Recent advancements in nanocellulose synthesis, characterization, and application: A review

Shamim Ahsan, M. S. Rabbi

Article ID: 4496
Vol 7, Issue 1, 2024

VIEWS - 2081 (Abstract)

Abstract


Cellulose nanocrystal, known as CNCs, is a form of material that can be produced by synthesizing carbon from naturally occurring substances, such as plants. Due to the unique properties it possesses, including a large surface area, impressive mechanical strength, and the ability to biodegrade, it draws significant attention from researchers nowadays. Several methods are available to prepare CNC, such as acid hydrolysis, enzymatic hydrolysis, and mechanical procedures. The characteristics of CNC include X-ray diffraction, transmission electron microscopy, dynamic light scattering, etc. In this article, the recent development of CNC preparation and its characterizations are thoroughly discussed. Significant breakthroughs are listed accordingly. Furthermore, a variety of CNC applications, such as paper and packaging, biological applications, energy storage, etc., are illustrated. This study demonstrates the insights gained from using CNC as a potential environmentally friendly material with remarkable properties.


Keywords


Cellulose Nanocrystal (CNC); manufacturing; characterization; application

Full Text:

PDF


References


Amirah Badi NS, Zul Hilmey Makmud M, Se Mun C, et al. Synthesis and characterization of cellulose nanocrystal derived from paper as nanofiller for polymer insulation materials. Materials Today: Proceedings. 2024; 97: 69-74. doi: 10.1016/j.matpr.2023.12.059 Seddiqi H, Oliaei E, Honarkar H, et al. Cellulose and its derivatives: towards biomedical applications. Cellulose. 2021; 28(4): 1893-1931. doi: 10.1007/s10570-020-03674-w Mali P, Sherje AP. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydrate Polymers. 2022; 275: 118668. doi: 10.1016/j.carbpol.2021.118668 Raza M, Abu-Jdayil B, Banat F, et al. Isolation and Characterization of Cellulose Nanocrystals from Date Palm Waste. ACS Omega. 2022; 7(29): 25366-25379. doi: 10.1021/acsomega.2c02333 Hasan A, Rabbi MS, Maruf Billah Md. Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials. 2022; 4: 100078. doi: 10.1016/j.clema.2022.100078 Moohan J, Stewart SA, Espinosa E, et al. Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Applied Sciences. 2019; 10(1): 65. doi: 10.3390/app10010065 Trache D, Tarchoun AF, Derradji M, et al. Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in Chemistry. 2020; 8. doi: 10.3389/fchem.2020.00392 Mokhena TC, John MJ. Cellulose nanomaterials: new generation materials for solving global issues. Cellulose. 2019; 27(3): 1149-1194. doi: 10.1007/s10570-019-02889-w Foster EJ, Moon RJ, Agarwal UP, et al. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews. 2018; 47(8): 2609-2679. doi: 10.1039/c6cs00895j Rajinipriya M, Nagalakshmaiah M, Robert M, et al. Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustainable Chemistry & Engineering. 2018; 6(3): 2807-2828. doi: 10.1021/acssuschemeng.7b03437 Phanthong P, Reubroycharoen P, Hao X, et al. Nanocellulose: Extraction and application. Carbon Resources Conversion. 2018; 1(1): 32-43. doi: 10.1016/j.crcon.2018.05.004 Naz S, Ali JS, Zia M. Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims. Bio-Design and Manufacturing. 2019; 2(3): 187-212. doi: 10.1007/s42242-019-00049-4 Köse K, Mavlan M, Youngblood JP. Applications and impact of nanocellulose based adsorbents. Cellulose. 2020; 27(6): 2967-2990. doi: 10.1007/s10570-020-03011-1 Klemm D, Cranston ED, Fischer D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Materials Today. 2018; 21(7): 720-748. doi: 10.1016/j.mattod.2018.02.001 Chen H, Liu J, Chang X, et al. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology. 2017; 160: 196-206. doi: 10.1016/j.fuproc.2016.12.007 Nascimento DM, Nunes YL, Figueirêdo MCB, et al. Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chemistry. 2018; 20(11): 2428-2448. doi: 10.1039/c8gc00205c Wang X, Yao C, Wang F, et al. Cellulose‐Based Nanomaterials for Energy Applications. Small. 2017; 13(42). doi: 10.1002/smll.201702240 Wohlhauser S, Delepierre G, Labet M, et al. Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules. 2018; 51(16): 6157-6189. doi: 10.1021/acs.macromol.8b00733 Trache D, Hussin MH, Haafiz MKM, et al. Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 2017; 9(5): 1763-1786. doi: 10.1039/c6nr09494e Pennells J, Godwin ID, Amiralian N, et al. