Zein—A plant protein as a promising biopolymer for biomedical applications: A perspective
Vol 7, Issue 1, 2024
VIEWS - 473 (Abstract) 121 (PDF)
Abstract
Recent technological advances in the fields of biomaterials and tissue engineering have spurred interest in biopolymers for various biomedical applications. The advantage of biopolymers is their favorable characteristics for these applications, among which proteins are of particular importance. Proteins are explored widely for 3D bioprinting and tissue engineering applications, wound healing, drug delivery systems, implants, etc., and the proteins mainly available include collagen, gelatin, albumin, zein, etc. Zein is a plant protein abundantly present in corn endosperm, and it is about 80% of total corn protein. It is a highly renewable source, and zein has been reported to be applicable in different industrial applications. Lately, it has gained attention in biomedical applications. This research interest in zein is on account of its biocompatibility, non-toxicity, and certain unique physico-chemical properties. Zein comes under the GRAS category and is considered safe for biomedical applications. The hydrophobic nature of this protein gives it an added advantage and has wider applications in drug delivery. This review focuses on details about zein protein, its properties, and potential applications in biomedical sectors.
Keywords
Full Text:
PDFReferences
1. Rahman M, Dip TM, Haase T, et al. Fabrication of Zein‐Based Fibrous Scaffolds for Biomedical Applications—A Review. Macromolecular Materials and Engineering. 2023; 308(12). doi: 10.1002/mame.202300175
2. Cooper BG, Catalina B, Nazarian A, et al. Active agents, biomaterials, and technologies to improve biolubrication and strengthen soft tissues. Biomaterials. 2018; 181: 210-226. doi: 10.1016/j.biomaterials.2018.07.040
3. Kaur M, Mehta A, Gupta R. Biomedical Applications of Synthetic and Natural Biodegradable Polymers. Green and Sustainable Advanced Materials. 2018; 281-310. doi: 10.1002/9781119528463.ch12
4. Demir M, Ramos‐Rivera L, Silva R, et al. Zein‐based composites in biomedical applications. Journal of Biomedical Materials Research Part A. 2017; 105(6): 1656-1665. doi: 10.1002/jbm.a.36040
5. Akharume FU, Aluko RE, Adedeji AA. Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety. 2021; 20(1): 198-224. doi: 10.1111/1541-4337.12688
6. Fiorentini F, Suarato G, Summa M, et al. Plant-Based, Hydrogel-like Microfibers as an Antioxidant Platform for Skin Burn Healing. ACS Applied Bio Materials. 2023; 6(8): 3103-3116. doi: 10.1021/acsabm.3c00214
7. Corradini E, Curti P, Meniqueti A, et al. Recent Advances in Food-Packing, Pharmaceutical and Biomedical Applications of Zein and Zein-Based Materials. International Journal of Molecular Sciences. 2014; 15(12): 22438-22470. doi: 10.3390/ijms151222438
8. Tortorella S, Maturi M, Vetri Buratti V, et al. Zein as a versatile biopolymer: different shapes for different biomedical applications. RSC Advances. 2021; 11(62): 39004-39026. doi: 10.1039/d1ra07424e
9. Festas A, Ramos A, Davim J. Medical devices biomaterials – A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2019; 234(1): 218-228. doi: 10.1177/1464420719882458
10. Rahmati M, Pennisi CP, Budd E, et al. Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. In: Turksen K (editor). Cell Biology and Translational Medicine. Springer International Publishing; 2018.
11. Bose S, Bandyopadhyay A. Introduction to Biomaterials. In: Characterization of Biomaterials. Elsevier; 2013. pp. 1-9. doi: 10.1016/B978-0-12-415800-9.00001-2
12. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomaterialia. 2012; 8(11): 3888-3903. doi: 10.1016/j.actbio.2012.06.037
13. Chen Q, Thouas GA. Metallic implant biomaterials. Materials Science and Engineering: R: Reports. 2015; 87: 1-57. doi: 10.1016/j.mser.2014.10.001
14. Best SM, Porter AE, Thian ES, et al. Bioceramics: Past, present and for the future. Journal of the European Ceramic Society. 2008; 28(7): 1319-1327. doi: 10.1016/j.jeurceramsoc.2007.12.001
15. Chevalier J, Gremillard L. Zirconia as a Biomaterial. Comprehensive Biomaterials. 2011; 95-108. doi: 10.1016/b978-0-08-055294-1.00017-9
16. Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006; 27(18): 3413-3431. doi: 10.1016/j.biomaterials.2006.01.039
17. Boccaccini AR, Chatzistavrou X, Blaker JJ, Nazhat SN. Degradable and Bioactive Synthetic Composite Scaffolds for Bone Tissue Engineering. In: Eliaz N (editor). Degradation of Implant Materials. Springer New York; 2012.
