 187-203. doi: 10.32604/jrm.2020.07940

73. Li S, Li C, Li C, et al. Fabrication of nano-crystalline cellulose with phosphoric acid and its full application in a modified polyurethane foam. Polymer Degradation and Stability. 2013; 98(9): 1940-1944. doi: 10.1016/j.polymdegradstab.2013.06.017

74. Tang Y, Shen X, Zhang J, et al. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydrate Polymers. 2015; 125: 360-366. doi: 10.1016/j.carbpol.2015.02.063

75. Du H, Liu C, Mu X, et al. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose. 2016; 23(4): 2389-2407. doi: 10.1007/s10570-016-0963-5

76. Chen L, Zhu JY, Baez C, et al. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry. 2016; 18(13): 3835-3843. doi: 10.1039/c6gc00687f

77. Seta FT, An X, Liu L, et al. Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydrate Polymers. 2020; 234: 115942. doi: 10.1016/j.carbpol.2020.115942

78. Keerati-u-rai M, Corredig M. Effect of Dynamic High Pressure Homogenization on the Aggregation State of Soy Protein. Journal of Agricultural and Food Chemistry. 2009; 57(9): 3556-3562. doi: 10.1021/jf803562q

79. Nechyporchuk O, Belgacem MN, Bras J. Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products. 2016; 93: 2-25. doi: 10.1016/j.indcrop.2016.02.016

80. Huang J, Ma X, Yang G, Alain D. Introduction to nanocellulose. Nanocellulose: From Fundamentals to Advanced Materials. 2019; 1-20. doi: 10.1002/9783527807437.ch1

81. Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012; 4(11): 3274. doi: 10.1039/c2nr30260h

82. Afrin S, Karim Z. Isolation and Surface Modification of Nanocellulose: Necessity of Enzymes over Chemicals. ChemBioEng Reviews. 2017; 4(5): 289-303. doi: 10.1002/cben.201600001

83. Liang L, Bhagia S, Li M, et al. Cross‐Linked Nanocellulosic Materials and Their Applications. ChemSusChem. 2019; 13(1): 78-87. doi: 10.1002/cssc.201901676

84. Tao H, Lavoine N, Jiang F, et al. Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale Horizons. 2020; 5(4): 607-627. doi: 10.1039/d0nh00016g

85. George JSNS. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, Science and Applications. Published online November 2015: 45. doi: 10.2147/nsa.s64386

86. Daud JB, Lee KY. Handbook of Nanocellulose and Cellulose Nanocomposites. Wiley online library; 2017.

87. Tong X, Shen W, Chen X, et al. Preparation and mechanism analysis of morphology‐controlled cellulose nanocrystals via compound enzymatic hydrolysis of eucalyptus pulp. Journal of Applied Polymer Science. 2019; 137(9). doi: 10.1002/app.48407

88. Kaboorani A, Riedl B. Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Industrial Crops and Products. 2015; 65: 45-55. doi: 10.1016/j.indcrop.2014.11.027

89. Robles E, Urruzola I, Labidi J, et al. Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Industrial Crops and Products. 2015; 71: 44-53. doi: 10.1016/j.indcrop.2015.03.075

90. Cruz J, Fangueiro R. Surface Modification of Natural Fibers: A Review. Procedia Engineering. 2016; 155: 285-288. doi: 10.1016/j.proeng.2016.08.030

91. Sanjay MR, Siengchin S, Parameswaranpillai J, et al. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate polymers. 2019; 207: 108-121.

92. Oliveira FR, Erkens L, Fangueiro R, et al. Surface Modification of Banana Fibers by DBD Plasma Treatment. Plasma Chemistry and Plasma Processing. 2012; 32(2): 259-273. doi: 10.1007/s11090-012-9354-3

93. Shahidi S, Wiener J, Ghoranneviss M. Surface Modification Methods for Improving the Dyeability of Textile Fabrics. Eco-Friendly Textile Dyeing and Finishing. Published online January 16, 2013. doi: 10.5772/53911

94. Sinha E, Panigrahi S. Effect of Plasma Treatment on Structure, Wettability of Jute Fiber and Flexural Strength of its Composite. Journal of Composite Materials. 2009; 43(17): 1791-1802. doi: 10.1177/0021998309338078