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose. 2019; 27(2): 575-593. doi: 10.1007/s10570-019-02828-9 Inamuddin, Thomas S, Kumar Mishra R, et al. Sustainable Polymer Composites and Nanocomposites. Springer International Publishing; 2019. doi: 10.1007/978-3-030-05399-4 Pires JRA, Souza VGL, Fernando AL. Valorization of energy crops as a source for nanocellulose production – Current knowledge and future prospects. Industrial Crops and Products. 2019; 140: 111642. doi: 10.1016/j.indcrop.2019.111642 Salimi S, Sotudeh-Gharebagh R, Zarghami R, et al. Production of Nanocellulose and Its Applications in Drug Delivery: A Critical Review. ACS Sustainable Chemistry & Engineering. 2019; 7(19): 15800-15827. doi: 10.1021/acssuschemeng.9b02744 Li J, Cha R, Mou K, et al. Nanocellulose‐Based Antibacterial Materials. Advanced Healthcare Materials. 2018; 7(20). doi: 10.1002/adhm.201800334 Vilarinho F, Sanches Silva A, Vaz MF, et al. Nanocellulose in green food packaging. Critical Reviews in Food Science and Nutrition. 2017; 58(9): 1526-1537. doi: 10.1080/10408398.2016.1270254 Moon RJ, Schueneman GT, Simonsen J. Overview of Cellulose Nanomaterials, Their Capabilities and Applications. JOM. 2016; 68(9): 2383-2394. doi: 10.1007/s11837-016-2018-7 Thomas B, Raj MC, B AK, et al. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews. 2018; 118(24): 11575-11625. doi: 10.1021/acs.chemrev.7b00627 Miao C, Hamad WY. Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites. Current Opinion in Solid State and Materials Science. 2019; 23(4): 100761. doi: 10.1016/j.cossms.2019.06.005 He X, Deng H, Hwang H. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis. 2019; 27(1): 1-21. doi: 10.1016/j.jfda.2018.12.002 Kim J, Lee D, Lee Y, et al. Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials. Advanced Materials. 2018; 31(20). doi: 10.1002/adma.201804826 Karimian A, Parsian H, Majidinia M, et al. Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems. International Journal of Biological Macromolecules. 2019; 133: 850-859. doi: 10.1016/j.ijbiomac.2019.04.117 Shojaeiarani J, Bajwa D, Shirzadifar A. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydrate Polymers. 2019; 216: 247-259. doi: 10.1016/j.carbpol.2019.04.033 Park NM, Choi S, Oh JE, et al. Facile extraction of cellulose nanocrystals. Carbohydrate Polymers. 2019; 223: 115114. doi: 10.1016/j.carbpol.2019.115114 Luo H, Cha R, Li J, et al. Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydrate Polymers. 2019; 224: 115144. doi: 10.1016/j.carbpol.2019.115144 Dufresne A. Nanocellulose Processing Properties and Potential Applications. Current Forestry Reports. 2019; 5(2): 76-89. doi: 10.1007/s40725-019-00088-1 Trache D, Hussin MH, Hui Chuin CT, et al. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules. 2016; 93: 789-804. doi: 10.1016/j.ijbiomac.2016.09.056 Gopi S, Balakrishnan P, Chandradhara D, et al. General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry. 2019; 13: 59-78. doi: 10.1016/j.mtchem.2019.04.012 Habibi Y, Lucia LA, Rojas OJ. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews. 2010; 110(6): 3479-3500. doi: 10.1021/cr900339w Tarchoun AF, Trache D, Klapötke TM, et al. A Promising Energetic Polymer from Posidonia oceanica Brown Algae: Synthesis, Characterization, and Kinetic Modeling. Macromolecular Chemistry and Physics. 2019; 220(22). doi: 10.1002/macp.201900358 Tarchoun AF, Trache D, Klapötke TM. Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. International Journal of Biological Macromolecules. 2019; 138: 837-845. doi: 10.1016/j.ijbiomac.2019.07.176 Dufresne A. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017; 376(2112): 20170040. doi: 10.1098/rsta.2017.0040 Thakur VK. Nanocellulose polymer nanocomposites: fundamentals and applications. John Wiley & Sons; 2014. doi:10.1002/9781118872246. Thakur VK. Lignocellulosic polymer composites: Processing, characterization, and properties. John Wiley & Sons; 2014. doi:10.1002/9781118773949. Jonoobi M, Oladi R, Davoudpour Y, et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose. 2015; 22(2): 935-969. doi: 10.1007/s10570-015-0551-0 A B, B K, J S. Comparative mechanical, thermal, and morphological study of untreated and NaOH-treated bagasse fiber-reinforced cardanol green composites. Advanced Composites and Hybrid Materials. 2019; 2(1): 125-132. doi: 10.1007/s42114-019-00079-7 Suryanto H, Marsyahyo E, Irawan YS, et al. Effect of Alkali Treatment on Crystalline Structure of Cellulose Fiber from Mendong (Fimbristylis globulosa) Straw. Key Engineering Materials. 