18. Katti KS. Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces. 2004; 39(3): 133-142. doi: 10.1016/j.colsurfb.2003.12.002
19. Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering. 2013; 111(3): 441-453. doi: 10.1002/bit.25160
20. He W, Benson R. Polymeric Biomaterials. Handbook of Polymer Applications in Medicine and Medical Devices. 2014; 55-76. doi: 10.1016/b978-0-323-22805-3.00004-9
21. Yadav P, Yadav H, Shah VG, et al. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review. Journal of Clinical and Diagnostic Research. 2015; 9(9): 21-25. doi: 10.7860/JCDR/2015/13907.6565
22. Domard A, Domard M. Chitosan: Structure-Properties Relationship and Biomedical Applications. In: Dumitriu S (editor). Polymeric Biomaterials, Revised and Expanded. CRC Press; 2001.
23. Synowiecki J, Al-Khateeb NA. Production, Properties, and Some New Applications of Chitin and Its Derivatives. Critical Reviews in Food Science and Nutrition. 2003; 43(2): 145-171. doi: 10.1080/10408690390826473
24. Murakami K, Aoki H, Nakamura S, et al. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials. 2010; 31(1): 83-90. doi: 10.1016/j.biomaterials.2009.09.031
25. Ebringerová A, Hromádková Z. Xylans of Industrial and Biomedical Importance. Biotechnology and Genetic Engineering Reviews. 1999; 16(1): 325-346. doi: 10.1080/02648725.1999.10647982
26. Le Bourlais C, Acar L, Zia H, et al. Ophthalmic drug delivery systems—Recent advances. Progress in Retinal and Eye Research. 1998; 17(1): 33-58. doi: 10.1016/S1350-9462(97)00002-5
27. Price RD, Berry MG, Navsaria HA. Hyaluronic acid: the scientific and clinical evidence. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2007; 60(10): 1110-1119. doi: 10.1016/j.bjps.2007.03.005
28. Onishi T, Umemura S, Yanagawa M, et al. Remineralization effects of gum arabic on caries-like enamel lesions. Archives of Oral Biology. 2008; 53(3): 257-260. doi: 10.1016/j.archoralbio.2007.10.004
29. Katzbauer B. Properties and applications of xanthan gum. Polymer Degradation and Stability. 1998; 59(1-3): 81-84. doi: 10.1016/S0141-3910(97)00180-8
30. Lee CH, Singla A, Lee Y. Biomedical applications of collagen. International Journal of Pharmaceutics. 2001; 221(1-2): 1-22. doi: 10.1016/S0378-5173(01)00691-3
31. Morrison NA, Clark RC, Chen YL, et al. Gelatin alternatives for the food industry. In: Nishinari K (editor). Physical Chemistry and Industrial Application of Gellan Gum. Springer Berlin Heidelberg; 1999.