95. Kato K, Vasilets VN, Fursa MN, et al. Surface Oxidation of Cellulose Fibers by Vacuum Ultraviolet Irradiation. Journal of Polymer Science Part A: Polymer chemistry. 1999; 37(3): 357-361. doi: 10.1002/(SICI)1099-0518(19990201)37:3<357:AID-POLA13>3.0.CO;2-2

96. Ali A, Shaker K, Nawab Y, et al. Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles. 2016; 47(8): 2153-2183. doi: 10.1177/1528083716654468

97. Bataille P, Dufourd M, Sapieha S. Copolymerization of styrene on to cellulose activated by corona. Polymer International. 1994; 34(4): 387-391. doi: 10.1002/pi.1994.210340406

98. Belgacem MN, Czeremuszkin G, Sapieha S, et al. Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose. 1995; 2(3): 145-157. doi: 10.1007/bf00813015

99. Uehara T, Sakata I. Effect of Corona Discharge Treatment on Cellulose Prepared from Beech Wood. Journal of Applied Polymer Science. 1990; 41(7-8):1695-1706.

100. Földváry CM, Takács E, Wojnárovits L. Effect of high-energy radiation and alkali treatment on the properties of cellulose. Radiation Physics and Chemistry. 2003; 67(3-4): 505-508. doi: 10.1016/S0969-806X(03)00094-X

101. Khan MA, Haque N, Al-Kafi A, et al. Jute Reinforced Polymer Composite by Gamma Radiation: Effect of Surface Treatment with UV Radiation. Polymer-Plastics Technology and Engineering. 2006; 45(5): 607-613. doi: 10.1080/03602550600554141

102. Takaâ Cs E, Wojnaâ L, Borsa J, et al. Effect of g-irradiation on cotton-cellulose. Available online: www.elsevier.com/locate/radphyschem (accessed on 10 January 2024).

103. Tóth T, Borsa J, Takács E. Effect of preswelling on radiation degradation of cotton cellulose. Radiation Physics and Chemistry. 2003; 67(3-4): 513-515. doi: 10.1016/S0969-806X(03)00096-3

104. Vagner Roberto B, Dos Santos CG, Arantes Júnior G, Da Costa AR. Chemical modification of lignocellulosic materials by irradiation with Nd-YAG pulsed laser. Applied surface science. 2001; 183(1-2): 120-125.

105. Kolar J, Strlic M, Müller-Hess D, et al. Near-UV and visible pulsed laser interaction with paper. Journal of Cultural Heritage. 2000; 1(2): 221-224. doi: 10.1016/S1296-2074(00)00149-7

106. Mizoguchi K, Ishikawa M, Ohkubo S, et al. Laser surface treatment of regenerated cellulose fiber. Instrumentation Science & Technology. 2001; 7(5): 497-509. doi: 10.1163/156855400750262978

107. Madhu P, Sanjay MR, Senthamaraikannan P, et al. A review on synthesis and characterization of commercially available natural fibers: Part-I. Journal of Natural Fibers. 2018; 16(8): 1132-1144. doi: 10.1080/15440478.2018.1453433

108. Manimaran P, Senthamaraikannan P, Murugananthan K, et al. Physicochemical Properties of New Cellulosic Fibers from Azadirachta indica Plant. Journal of Natural Fibers. 2017; 15(1): 29-38. doi: 10.1080/15440478.2017.1302388

109. Alawar A, Hamed AM, Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering. 2009; 40(7): 601-606. doi: 10.1016/j.compositesb.2009.04.018

110. Arthanarieswaran VP, Kumaravel A, Saravanakumar SS. Physico-Chemical Properties of Alkali-TreatedAcacia leucophloeaFibers. International Journal of Polymer Analysis and Characterization. 2015; 20(8): 704-713. doi: 10.1080/1023666x.2015.1081133

111. De Rosa IM, Kenny JM, Puglia D, et al. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology. 2010; 70(1): 116-122. doi: 10.1016/j.compscitech.2009.09.013

112. Jayaramudu J, Guduri BR, Varada Rajulu A. Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydrate Polymers. 2010; 79(4): 847-851. doi: 10.1016/j.carbpol.2009.10.046