2013; 594-595: 720-724. doi: 10.4028/www.scientific.net/kem.594-595.720 Bisanda ETN. The Effect of Alkali Treatment on the Adhesion Characteristics of Sisal Fibres. 2000; 7: 331-339. Nematollahi M, Karevan M, Mosaddegh P, et al. Morphology, thermal and mechanical properties of extruded injection molded kenaf fiber reinforced polypropylene composites. Materials Research Express. 2019; 6(9): 095409. doi: 10.1088/2053-1591/ab2fbd Ahmad Kamal AA, Noriman NZ, Sam ST, et al. Tensile Properties and Impact Strength of RHDPE/BF Composites: The Effects of Chemical Treatment. IOP Conference Series: Materials Science and Engineering. 2019; 557(1): 012041. doi: 10.1088/1757-899x/557/1/012041 Valadez-Gonzalez A, Cervantes-Uc JM, Olayo RJIP, Herrera-Franco PJ. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering. 1999; 30(3): 309-320. doi: 10.1013/S1359-8368(98)00054-7 Manikandan Nair KC, Thomas S, Groeninckx G. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Composites Science and Technology. 2001; 61(16): 2519-2529. doi: 10.1016/S0266-3538(01)00170-1 Diharjo K, Permana A, Arsada R, et al. Effect of acetylation treatment and soaking time to bending strength of sugar palm fiber composite. AIP Conference Proceedings. Published online 2017. doi: 10.1063/1.4968302 Annie Paul S, Boudenne A, Ibos L, et al. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites Part A: Applied Science and Manufacturing. 2008; 39(9): 1582-1588. doi: 10.1016/j.compositesa.2008.06.004 Kalia S, Kaushik VK, Sharma RK. Effect of Benzoylation and Graft Copolymerization on Morphology, Thermal Stability, and Crystallinity of Sisal Fibers. Journal of Natural Fibers. 2011; 8(1): 27-38. doi: 10.1080/15440478.2011.551002 S SK, Srinivasan K, M P, et al. Study of raw and chemically treated Sansevieria ehrenbergii fibers for brake pad application. Materials Research Express. 2020; 7(5): 055102. doi: 10.1088/2053-1591/ab8f48 La Mantia FP, Morreale M. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing. 2011; 42(6): 579-588. doi: 10.1016/j.compositesa.2011.01.017 Patra A, Bisoyi DK, Manda PK, et al. Electrical and mechanical properties of the potassium permanganate treated short sisal fiber reinforced epoxy composite in correlation to the macromolecular structure of the reinforced fiber. Journal of Applied Polymer Science. 2012; 128(2): 1011-1019. doi: 10.1002/app.38195 Mohammed AA, Bachtiar D, Rejab MRM, et al. Effects of KMnO4 Treatment on the Flexural, Impact, and Thermal Properties of Sugar Palm Fiber-Reinforced Thermoplastic Polyurethane Composites. JOM. 2018; 70(7): 1326-1330. doi: 10.1007/s11837-018-2869-1 Nickerson RF, Habrle JA. Cellulose intercrystalline structure. Industrial & Engineering Chemistry. 1947; 11(1947): 1507-1512. doi: 10.1021/ie50455a024 Nagarajan KJ, Balaji AN, Thanga Kasi Rajan S, et al. Effect of sulfuric acid reaction time on the properties and behavior of cellulose nanocrystals from Cocos nucifera var-Aurantiaca peduncle’s cellulose microfibers. Materials Research Express. 2019; 6(12): 125333. doi: 10.1088/2053-1591/ab5a9d Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, et al. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules. 2007; 9(1): 57-65. doi: 10.1021/bm700769p Ioelovich M. Study of Cellulose Interaction with Concentrated Solutions of Sulfuric Acid. ISRN Chemical Engineering. 2012; 2012: 1-7. doi: 10.5402/2012/428974 Nagarajan KJ, Balaji AN, Kasi Rajan ST, et al. Preparation of bio-eco based cellulose nanomaterials from used disposal paper cups through citric acid hydrolysis. Carbohydrate Polymers. 2020; 235: 115997. doi: 10.1016/j.carbpol.2020.115997 Wang N, Ding E, Cheng R. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer. 2007; 48(12): 3486-3493. doi: 10.1016/j.polymer.2007.03.062 Yu H, Qin Z, Liang B, et al. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. Journal of Materials Chemistry A. 2013; 1(12): 3938. doi: 10.1039/c3ta01150j Araki J, Wada M, Kuga S, Okano T, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998; 142(1): 75-82. doi: 10.1016/S0927-7757(98)00404-X Hastuti N, Kanomata K, Kitaoka T. Hydrochloric Acid Hydrolysis of Pulps from Oil Palm Empty Fruit Bunches to Produce Cellulose Nanocrystals. Journal of Polymers and the Environment. 2018; 26(9): 3698-3709. doi: 10.1007/s10924-018-1248-x Camarero Espinosa S, Kuhnt T, Foster EJ, et al. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules. 2013; 14(4): 1223-1230. doi: 10.1021/bm400219u Kalashnikova I, Bizot H, Cathala B, et al. Modulation of Cellulose Nanocrystals Amphiphilic Properties to Stabilize Oil/Water Interface. Biomacromolecules. 2011; 13(1): 267-275. doi: 10.1021/bm201599j Kalashnikova I, Bizot H, Bertoncini P, et al. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter. 2013; 9(3): 952-959. doi: 10.1039/c2sm26472b Vanderfleet OM, Osorio DA, Cranston ED. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017; 376(2112): 20170041. doi: 10.1098/rsta.2017.0041 Frost BA, Johan Foster E. Isolation of Thermally Stable Cellulose Nanocrystals from Spent Coffee Grounds via Phosphoric Acid Hydrolysis. Journal of Renewable Materials. 2020; 8(2): 187-203. doi: 10.32604/jrm.2020.07940 Li S, Li C, Li C, et al. Fabrication of nano-crystalline cellulose with phosphoric acid and its full application in a modified polyurethane foam. Polymer Degradation and Stability. 2013; 98(9): 1940-1944. doi: 10.1016/j.polymdegradstab.2013.06.017 Tang Y, Shen X, Zhang J, et al. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydrate Polymers. 2015; 125: 360-366. doi: 10.1016/j.carbpol.2015.02.063 Du H, Liu C, Mu X, et al. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose. 2016; 23(4): 2389-2407. doi: 10.1007/s10570-016-0963-5 Chen L, Zhu JY, Baez C, et al. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry. 2016; 18(13): 3835-3843. doi: 10.1039/c6gc00687f Seta FT, An X, Liu L, et al. Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydrate Polymers. 2020; 234: 115942. doi: 10.1016/j.carbpol.2020.115942 Keerati-u-rai M, Corredig M. Effect of Dynamic High Pressure Homogenization on the Aggregation State of Soy Protein. Journal of Agricultural and Food Chemistry. 2009; 57(9): 3556-3562. doi: 10.1021/jf803562q Nechyporchuk O, Belgacem MN, Bras J. Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products. 2016; 93: 2-25. doi: 10.1016/j.indcrop.2016.02.016 Huang J, Ma X, Yang G, Alain D. Introduction to nanocellulose. Nanocellulose: From Fundamentals to Advanced Materials. 2019; 1-20. doi: 10.1002/9783527807437.ch1 Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012; 4(11): 3274. doi: 10.1039/c2nr30260h Afrin S, Karim Z. Isolation and Surface Modification of Nanocellulose: Necessity of Enzymes over Chemicals. ChemBioEng Reviews. 2017; 4(5): 289-303. doi: 10.1002/cben.201600001 Liang L, Bhagia S, Li M, et al. Cross‐Linked Nanocellulosic Materials and Their Applications. ChemSusChem. 2019; 13(1): 78-87. doi: 10.1002/cssc.201901676 Tao H, Lavoine N, Jiang F, et al. Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale Horizons. 2020; 5(4): 607-627. doi: 10.1039/d0nh00016g George JSNS. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, Science and Applications. Published online November 2015: 45. doi: 10.2147/nsa.s64386 Daud JB, Lee KY. Handbook of Nanocellulose and Cellulose Nanocomposites. Wiley online library; 2017. Tong X, Shen W, Chen X, et al. Preparation and mechanism analysis of morphology‐controlled cellulose nanocrystals via compound enzymatic hydrolysis of eucalyptus pulp. Journal of Applied Polymer Science. 2019; 137(9). doi: 10.1002/app.48407 Kaboorani A, Riedl B. Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Industrial Crops and Products. 2015; 65: 45-55. doi: 10.1016/j.indcrop.2014.11.027 Robles E, Urruzola I, Labidi J, et al. Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Industrial Crops and Products. 2015; 71: 44-53. doi: 10.1016/j.indcrop.2015.03.075 Cruz J, Fangueiro R. Surface Modification of Natural Fibers: A Review. Procedia Engineering. 2016; 155: 285-288. doi: 10.1016/j.proeng.2016.08.030 Sanjay MR, Siengchin S, Parameswaranpillai J, et al. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate polymers. 2019; 207: 108-121. Oliveira FR, Erkens L, Fangueiro R, et al. Surface Modification of Banana Fibers by DBD Plasma Treatment. Plasma Chemistry and Plasma Processing. 2012; 32(2): 259-273. doi: 10.1007/s11090-012-9354-3 Shahidi S, Wiener J, Ghoranneviss M. Surface Modification Methods for Improving the Dyeability of Textile Fabrics. Eco-Friendly Textile Dyeing and Finishing. Published online January 16, 2013. doi: 10.5772/53911 Sinha E, Panigrahi S. Effect of Plasma Treatment on Structure, Wettability of Jute Fiber and Flexural Strength of its Composite. Journal of Composite Materials. 2009; 43(17): 1791-1802. doi: 10.1177/0021998309338078 Kato K, Vasilets VN, Fursa MN, et al. Surface Oxidation of Cellulose Fibers by Vacuum Ultraviolet Irradiation. Journal of Polymer Science Part A: Polymer chemistry. 