32. Lawton JW. Zein: A History of Processing and Use. Cereal Chemistry. 2002; 79(1): 1-18. doi: 10.1094/cchem.2002.79.1.1
33. Pérez-Guzmán CJ, Castro-Muñoz R. A Review of Zein as a Potential Biopolymer for Tissue Engineering and Nanotechnological Applications. Processes. 2020; 8(11): 1376. doi: 10.3390/pr8111376
34. Anderson TJ, Lamsal BP. Development of New Method for Extraction of α‐Zein from Corn Gluten Meal Using Different Solvents. Cereal Chemistry. 2011; 88(4): 356-362. doi: 10.1094/cchem-08-10-0117
35. Wu S, Myers DJ, Johnson LA. Factors Affecting Yield and Composition of Zein Extracted from Commercial Corn Gluten Meal. Cereal Chemistry. 1997; 74(3): 258-263. doi: 10.1094/cchem.1997.74.3.258
36. Anderson TJ, Lamsal BP. REVIEW: Zein Extraction from Corn, Corn Products, and Coproducts and Modifications for Various Applications: A Review. Cereal Chemistry. 2011; 88(2): 159-173. doi: 10.1094/cchem-06-10-0091
37. Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. Journal of Controlled Release. 2014; 189: 108-122. doi: 10.1016/j.jconrel.2014.06.036
38. Moros EE, Darnoko D, Cheryan M, et al. Analysis of Xanthophylls in Corn by HPLC. Journal of Agricultural and Food Chemistry. 2002; 50(21): 5787-5790. doi: 10.1021/jf020109l
39. Kale A, Zhu F, Cheryan M. Separation of high-value products from ethanol extracts of corn by chromatography. Industrial Crops and Products. 2007; 26(1): 44-53. doi: 10.1016/j.indcrop.2007.01.006
40. Sousa FFO, Luzardo-Álvarez A, Blanco-Méndez J, et al. Use of 1H NMR STD, WaterLOGSY, and Langmuir monolayer techniques for characterization of drug–zein protein complexes. European Journal of Pharmaceutics and Biopharmaceutics. 2013; 85(3): 790-798. doi: 10.1016/j.ejpb.2013.07.008
41. Shukla R, Cheryan M. Zein: The industrial protein from corn. Industrial Crops and Products. 2001; 13(3): 171-192. doi: 10.1016/S0926-6690(00)00064-9
42. Yan X, Li M, Xu X, et al. Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives: A review. Frontiers in Nutrition. 2022; 9. doi: 10.3389/fnut.2022.999373
43. Argos P, Pedersen K, Marks MD, Larkins BA. A structural model for maize zein proteins. Journal of Biological Chemistry. 1982; 257(17): 9984-9990. doi: 10.1016/S0021-9258(18)33974-7
44. Matsushima N, Danno G, Takezawa H, Izumi Y. Three-dimensional structure of maize α-zein proteins studied by small-angle X-ray scattering. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology. 1997; 1339(1): 14-22. doi: 10.1016/S0167-4838(96)00212-9
45. Danzer LA, Ades H, Rees ED. The helical content of zein, a water insoluble protein, in non-aqueous solvents. Biochimica et Biophysica Acta (BBA)—Protein Structure. 1975; 386(1): 26-31. doi: 10.1016/0005-2795(75)90242-1
46. Forato LA, Doriguetto AC, Fischer H, et al. Conformation of the Z19 Prolamin by FTIR, NMR, and SAXS. Journal of Agricultural and Food Chemistry. 2004; 52(8): 2382-2385. doi: 10.1021/jf035020
47. Forato LA, Bernardes-Filho R, Colnago LA. Protein Structure in KBr Pellets by Infrared Spectroscopy. Analytical Biochemistry. 1998; 259(1): 136-141. doi: 10.1006/abio.1998.2599
48. Magoshi J, Nakamura S, Murakami K. Structure and physical properties of seed proteins. I. Glass transition and crystallization of zein protein from corn. Journal of Applied Polymer Science. 1992; 45(11): 2043-2048. doi: 10.1002/app.1992.070451119
49. Li Y, Li J, Xia Q, et al. Understanding the Dissolution of α-Zein in Aqueous Ethanol and Acetic Acid Solutions. The Journal of Physical Chemistry B. 2012; 116(39): 12057-12064. doi: 10.1021/jp305709y