113. Le Troedec M, Sedan D, Peyratout C, et al. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing. 2008; 39(3): 514-522. doi: 10.1016/j.compositesa.2007.12.001

114. Li Y, Li G, Zou Y, et al. Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose. 2013; 21(1): 301-309. doi: 10.1007/s10570-013-0146-6

115. Maepa CE, Jayaramudu J, Okonkwo JO, et al. Extraction and Characterization of Natural Cellulose Fibers from Maize Tassel. International Journal of Polymer Analysis and Characterization. 2015; 20(2): 99-109. doi: 10.1080/1023666x.2014.961118

116. Gabriel E, García J, Mora KR, Bernal C. Cellulose Nanofiber Production from Banana Rachis. 2020. Available online: http://ijesc.org/ (accessed on 10 January 2024).

117. Cellulose Nanocrystals: Obtaining and Sources of a Promising Bionanomaterial for Advanced Applications. Biointerface Research in Applied Chemistry. 2020; 11(4): 11797-11816. doi: 10.33263/briac114.1179711816

118. Cecci RRR, Passos AA, de Aguiar Neto TC, et al. Banana pseudostem fibers characterization and comparison with reported data on jute and sisal fibers. SN Applied Sciences. 2019; 2(1). doi: 10.1007/s42452-019-1790-8

119. Kargarzadeh H, Ahmad I, Abdullah I, et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose. 2012; 19(3): 855-866. doi: 10.1007/s10570-012-9684-6

120. Sain M, Panthapulakkal S. Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products. 2006; 23(1): 1-8. doi: 10.1016/j.indcrop.2005.01.006

121. Ahmad I, Mosadeghzad Z, Daik R, et al. The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes. Journal of Applied Polymer Science. 2008; 109(6): 3651-3658. doi: 10.1002/app.28488

122. Zuluaga R, Putaux JL, Cruz J, et al. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers. 2009; 76(1): 51-59. doi: 10.1016/j.carbpol.2008.09.024

123. Rosli NA, Ahmad I, Abdullah I. Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources. 2013; 8(2): 1893-1908.

124. Liu Y, Hu H. X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers. 2008; 9(6): 735-739. doi: 10.1007/s12221-008-0115-0

125. Mannan KhM. X-ray diffraction study of jute fibres treated with NaOH and liquid anhydrous ammonia. Polymer. 1993; 34(12): 2485-2487.

126. Segal L, Creely JJ, Martin AE, Conrad CM. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. 1952; 29(10).

127. Zope G, Goswami A, Kulkarni S. Isolation and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Banana Pseudostem. BioNanoScience. 2022; 12(2): 463-471. doi: 10.1007/s12668-022-00960-8

128. Tibolla H, Pelissari FM, Martins JT, et al. Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids. 2018; 75: 192-201. doi: 10.1016/j.foodhyd.2017.08.027

129. Chen W, Yu H, Liu Y, et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers. 2011; 83(4): 1804-1811. doi: 10.1016/j.carbpol.2010.10.040

130. Dikin D, Kohlhaas K, Dommett G, et al. Scanning Electron Microscopy Methods for Analysis of Polymer Nanocomposites. Microscopy and Microanalysis. 2006; 12(S02): 674-675. doi: 10.1017/s1431927606067080

131. Mahmud S, Long Y, Abu Taher M, et al. Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. Journal of Applied Polymer Science. 2019; 136(46). doi: 10.1002/app.48221

132. Novo LP, Curvelo AA da S, Carvalho AJF. Nanocomposites of acid free CNC and HDPE: Dispersion from solvent driven by fast crystallization/gelation. Journal of Molecular Liquids. 2018; 266: 233-241. doi: 10.1016/j.molliq.2018.06.062

133. Mondragon G, Santamaria-Echart A, Hormaiztegui MEV, et al. Nanocomposites of Waterborne Polyurethane Reinforced with Cellulose Nanocrystals from Sisal Fibres. Journal of Polymers and the Environment. 2017; 26(5): 1869-1880. doi: 10.1007/s10924-017-1089-z

134. Montanheiro TL do A, Montagna LS, Patrulea V, et al. Evaluation of cellulose nanocrystal addition on morphology, compression modulus and cytotoxicity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds. Journal of Materials Science. 2019; 54(9): 7198-7210. doi: 10.1007/s10853-019-03398-8