1999; 37(3): 357-361. doi: 10.1002/(SICI)1099-0518(19990201)37:3<357:AID-POLA13>3.0.CO;2-2 Ali A, Shaker K, Nawab Y, et al. Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles. 2016; 47(8): 2153-2183. doi: 10.1177/1528083716654468 Bataille P, Dufourd M, Sapieha S. Copolymerization of styrene on to cellulose activated by corona. Polymer International. 1994; 34(4): 387-391. doi: 10.1002/pi.1994.210340406 Belgacem MN, Czeremuszkin G, Sapieha S, et al. Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose. 1995; 2(3): 145-157. doi: 10.1007/bf00813015 Uehara T, Sakata I. Effect of Corona Discharge Treatment on Cellulose Prepared from Beech Wood. Journal of Applied Polymer Science. 1990; 41(7-8):1695-1706. Földváry CM, Takács E, Wojnárovits L. Effect of high-energy radiation and alkali treatment on the properties of cellulose. Radiation Physics and Chemistry. 2003; 67(3-4): 505-508. doi: 10.1016/S0969-806X(03)00094-X Khan MA, Haque N, Al-Kafi A, et al. Jute Reinforced Polymer Composite by Gamma Radiation: Effect of Surface Treatment with UV Radiation. Polymer-Plastics Technology and Engineering. 2006; 45(5): 607-613. doi: 10.1080/03602550600554141 Takâcs E, Wojnârovits L, Borsa J, et al. Effect of γ-irradiation on cotton-cellulose. Radiation Physics and Chemistry. 1999; 55(5-6): 663-666. doi: 10.1016/S0969-806X(99)00245-5 Tóth T, Borsa J, Takács E. Effect of preswelling on radiation degradation of cotton cellulose. Radiation Physics and Chemistry. 2003; 67(3-4): 513-515. doi: 10.1016/S0969-806X(03)00096-3 Vagner Roberto B, Dos Santos CG, Arantes Júnior G, Da Costa AR. Chemical modification of lignocellulosic materials by irradiation with Nd-YAG pulsed laser. Applied surface science. 2001; 183(1-2): 120-125. Kolar J, Strlic M, Müller-Hess D, et al. Near-UV and visible pulsed laser interaction with paper. Journal of Cultural Heritage. 2000; 1(2): 221-224. doi: 10.1016/S1296-2074(00)00149-7 Mizoguchi K, Ishikawa M, Ohkubo S, et al. Laser surface treatment of regenerated cellulose fiber. Instrumentation Science & Technology. 2001; 7(5): 497-509. doi: 10.1163/156855400750262978 Madhu P, Sanjay MR, Senthamaraikannan P, et al. A review on synthesis and characterization of commercially available natural fibers: Part-I. Journal of Natural Fibers. 2018; 16(8): 1132-1144. doi: 10.1080/15440478.2018.1453433 Manimaran P, Senthamaraikannan P, Murugananthan K, et al. Physicochemical Properties of New Cellulosic Fibers from Azadirachta indica Plant. Journal of Natural Fibers. 2017; 15(1): 29-38. doi: 10.1080/15440478.2017.1302388 Alawar A, Hamed AM, Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering. 2009; 40(7): 601-606. doi: 10.1016/j.compositesb.2009.04.018 Arthanarieswaran VP, Kumaravel A, Saravanakumar SS. Physico-Chemical Properties of Alkali-TreatedAcacia leucophloeaFibers. International Journal of Polymer Analysis and Characterization. 2015; 20(8): 704-713. doi: 10.1080/1023666x.2015.1081133 De Rosa IM, Kenny JM, Puglia D, et al. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology. 2010; 70(1): 116-122. doi: 10.1016/j.compscitech.2009.09.013 Jayaramudu J, Guduri BR, Varada Rajulu A. Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydrate Polymers. 2010; 79(4): 847-851. doi: 10.1016/j.carbpol.2009.10.046 Le Troedec M, Sedan D, Peyratout C, et al. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing. 2008; 39(3): 514-522. doi: 10.1016/j.compositesa.2007.12.001 Li Y, Li G, Zou Y, et al. Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose. 2013; 21(1): 301-309. doi: 10.1007/s10570-013-0146-6 Maepa CE, Jayaramudu J, Okonkwo JO, et al. Extraction and characterization of natural cellulose fibers from maize tassel. International Journal of Polymer Analysis and Characterization. 2015; 20(2): 99-109. doi: 10.1080/1023666x.2014.961118 García EG, Mora KR, Bernal C. Cellulose nanofiber production from banana rachis. International Journal of Engineering Science and Computing. 2020; 10(2): 24683-24689. Cellulose Nanocrystals: Obtaining and Sources of a Promising Bionanomaterial for Advanced Applications. Biointerface Research in Applied Chemistry. 2020; 11(4): 11797-11816. doi: 10.33263/briac114.1179711816 Cecci RRR, Passos AA, de Aguiar Neto TC, et al. Banana pseudostem fibers characterization and comparison with reported data on jute and sisal fibers. SN Applied Sciences. 