50. Kasaai MR. Zein and zein-based nano-materials for food and nutrition applications: A review. Trends in Food Science & Technology. 2018; 79: 184-197. doi: 10.1016/j.tifs.2018.07.015
51. Zhang Y, Niu Y, Luo Y, et al. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chemistry. 2014; 142: 269-275. doi: 10.1016/j.foodchem.2013.07.058
52. Giteru SG, Ali MA, Oey I. Recent progress in understanding fundamental interactions and applications of zein. Food Hydrocolloids. 2021; 120: 106948. doi: 10.1016/j.foodhyd.2021.106948
53. Lai LF, Guo HX. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. International Journal of Pharmaceutics. 2011; 404(1-2): 317-323. doi: 10.1016/j.ijpharm.2010.11.025
54. Huang X, Liu Y, Zou Y, et al. Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: Stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocolloids. 2019; 93: 261-269. doi: 10.1016/j.foodhyd.2019.02.039
55. Zhang Q, Wang J, Liu D, et al. Targeted delivery of honokiol by zein/hyaluronic acid core-shell nanoparticles to suppress breast cancer growth and metastasis. Carbohydrate Polymers. 2020; 240: 116325. doi: 10.1016/j.carbpol.2020.116325
56. Zou T, Gu L. TPGS Emulsified Zein Nanoparticles Enhanced Oral Bioavailability of Daidzin: In Vitro Characteristics and In Vivo Performance. Molecular Pharmaceutics. 2013; 10(5): 2062-2070. doi: 10.1021/mp400086n
57. Lee S, Alwahab NSA, Moazzam ZM. Zein-based oral drug delivery system targeting activated macrophages. International Journal of Pharmaceutics. 2013; 454(1): 388-393. doi: 10.1016/j.ijpharm.2013.07.026
58. Zou T, Li Z, Percival SS, et al. Fabrication, characterization, and cytotoxicity evaluation of cranberry procyanidins-zein nanoparticles. Food Hydrocolloids. 2012; 27(2): 293-300. doi: 10.1016/j.foodhyd.2011.10.002
59. Wu Y, Luo Y, Wang Q. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT—Food Science and Technology. 2012; 48(2): 283-290. doi: 10.1016/j.lwt.2012.03.027
60. Xu H, Jiang Q, Reddy N, et al. Hollow nanoparticles from zein for potential medical applications. Journal of Materials Chemistry. 2011; 21(45): 18227. doi: 10.1039/c1jm11163a
61. Podaralla S, Perumal O. Influence of Formulation Factors on the Preparation of Zein Nanoparticles. AAPS PharmSciTech. 2012; 13(3): 919-927. doi: 10.1208/s12249-012-9816-1
62. Luo Y, Teng Z, Wang Q. Development of Zein Nanoparticles Coated with Carboxymethyl Chitosan for Encapsulation and Controlled Release of Vitamin D3. Journal of Agricultural and Food Chemistry. 2012; 60(3): 836-843. doi: 10.1021/jf204194z
63. Kim B, Kim J, Kim M, et al. Physicochemical and release properties of retinol‐loaded zein chitosan nanoparticles. The Federation of American Societies for Experimental Biology. 2013; 27(S1). doi: 10.1096/fasebj.27.1_supplement.lb251
64. Li KK, Yin SW, Yin YC, et al. Preparation of water-soluble antimicrobial zein nanoparticles by a modified antisolvent approach and their characterization. Journal of Food Engineering. 2013; 119(2): 343-352. doi: 10.1016/j.jfoodeng.2013.05.038
65. Hu D, Lin C, Liu L, et al. Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids. Journal of Food Engineering. 2012; 109(3): 545-552. doi: 10.1016/j.jfoodeng.2011.10.025
66. Wang X, Peng F, Liu F, et al. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: Fabrication, characterization, and in vitro release property. LWT. 2020; 133: 109869. doi: 10.1016/j.lwt.2020.109869
67. Sridhar R, Lakshminarayanan R, Madhaiyan K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chemical Society Reviews. 2015; 44(3): 790-814. doi: 10.1039/c4cs00226a
68. Rošic R, Kocbek P, Pelipenko J, et al. Nanofibers and their biomedical use. Acta Pharmaceutica. 2013; 63(3): 295-304. doi: 10.2478/acph-2013-0024