135. Zhan C, Yu G, Lu Y, et al. Conductive polymer nanocomposites: a critical review of modern advanced devices. Journal of Materials Chemistry C. 2017; 5(7): 1569-1585. doi: 10.1039/c6tc04269d

136. Wu H, Nagarajan S, Shu J, et al. Green and facile surface modification of cellulose nanocrystal as the route to produce poly(lactic acid) nanocomposites with improved properties. Carbohydrate Polymers. 2018; 197: 204-214. doi: 10.1016/j.carbpol.2018.05.087

137. Pandi Narsimha, Sonawane SH, Anand Kishore K. Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrasonics Sonochemistry. 2021; 70: 105353. doi: 10.1016/j.ultsonch.2020.105353

138. Balnois E, Busnel F, Baley C, et al. An AFM study of the effect of chemical treatments on the surface microstructure and adhesion properties of flax fibres. Composite Interfaces. 2007; 14(7-9): 715-731. doi: 10.1163/156855407782106537

139. Ben Sghaier AEO, Chaabouni Y, Msahli S, et al. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Industrial Crops and Products. 2012; 36(1): 257-266. doi: 10.1016/j.indcrop.2011.09.012

140. Senthamaraikannan P, Saravanakumar SS, Arthanarieswaran VP, et al. Physico-chemical properties of new cellulosic fibers from the bark ofAcacia planifrons. International Journal of Polymer Analysis and Characterization. 2015; 21(3): 207-213. doi: 10.1080/1023666x.2016.1133138

141. Neelamana IK, Thomas S, Parameswaranpillai J. Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites‐macroscale to nanoscale. Journal of Applied Polymer Science. 2013; 130(2): 1239-1246. doi: 10.1002/app.39220

142. Chokshi S, Parmar V, Gohil P, et al. Chemical Composition and Mechanical Properties of Natural Fibers. Journal of Natural Fibers. 2020; 19(10): 3942-3953. doi: 10.1080/15440478.2020.1848738

143. Gassan J, Chate A, Bledzki AK. Calculation of elastic properties of natural fibers. Journal of Materials Science. 2001; 36: 3715-3720.

144. Béakou A, Ntenga R, Lepetit J, et al. Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Composites Part A: Applied Science and Manufacturing. 2008; 39(1): 67-74. doi: 10.1016/j.compositesa.2007.09.002

145. Liu D, Han G, Huang J, et al. Composition and structure study of natural Nelumbo nucifera fiber. Carbohydrate Polymers. 2009; 75(1): 39-43. doi: 10.1016/j.carbpol.2008.06.003

146. Amiralian N, Annamalai PK, Garvey CJ, et al. High aspect ratio nanocellulose from an extremophile spinifex grass by controlled acid hydrolysis. Cellulose. 2017; 24(9): 3753-3766. doi: 10.1007/s10570-017-1379-6

147. Yadav M, Chiu FC. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydrate Polymers. 2019; 211: 181-194. doi: 10.1016/j.carbpol.2019.01.114

148. Salmieri S, Islam F, Khan RA, et al. Antimicrobial nanocomposite films made of poly(lactic acid)–cellulose nanocrystals (PLA–CNC) in food applications—part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose. 2014; 21(6): 4271-4285. doi: 10.1007/s10570-014-0406-0

149. de Oliveira JP, Bruni GP, el Halal SLM, et al. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules. 2019; 124: 175-184. doi: 10.1016/j.ijbiomac.2018.11.205

150. Criado P, Fraschini C, Salmieri S, et al. Cellulose nanocrystals (CNCs) loaded alginate films against lipid oxidation of chicken breast. Food Research International. 2020; 132: 109110. doi: 10.1016/j.foodres.2020.109110

151. Fotie G, Amoroso L, Muratore G, et al. Carbon dioxide diffusion at different relative humidity through coating of cellulose nanocrystals for food packaging applications. Food Packaging and Shelf Life. 2018; 18: 62-70. doi: 10.1016/j.fpsl.2018.08.007

152. de Oliveira JP, Bruni GP, Fabra MJ, et al. Development of food packaging bioactive aerogels through the valorization of Gelidium sesquipedale seaweed. Food Hydrocolloids. 2019; 89: 337-350. doi: 10.1016/j.foodhyd.2018.10.047

153. Enescu D, Gardrat C, Cramail H, et al. Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: structuring and properties improvement by using water-evaporation-induced self-assembly. Cellulose. 2019; 26(4): 2389-2401. doi: 10.1007/s10570-018-2211-7

154. Forssell P, Lahtinen R, Lahelin M, Èrinen PM. Oxygen permeability of amylose and amylopectin ®lms. Available online: www.elsevier.com/locate/carbpol (accessed on 10 January 2024).