2019; 2(1). doi: 10.1007/s42452-019-1790-8 Kargarzadeh H, Ahmad I, Abdullah I, et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose. 2012; 19(3): 855-866. doi: 10.1007/s10570-012-9684-6 Sain M, Panthapulakkal S. Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products. 2006; 23(1): 1-8. doi: 10.1016/j.indcrop.2005.01.006 Ahmad I, Mosadeghzad Z, Daik R, et al. The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes. Journal of Applied Polymer Science. 2008; 109(6): 3651-3658. doi: 10.1002/app.28488 Zuluaga R, Putaux JL, Cruz J, et al. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers. 2009; 76(1): 51-59. doi: 10.1016/j.carbpol.2008.09.024 Rosli NA, Ahmad I, Abdullah I. Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources. 2013; 8(2): 1893-1908. Liu Y, Hu H. X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers. 2008; 9(6): 735-739. doi: 10.1007/s12221-008-0115-0 Mannan KhM. X-ray diffraction study of jute fibres treated with NaOH and liquid anhydrous ammonia. Polymer. 1993; 34(12): 2485-2487. Segal L, Creely JJ, Martin AE, Conrad CM. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. 1952; 29(10). Zope G, Goswami A, Kulkarni S. Isolation and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Banana Pseudostem. BioNanoScience. 2022; 12(2): 463-471. doi: 10.1007/s12668-022-00960-8 Tibolla H, Pelissari FM, Martins JT, et al. Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids. 2018; 75: 192-201. doi: 10.1016/j.foodhyd.2017.08.027 Chen W, Yu H, Liu Y, et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers. 2011; 83(4): 1804-1811. doi: 10.1016/j.carbpol.2010.10.040 Dikin D, Kohlhaas K, Dommett G, et al. Scanning Electron Microscopy Methods for Analysis of Polymer Nanocomposites. Microscopy and Microanalysis. 2006; 12(S02): 674-675. doi: 10.1017/s1431927606067080 Mahmud S, Long Y, Abu Taher M, et al. Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. Journal of Applied Polymer Science. 2019; 136(46). doi: 10.1002/app.48221 Novo LP, Curvelo AA da S, Carvalho AJF. Nanocomposites of acid free CNC and HDPE: Dispersion from solvent driven by fast crystallization/gelation. Journal of Molecular Liquids. 2018; 266: 233-241. doi: 10.1016/j.molliq.2018.06.062 Mondragon G, Santamaria-Echart A, Hormaiztegui MEV, et al. Nanocomposites of Waterborne Polyurethane Reinforced with Cellulose Nanocrystals from Sisal Fibres. Journal of Polymers and the Environment. 2017; 26(5): 1869-1880. doi: 10.1007/s10924-017-1089-z Montanheiro TL do A, Montagna LS, Patrulea V, et al. Evaluation of cellulose nanocrystal addition on morphology, compression modulus and cytotoxicity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds. Journal of Materials Science. 2019; 54(9): 7198-7210. doi: 10.1007/s10853-019-03398-8 Zhan C, Yu G, Lu Y, et al. Conductive polymer nanocomposites: a critical review of modern advanced devices. Journal of Materials Chemistry C. 2017; 5(7): 1569-1585. doi: 10.1039/c6tc04269d Wu H, Nagarajan S, Shu J, et al. Green and facile surface modification of cellulose nanocrystal as the route to produce poly(lactic acid) nanocomposites with improved properties. Carbohydrate Polymers. 2018; 197: 204-214. doi: 10.1016/j.carbpol.2018.05.087 Pandi Narsimha, Sonawane SH, Anand Kishore K. Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrasonics Sonochemistry. 2021; 70: 105353. doi: 10.1016/j.ultsonch.2020.105353 Balnois E, Busnel F, Baley C, et al. An AFM study of the effect of chemical treatments on the surface microstructure and adhesion properties of flax fibres. Composite Interfaces. 2007; 14(7-9): 715-731. doi: 10.1163/156855407782106537 Ben Sghaier AEO, Chaabouni Y, Msahli S, et al. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Industrial Crops and Products. 2012; 36(1): 257-266. doi: 10.1016/j.indcrop.2011.09.012 Senthamaraikannan P, Saravanakumar SS, Arthanarieswaran VP, et al. Physico-chemical properties of new cellulosic fibers from the bark ofAcacia planifrons. International Journal of Polymer Analysis and Characterization. 2015; 21(3): 207-213. doi: 10.1080/1023666x.2016.1133138 Neelamana IK, Thomas S, Parameswaranpillai J. Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites‐macroscale to nanoscale. Journal of Applied Polymer Science. 2013; 130(2): 1239-1246. doi: 10.1002/app.39220 Chokshi S, Parmar V, Gohil P, et al. Chemical Composition and Mechanical Properties of Natural Fibers. Journal of Natural Fibers. 2020; 19(10): 3942-3953. doi: 10.1080/15440478.2020.1848738 Gassan J, Chate A, Bledzki AK. Calculation of elastic properties of natural fibers. Journal of Materials Science. 