69. Malekzad H, Mirshekari H, Sahandi Zangabad P, et al. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Critical Reviews in Biotechnology. 2017; 38(1): 47-67. doi: 10.1080/07388551.2017.1312267
70. Jiang Q, Yang Y. Water-Stable Electrospun Zein Fibers for Potential Drug Delivery. Journal of Biomaterials Science, Polymer Edition. 2011; 22(10): 1393-1408. doi: 10.1163/092050610x508437
71. Jiang Q, Reddy N, Yang Y. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomaterialia. 2010; 6(10): 4042-4051. doi: 10.1016/j.actbio.2010.04.024
72. Neo YP, Ray S, Jin J, et al. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry. 2013; 136(2): 1013-1021. doi: 10.1016/j.foodchem.2012.09.010
73. Wongsasulak S, Puttipaiboon N, Yoovidhya T. Fabrication, Gastromucoadhesivity, Swelling, and Degradation of Zein–Chitosan Composite Ultrafine Fibers. Journal of Food Science. 2013; 78(6). doi: 10.1111/1750-3841.12126
74. Wang Y, Chen L. Fabrication and characterization of novel assembled prolamin protein nanofabrics with improved stability, mechanical property and release profiles. Journal of Materials Chemistry. 2012; 22(40): 21592. doi: 10.1039/c2jm34611g
75. Karthikeyan K, Guhathakarta S, Rajaram R, et al. Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. International Journal of Pharmaceutics. 2012; 438(1-2): 117-122. doi: 10.1016/j.ijpharm.2012.07.075
76. Yang JM, Zha L, Yu DG, Liu J. Coaxial electrospinning with acetic acid for preparing ferulic acid/zein composite fibers with improved drug release profiles. Colloids and Surfaces B: Biointerfaces. 2013; 102: 737-743. doi: 10.1016/j.colsurfb.2012.09.039
77. Brahatheeswaran D, Mathew A, Aswathy RG, et al. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomedical Materials. 2012; 7(4): 045001. doi: 10.1088/1748-6041/7/4/045001
78. Alhusein N, Blagbrough IS, De Bank PA. Zein/polycaprolactone electrospun matrices for localised controlled delivery of tetracycline. Drug Delivery and Translational Research. 2013; 3(6): 542-550. doi: 10.1007/s13346-013-0179-2
79. Unnithan AR, Gnanasekaran G, Sathishkumar Y, et al. Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydrate Polymers. 2014; 102: 884-892. doi: 10.1016/j.carbpol.2013.10.070
80. Lin J, Li C, Zhao Y, et al. Co-electrospun Nanofibrous Membranes of Collagen and Zein for Wound Healing. ACS Applied Materials & Interfaces. 2012; 4(2): 1050-1057. doi: 10.1021/am201669z
81. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. Journal of Controlled Release. 2003; 90(3): 261-280. doi: 10.1016/S0168-3659(03)00194-9
82. Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. Journal of Controlled Release. 2011; 153(3): 206-216. doi: 10.1016/j.jconrel.2011.02.010
83. McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Advances in Colloid and Interface Science. 2018; 253: 1-22. doi: 10.1016/j.cis.2018.02.002
84. Mehta SK, Kaur G, Verma A. Fabrication of plant protein microspheres for encapsulation, stabilization and in vitro release of multiple anti-tuberculosis drugs. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011; 375(1-3): 219-230. doi: 10.1016/j.colsurfa.2010.12.014
85. Luo Y, Zhang B, Whent M, et al. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces. 2011; 85(2): 145-152. doi: 10.1016/j.colsurfb.2011.02.020
86. Farris E, Brown DM, Ramer-Tait AE, et al. Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery. Journal of Controlled Release. 2017; 249: 150-161. doi: 10.1016/j.jconrel.2017.01.035
87. Matsuda Y, Suzuki T, Sato E, et al. Novel preparation of Zein microspheres conjugated with PS-K available for cancer immunotherapy. Chemical and Pharmaceutical Bulletin. 1989; 37(3): 757-759. doi: 10.1248/cpb.37.757