155. Fortunati E, Peltzer M, Armentano I, et al. Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering. 2013; 118(1): 117-124. doi: 10.1016/j.jfoodeng.2013.03.025

156. Goodarzi K, Jonidi Shariatzadeh F, Solouk A, et al. Injectable drug loaded gelatin based scaffolds as minimally invasive approach for drug delivery system: CNC/PAMAM nanoparticles. European Polymer Journal. 2020; 139: 109992. doi: 10.1016/j.eurpolymj.2020.109992

157. Casalini T, Rossi F, Lazzari S, et al. Mathematical Modeling of PLGA Microparticles: From Polymer Degradation to Drug Release. Molecular Pharmaceutics. 2014; 11(11): 4036-4048. doi: 10.1021/mp500078u

158. Maurya AK, Mishra A, Mishra N. Nanoengineered polymeric biomaterials for drug delivery system. Nanoengineered Biomaterials for Advanced Drug Delivery. Published online 2020: 109-143. doi: 10.1016/b978-0-08-102985-5.00006-1

159. Ning L, You C, Zhang Y, et al. Synthesis and biological evaluation of surface-modified nanocellulose hydrogel loaded with paclitaxel. Life Sciences. 2020; 241: 117137. doi: 10.1016/j.lfs.2019.117137

160. Chen Y, Abdalkarim SYH, Yu HY, et al. Double stimuli-responsive cellulose nanocrystals reinforced electrospun PHBV composites membrane for intelligent drug release. International Journal of Biological Macromolecules. 2020; 155: 330-339. doi: 10.1016/j.ijbiomac.2020.03.216

161. Guo Y, Wu L, Gou K, et al. Functional mesoporous silica nanoparticles for delivering nimesulide with chiral recognition performance. Microporous and Mesoporous Materials. 2020; 294: 109862. doi: 10.1016/j.micromeso.2019.109862

162. Rao KM, Kumar A, Han SS. Poly(acrylamidoglycolic acid) nanocomposite hydrogels reinforced with cellulose nanocrystals for pH-sensitive controlled release of diclofenac sodium. Polymer Testing. 2017; 64: 175-182. doi: 10.1016/j.polymertesting.2017.10.006

163. Ebrahimi M, Botelho M, Lu W, et al. Development of nanocomposite collagen/ HA/β‐TCP scaffolds with tailored gradient porosity and permeability using vitamin E. Journal of Biomedical Materials Research Part A. 2020; 108(12): 2379-2394. doi: 10.1002/jbm.a.36990

164. Ooi SY, Ahmad I, Amin MohdCIM. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Industrial Crops and Products. 2016; 93: 227-234. doi: 10.1016/j.indcrop.2015.11.082

165. Roberts MG, Yu Q, Keunen R, et al. Functionalization of Cellulose Nanocrystals with POEGMA Copolymers via Copper-Catalyzed Azide–Alkyne Cycloaddition for Potential Drug-Delivery Applications. Biomacromolecules. 2020; 21(6): 2014-2023. doi: 10.1021/acs.biomac.9b01713

166. Naseri N, Mathew AP, Girandon L, et al. Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose. 2014; 22(1): 521-534. doi: 10.1007/s10570-014-0493-y

167. Dong S, Hirani AA, Colacino KR, et al. Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano LIFE. 2012; 2(3): 1241006. doi: 10.1142/s1793984412410061

168. Huang W, Wang Y, Huang Z, et al. On-Demand Dissolvable Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose Nanocrystal for Deep Partial Thickness Burn Wound Healing. ACS Applied Materials & Interfaces. 2018; 10(48): 41076-41088. doi: 10.1021/acsami.8b14526

