Underwater implosion behavior of 3D-printed polymer structures
Article ID: 4070
Vol 7, Issue 1, 2024
Vol 7, Issue 1, 2024
VIEWS - 1001 (Abstract)
Abstract
This study experimentally investigates the failure behavior of 3D-printed polymer tubes during underwater implosion. Implosion is a prevalent failure mechanism in the underwater domain, and the adaptation of new technology, such as 3D printing, allows for the rapid manufacturing of pressure vessels with complex geometries. This study analyzes the failure performance of 3D-printed polymer structures to aid in the future development of 3D-printed pressure vessels. The 3D-printed tube specimens analyzed were fabricated using digital light synthesis (DLS) technology and included four different case geometries. The geometries consist of three cylindrical shells of varying diameter and thickness and one double hull structure with a cylindrical gyroid core filler. These specimens were submerged in a pressure vessel and subjected to increasing hydrostatic pressure until implosion failure occurred. High-speed photography and Digital Image Correlation (DIC) were employed to capture the collapse event and obtain full-field displacements. Local dynamic pressure histories during failure were recorded using piezoelectric transducers. The findings highlight that the 3D-printed polymers underwent significant deformation and failed at localized points due to material failure. The fracture of the specimens during failure introduced inconsistencies in pressure and impulse data due to the chaotic nature of the failure. Notably, the energy flow analysis revealed that the proportion of energy released via the pressure pulse was lower than in traditional aluminum structures. These findings contribute to our understanding of the behavior of 3D-printed polymers under hydrostatic pressure conditions.
Keywords
3D printed polymers; structural failure; implosion; cylindrical shells; double hull structures
Full Text:
PDFReferences
Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018; 143: 172-196. doi: 10.1016/j.compositesb.2018.02.012
Urick RJ. Implosions as Sources of Underwater Sound. The Journal of the Acoustical Society of America. 1963; 35(12): 2026-2027. doi: 10.1121/1.1918898
Orr M, Schoenberg M. Acoustic signatures from deep water implosions of spherical cavities. The Journal of the Acoustical Society of America. 1976; 59(5): 1155-1159. doi: 10.1121/1.380977
Turner SE. Underwater implosion of glass spheres. The Journal of the Acoustical Society of America. 2007; 121(2): 844-852. doi: 10.1121/1.2404921
NASA space vehicle design criteria (structures). NASA SP-8007. NASA; 1968.
Turner SE, Ambrico JM. Underwater Implosion of Cylindrical Metal Tubes. Journal of Applied Mechanics. 2012; 80(1). doi: 10.1115/1.4006944
Farhat C, Wang KG, Main A, et al. Dynamic implosion of underwater cylindrical shells: Experiments and Computations. International Journal of Solids and Structures. 2013; 50(19): 2943-2961. doi: 10.1016/j.ijsolstr.2013.05.006
Gupta S, LeBlanc JM, Shukla A. Mechanics of the implosion of cylindrical shells in a confining tube. International Journal of Solids and Structures. 2014; 51(23-24): 3996-4014. doi: 10.1016/j.ijsolstr.2014.07.022
DeNardo N, Pinto M, Shukla A. Hydrostatic and shock-initiated instabilities in double-hull composite cylinders. Journal of the Mechanics and Physics of Solids. 2018; 120: 96-116. doi: 10.1016/j.jmps.2017.10.020
Matos H, Kishore S, Salazar C, et al. Buckling, vibration, and energy solutions for underwater composite cylinders. Composite Structures. 2020; 244: 112282. doi: 10.1016/j.compstruct.2020.112282
Huang S, Jin Z, Chen Y. Underwater blast resistance of double cylindrical shells with circular tube stiffeners. Ocean Engineering. 2021; 238: 109691. doi: 10.1016/j.oceaneng.2021.109691
Huang S, Tong X, Chen Y, et al. Effects of Internal Fluid on the Dynamic Behaviors of Double Cylindrical Shells Subjected to Underwater Explosion. Journal of Offshore Mechanics and Arctic Engineering. 2022; 144(4). doi: 10.1115/1.4053699
Li C, Yang J, Shen HS. Postbuckling of pressure-loaded auxetic sandwich cylindrical shells with FG-GRC facesheets and 3D double-V meta-lattice core. Thin-Walled Structures. 2022; 177: 109440. doi: 10.1016/j.tws.2022.109440
UMA 90 Technical Data Sheet. Carbon, Inc.; 2020.
Wang Y, Ren X, Chen Z, et al. Numerical and experimental studies on compressive behavior of Gyroid lattice cylindrical shells. Materials & Design. 2020; 186: 108340. doi: 10.1016/j.matdes.2019.108340
Gupta S, Parameswaran V, Sutton MA, et al. Study of dynamic underwater implosion mechanics using digital image correlation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014; 470(2172): 20140576. doi: 10.1098/rspa.2014.0576
Gupta S, Matos H, Shukla A, et al. Pressure signature and evaluation of hammer pulses during underwater implosion in confining environments. The Journal of the Acoustical Society of America. 2016; 140(2): 1012-1022. doi: 10.1121/1.4960591
Matos H, Gupta S, Shukla A. Structural instability and water hammer signatures from shock-initiated implosions in confining environments. Mechanics of Materials. 2018; 116: 169-179. doi: 10.1016/j.mechmat.2016.12.004
Matos H, Shukla A. Mitigation of implosion energy from aluminum structures. International Journal of Solids and Structures. 2016; 100-101: 566-574. doi: 10.1016/j.ijsolstr.2016.09.030
Taylor GI. The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences. 1950; 201(1065): 159-174. doi: 10.1098/rspa.1950.0049
Pinto M, Matos H, Gupta S, et al. Experimental Investigation on Underwater Buckling of Thin-Walled Composite and Metallic Structures. Journal of Pressure Vessel Technology. 2016; 138(6). doi: 10.1115/1.4032703
Arons AB, Yennie DR. Energy Partition in Underwater Explosion Phenomena. Reviews of Modern Physics. 1948; 20(3): 519-536. doi: 10.1103/revmodphys.20.519
Von Mises R, Windenburg DF. The critical external pressure of cylindrical tubes under uniform radial and axial load. Defense Technical Information Center; 1933. doi: 10.21236/ad0136219
DOI: https://doi.org/10.24294/jpse.v7i1.4070
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nathan Grantham-Coogan, Craig Tilton, Helio Matos, Arun Shukla
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.