88. Suzuki T, Sato E, Matsuda Y, et al. Preparation of zein microspheres conjugated with antitumor drugs available for selective cancer chemotherapy and development of a simple colorimetric determination of drugs in microspheres. Chemical and Pharmaceutical Bulletin. 1989; 37(4): 1051-1054. doi: 10.1248/cpb.37.1051
89. Fu JX, Wang HJ, Zhou YQ, et al. Antibacterial activity of ciprofloxacin-loaded zein microsphere films. Materials Science and Engineering: C. 2009; 29(4): 1161-1166. doi: 10.1016/j.msec.2008.09.031
90. Liu X, Sun Q, Wang H, et al. Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials. 2005; 26(1): 109-115. doi: 10.1016/j.biomaterials.2004.02.013
91. Muthuselvi L, Dhathathreyan A. Simple coacervates of zein to encapsulate Gitoxin. Colloids and Surfaces B: Biointerfaces. 2006; 51(1): 39-43. doi: 10.1016/j.colsurfb.2006.05.012
92. Hurtado-López P, Murdan S. An investigation into the adjuvanticity and immunogenicity of zein microspheres being researched as drug and vaccine carriers. Journal of Pharmacy and Pharmacology. 2006; 58(6): 769-774. doi: 10.1211/jpp.58.6.0007
93. Karthikeyan K, Lakra R, Rajaram R, et al. Development and Characterization of Zein-Based Micro Carrier System for Sustained Delivery of Aceclofenac Sodium. AAPS PharmSciTech. 2011; 13(1): 143-149. doi: 10.1208/s12249-011-9731-x
94. Singh N, Singh S, Kaur A, Singh Bakshi M. Zein: Structure, Production, Film Properties and Applications.
95. Lai H, Padua GW. Properties and Microstructure of Plasticized Zein Films. Cereal Chemistry. 1997; 74(6): 771-775. doi: 10.1094/cchem.1997.74.6.771
96. Wang HJ, Lin ZX, Liu XM, et al. Heparin-loaded zein microsphere film and hemocompatibility. Journal of Controlled Release. 2005; 105(1-2): 120-131. doi: 10.1016/j.jconrel.2005.03.014
97. Singh N, Georget DMR, Belton PS, et al. Physical properties of zein films containing salicylic acid and acetyl salicylic acid. Journal of Cereal Science. 2010; 52(2): 282-287. doi: 10.1016/j.jcs.2010.06.008
98. Kanig JL, Goodman H. Evaluative Procedures for Film-Forming Materials Used in Pharmaceutical Applications. Journal of Pharmaceutical Sciences. 1962; 51(1): 77-83. doi: 10.1002/jps.2600510115
99. Han YL, Xu Q, Lu Z, et al. Cell adhesion on zein films under shear stress field. Colloids and Surfaces B: Biointerfaces. 2013; 111: 479-485. doi: 10.1016/j.colsurfb.2013.06.042
100. Zhang Y, Cui L, Che X, et al. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape. Journal of Controlled Release. 2015; 206: 206-219. doi: 10.1016/j.jconrel.2015.03.030
101. Gao P, Wang F, Gu F, et al. Preparation and characterization of zein thermo-modified starch films. Carbohydrate Polymers. 2017; 157: 1254-1260. doi: 10.1016/j.carbpol.2016.11.004
102. Jin M, Shi J, Zhu W, et al. Polysaccharide-Based Biomaterials in Tissue Engineering: A Review. Tissue Engineering Part B: Reviews. 2021; 27(6): 604-626. doi: 10.1089/ten.teb.2020.0208
103. Gomes ME, Reis RL. Tissue Engineering: Key Elements and Some Trends. Macromolecular Bioscience. 2004; 4(8): 737-742. doi: 10.1002/mabi.200400094
104. Pedram Rad Z, Mokhtari J, Abbasi M. Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Materials Science and Engineering: C. 2018; 93: 356-366. doi: 10.1016/j.msec.2018.08.010
105. Dong J, Sun Q, Wang JY. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials. 2004; 25(19): 4691-4697. doi: 10.1016/j.biomaterials.2003.10.084
106. Dhandayuthapani B, Poulose AC, Nagaoka Y, et al. Biomimetic smart nanocomposite: in vitro biological evaluation of zein electrospun fluorescent nanofiber encapsulated CdS quantum dots. Biofabrication. 2012; 4(2): 025008. doi: 10.1088/1758-5082/4/2/025008