169. Cheng F, Liu C, Wei X, et al. Preparation and Characterization of 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-Oxidized Cellulose Nanocrystal/Alginate Biodegradable Composite Dressing for Hemostasis Applications. ACS Sustainable Chemistry & Engineering. 2017; 5(5): 3819-3828. doi: 10.1021/acssuschemeng.6b02849

170. Domingues RMA, Gomes ME, Reis RL. The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules. 2014; 15(7): 2327-2346. doi: 10.1021/bm500524s

171. Enayati MS, Behzad T, Sajkiewicz P, et al. Development of electrospun poly (vinyl alcohol)‐based bionanocomposite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A. 2018; 106(4): 1111-1120. doi: 10.1002/jbm.a.36309

172. Lam NT, Chollakup R, Smitthipong W, et al. Utilizing cellulose from sugarcane bagasse mixed with poly(vinyl alcohol) for tissue engineering scaffold fabrication. Industrial Crops and Products. 2017; 100: 183-197. doi: 10.1016/j.indcrop.2017.02.031

173. Gao W, Sun L, Zhang Z, et al. Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration. Journal of Biomaterials Science, Polymer Edition. 2020; 31(8): 984-998. doi: 10.1080/09205063.2020.1735607

174. Wan S, Peng J, Jiang L, et al. Bioinspired Graphene‐Based Nanocomposites and Their Application in Flexible Energy Devices. Advanced Materials. 2016; 28(36): 7862-7898. doi: 10.1002/adma.201601934

175. Wu X, Shi Z, Fu S, et al. Strategy for Synthesizing Porous Cellulose Nanocrystal Supported Metal Nanocatalysts. ACS Sustainable Chemistry & Engineering. 2016; 4(11): 5929-5935. doi: 10.1021/acssuschemeng.6b00551

176. Wu X, Tang J, Duan Y, et al. Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. J Mater Chem A. 2014; 2(45): 19268-19274. doi: 10.1039/c4ta04929b

177. Ganguly K, Patel DK, Dutta SD, et al. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. International Journal of Biological Macromolecules. 2020; 155: 456-469. doi: 10.1016/j.ijbiomac.2020.03.171

178. Kim TG, Park TG. Surface Functionalized Electrospun Biodegradable Nanofibersfor Immobilization of Bioactive Molecules. Biotechnology Progress. 2006; 22(4): 1108-1113. doi: 10.1021/bp060039t

179. Tang Y, Petropoulos K, Kurth F, et al. Screen-Printed Glucose Sensors Modified with Cellulose Nanocrystals (CNCs) for Cell Culture Monitoring. Biosensors. 2020; 10(9): 125. doi: 10.3390/bios10090125

180. Kato R, Lettow JH, Patel SN, et al. Ion-Conducting Thermoresponsive Films Based on Polymer-Grafted Cellulose Nanocrystals. ACS Applied Materials & Interfaces. 2020; 12(48): 54083-54093. doi: 10.1021/acsami.0c16059

181. Sun X, Tyagi P, Agate S, et al. Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films. Carbohydrate Polymers. 2019; 208: 495-503. doi: 10.1016/j.carbpol.2018.12.067

182. Oechsle AL, Lewis L, Hamad WY, et al. CO2-Switchable Cellulose Nanocrystal Hydrogels. Chemistry of Materials. 2018; 30(2): 376-385. doi: 10.1021/acs.chemmater.7b03939

183. Cha R, He Z, Ni Y. Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydrate Polymers. 2012; 88(2): 713-718. doi: 10.1016/j.carbpol.2012.01.026

184. Li W, Ju B, Zhang S. Novel amphiphilic cellulose nanocrystals for pH-responsive Pickering emulsions. Carbohydrate Polymers. 2020; 229: 115401. doi: 10.1016/j.carbpol.2019.115401

185. Tao Y, Liu S, Zhang Y, et al. A pH-responsive polymer based on dynamic imine bonds as a drug delivery material with pseudo target release behavior. Polymer Chemistry. 2018; 9(7): 878-884. doi: 10.1039/c7py02108a




DOI: https://doi.org/10.24294/jpse.v7i1.4496

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Shamim Ahsan, M. S. Rabbi

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.