2001; 36: 3715-3720. Béakou A, Ntenga R, Lepetit J, et al. Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Composites Part A: Applied Science and Manufacturing. 2008; 39(1): 67-74. doi: 10.1016/j.compositesa.2007.09.002 Liu D, Han G, Huang J, et al. Composition and structure study of natural Nelumbo nucifera fiber. Carbohydrate Polymers. 2009; 75(1): 39-43. doi: 10.1016/j.carbpol.2008.06.003 Amiralian N, Annamalai PK, Garvey CJ, et al. High aspect ratio nanocellulose from an extremophile spinifex grass by controlled acid hydrolysis. Cellulose. 2017; 24(9): 3753-3766. doi: 10.1007/s10570-017-1379-6 Yadav M, Chiu FC. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydrate Polymers. 2019; 211: 181-194. doi: 10.1016/j.carbpol.2019.01.114 Salmieri S, Islam F, Khan RA, et al. Antimicrobial nanocomposite films made of poly(lactic acid)–cellulose nanocrystals (PLA–CNC) in food applications—part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose. 2014; 21(6): 4271-4285. doi: 10.1007/s10570-014-0406-0 de Oliveira JP, Bruni GP, el Halal SLM, et al. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules. 2019; 124: 175-184. doi: 10.1016/j.ijbiomac.2018.11.205 Criado P, Fraschini C, Salmieri S, et al. Cellulose nanocrystals (CNCs) loaded alginate films against lipid oxidation of chicken breast. Food Research International. 2020; 132: 109110. doi: 10.1016/j.foodres.2020.109110 Fotie G, Amoroso L, Muratore G, et al. Carbon dioxide diffusion at different relative humidity through coating of cellulose nanocrystals for food packaging applications. Food Packaging and Shelf Life. 2018; 18: 62-70. doi: 10.1016/j.fpsl.2018.08.007 de Oliveira JP, Bruni GP, Fabra MJ, et al. Development of food packaging bioactive aerogels through the valorization of Gelidium sesquipedale seaweed. Food Hydrocolloids. 2019; 89: 337-350. doi: 10.1016/j.foodhyd.2018.10.047 Enescu D, Gardrat C, Cramail H, et al. Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: structuring and properties improvement by using water-evaporation-induced self-assembly. Cellulose. 2019; 26(4): 2389-2401. doi: 10.1007/s10570-018-2211-7 Forssell P, Lahtinen R, Lahelin M, Myllärinen P. Oxygen permeability of amylose and amylopectin films. Carbohydrate Polymers. 2002; 47(2): 125-129. doi: 10.1016/S0144-8617(01)00175-8 Fortunati E, Peltzer M, Armentano I, et al. Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering. 2013; 118(1): 117-124. doi: 10.1016/j.jfoodeng.2013.03.025 Goodarzi K, Jonidi Shariatzadeh F, Solouk A, et al. Injectable drug loaded gelatin based scaffolds as minimally invasive approach for drug delivery system: CNC/PAMAM nanoparticles. European Polymer Journal. 2020; 139: 109992. doi: 10.1016/j.eurpolymj.2020.109992 Casalini T, Rossi F, Lazzari S, et al. Mathematical Modeling of PLGA Microparticles: From Polymer Degradation to Drug Release. Molecular Pharmaceutics. 2014; 11(11): 4036-4048. doi: 10.1021/mp500078u Maurya AK, Mishra A, Mishra N. Nanoengineered polymeric biomaterials for drug delivery system. Nanoengineered Biomaterials for Advanced Drug Delivery. Published online 2020: 109-143. doi: 10.1016/b978-0-08-102985-5.00006-1 Ning L, You C, Zhang Y, et al. Synthesis and biological evaluation of surface-modified nanocellulose hydrogel loaded with paclitaxel. Life Sciences. 2020; 241: 117137. doi: 10.1016/j.lfs.2019.117137 Chen Y, Abdalkarim SYH, Yu HY, et al. Double stimuli-responsive cellulose nanocrystals reinforced electrospun PHBV composites membrane for intelligent drug release. International Journal of Biological Macromolecules. 2020; 155: 330-339. doi: 10.1016/j.ijbiomac.2020.03.216 Guo Y, Wu L, Gou K, et al. Functional mesoporous silica nanoparticles for delivering nimesulide with chiral recognition performance. Microporous and Mesoporous Materials. 2020; 294: 109862. doi: 10.1016/j.micromeso.2019.109862 Rao KM, Kumar A, Han SS. Poly(acrylamidoglycolic acid) nanocomposite hydrogels reinforced with cellulose nanocrystals for pH-sensitive controlled release of diclofenac sodium. Polymer Testing. 2017; 64: 175-182. doi: 10.1016/j.polymertesting.2017.10.006 Ebrahimi M, Botelho M, Lu W, et al. Development of nanocomposite collagen/ HA/β‐TCP scaffolds with tailored gradient porosity and permeability using vitamin E. Journal of Biomedical Materials Research Part A. 2020; 108(12): 2379-2394. doi: 10.1002/jbm.a.36990 Ooi SY, Ahmad I, Amin MohdCIM. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Industrial Crops and Products. 2016; 93: 227-234. doi: 10.1016/j.indcrop.2015.11.082 Roberts MG, Yu Q, Keunen R, et al. Functionalization of Cellulose Nanocrystals with POEGMA Copolymers via Copper-Catalyzed Azide–Alkyne Cycloaddition for Potential Drug-Delivery Applications. Biomacromolecules. 2020; 21(6): 2014-2023. doi: 10.1021/acs.biomac.9b01713 Naseri N, Mathew AP, Girandon L, et al. Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose. 2014; 22(1): 521-534. doi: 10.1007/s10570-014-0493-y Dong S, Hirani AA, Colacino KR, et al. Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano LIFE. 2012; 2(3): 1241006. doi: 10.1142/s1793984412410061 Huang W, Wang Y, Huang Z, et al. On-Demand Dissolvable Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose Nanocrystal for Deep Partial Thickness Burn Wound Healing. ACS Applied Materials & Interfaces. 2018; 10(48): 41076-41088. doi: 10.1021/acsami.8b14526 Cheng F, Liu C, Wei X, et al. Preparation and Characterization of 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-Oxidized Cellulose Nanocrystal/Alginate Biodegradable Composite Dressing for Hemostasis Applications. ACS Sustainable Chemistry & Engineering. 2017; 5(5): 3819-3828. doi: 10.1021/acssuschemeng.6b02849 Domingues RMA, Gomes ME, Reis RL. The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules. 2014; 15(7): 2327-2346. doi: 10.1021/bm500524s Enayati MS, Behzad T, Sajkiewicz P, et al. Development of electrospun poly (vinyl alcohol)‐based bionanocomposite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A. 2018; 106(4): 1111-1120. doi: 10.1002/jbm.a.36309 Lam NT, Chollakup R, Smitthipong W, et al. Utilizing cellulose from sugarcane bagasse mixed with poly(vinyl alcohol) for tissue engineering scaffold fabrication. Industrial Crops and Products. 2017; 100: 183-197. doi: 10.1016/j.indcrop.2017.02.031 Gao W, Sun L, Zhang Z, et al. Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration. Journal of Biomaterials Science, Polymer Edition. 2020; 31(8): 984-998. doi: 10.1080/09205063.2020.1735607 Wan S, Peng J, Jiang L, et al. Bioinspired Graphene‐Based Nanocomposites and Their Application in Flexible Energy Devices. Advanced Materials. 2016; 28(36): 7862-7898. doi: 10.1002/adma.201601934 Wu X, Shi Z, Fu S, et al. Strategy for Synthesizing Porous Cellulose Nanocrystal Supported Metal Nanocatalysts. ACS Sustainable Chemistry & Engineering. 2016; 4(11): 5929-5935. doi: 10.1021/acssuschemeng.6b00551 Wu X, Tang J, Duan Y, et al. Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. J Mater Chem A. 2014; 2(45): 19268-19274. doi: 10.1039/c4ta04929b Ganguly K, Patel DK, Dutta SD, et al. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. International Journal of Biological Macromolecules. 2020; 155: 456-469. doi: 10.1016/j.ijbiomac.2020.03.171 Kim TG, Park TG. Surface Functionalized Electrospun Biodegradable Nanofibersfor Immobilization of Bioactive Molecules. Biotechnology Progress. 2006; 22(4): 1108-1113. doi: 10.1021/bp060039t Tang Y, Petropoulos K, Kurth F, et al. Screen-Printed Glucose Sensors Modified with Cellulose Nanocrystals (CNCs) for Cell Culture Monitoring. Biosensors. 2020; 10(9): 125. doi: 10.3390/bios10090125 Kato R, Lettow JH, Patel SN, et al. Ion-Conducting Thermoresponsive Films Based on Polymer-Grafted Cellulose Nanocrystals. ACS Applied Materials & Interfaces. 2020; 12(48): 54083-54093. doi: 10.1021/acsami.0c16059 Sun X, Tyagi P, Agate S, et al. Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films. Carbohydrate Polymers. 2019; 208: 495-503. doi: 10.1016/j.carbpol.2018.12.067 Oechsle AL, Lewis L, Hamad WY, et al. CO2-Switchable Cellulose Nanocrystal Hydrogels. Chemistry of Materials. 2018; 30(2): 376-385. doi: 10.1021/acs.chemmater.7b03939 Cha R, He Z, Ni Y. Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydrate Polymers. 2012; 88(2): 713-718. doi: 10.1016/j.carbpol.2012.01.026 Li W, Ju B, Zhang S. Novel amphiphilic cellulose nanocrystals for pH-responsive Pickering emulsions. Carbohydrate Polymers. 2020; 229: 115401. doi: 10.1016/j.carbpol.2019.115401 Tao Y, Liu S, Zhang Y, et al. A pH-responsive polymer based on dynamic imine bonds as a drug delivery material with pseudo target release behavior. Polymer Chemistry. 2018; 9(7): 878-884. doi: 10.1039/c7py02108a



DOI: https://doi.org/10.24294/jpse.v7i1.4496

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Shamim Ahsan, M. S. Rabbi

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.