107. Mamidi N, Romo IL, Leija Gutiérrez HM, et al. Development of forcespun fiber-aligned scaffolds from gelatin-zein composites for potential use in tissue engineering and drug release. MRS Communications. 2018; 8(3): 885-892. doi: 10.1557/mrc.2018.89
108. Yang F, Miao Y, Wang Y, et al. Electrospun Zein/Gelatin Scaffold-Enhanced Cell Attachment and Growth of Human Periodontal Ligament Stem Cells. Materials. 2017; 10(10): 1168. doi: 10.3390/ma10101168
109. Wongsasulak S, Pathumban S, Yoovidhya T. Effect of entrapped α-tocopherol on mucoadhesivity and evaluation of the release, degradation, and swelling characteristics of zein–chitosan composite electrospun fibers. Journal of Food Engineering. 2014; 120: 110-117. doi: 10.1016/j.jfoodeng.2013.07.028
110. Chen H, Su J, Brennan CS, et al. Recent developments of electrospun zein nanofibres: Strategies, fabrication and therapeutic applications. Materials Today Advances. 2022; 16: 100307. doi: 10.1016/j.mtadv.2022.100307
111. Shrestha S, Shrestha BK, Ko SW, et al. Engineered cellular microenvironments from functionalized multiwalled carbon nanotubes integrating Zein/Chitosan @Polyurethane for bone cell regeneration. Carbohydrate Polymers. 2021; 251: 117035. doi: 10.1016/j.carbpol.2020.117035
112. Wu F, Wei J, Liu C, et al. Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering. Composites Part B: Engineering. 2012; 43(5): 2192-2197. doi: 10.1016/j.compositesb.2012.02.040
113. Xu Y, Wu J, Chen Y, et al. The Use of Zein and Shuanghuangbu for Periodontal Tissue Engineering. International Journal of Oral Science. 2010; 2(3): 142-148. doi: 10.4248/ijos10056
114. Vogt L, Liverani L, Roether J, et al. Electrospun Zein Fibers Incorporating Poly(glycerol sebacate) for Soft Tissue Engineering. Nanomaterials. 2018; 8(3): 150. doi: 10.3390/nano8030150
115. Babaei M, Ghaee A, Nourmohammadi J. Poly (sodium 4-styrene sulfonate)-modified hydroxyapatite nanoparticles in zein-based scaffold as a drug carrier for vancomycin. Materials Science and Engineering: C. 2019; 100: 874-885. doi: 10.1016/j.msec.2019.03.055
116. Yao C, Li Y, Wu F. Zein nanofibrous membranes as templates for biomineralization of hydroxyapatite crystallites. Polymer Composites. 2013; 34(7): 1163-1171. doi: 10.1002/pc.22525
117. Zhang M, Liu Y, Jia Y, et al. Preparation and Evaluation of Electrospun Zein/HA Fibers Based on Two Methods of Adding HA Nanoparticles. Journal of Bionic Engineering. 2014; 11(1): 115-124. doi: 10.1016/S1672-6529(14)60026-3
118. Zhijiang C, Qin Z, Xianyou S, et al. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility. Materials Science and Engineering: C. 2017; 71: 797-806. doi: 10.1016/j.msec.2016.10.053
119. Tu J, Wang H, Li H, et al. The in vivo bone formation by mesenchymal stem cells in zein scaffolds. Biomaterials. 2009; 30(26): 4369-4376. doi: 10.1016/j.biomaterials.2009.04.054
120. Wang H, Gong S, Lin Z, et al. In vivo biocompatibility and mechanical properties of porous zein scaffolds. Biomaterials. 2007; 28(27): 3952-3964. doi: 10.1016/j.biomaterials.2007.05.017
121. Gong S, Wang H, Sun Q, et al. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials. 2006; 27(20): 3793-3799. doi: 10.1016/j.biomaterials.2006.02.019
122. Hadavi M, Hasannia S, Faghihi S, et al. Zein nanoparticle as a novel BMP6 derived peptide carrier for enhanced osteogenic differentiation of C2C12 cells. Artificial Cells, Nanomedicine, and Biotechnology. 2018; 46(sup1): 559-567. doi: 10.1080/21691401.2018.1431649
123. Cardenas Turner J, Collins G, Blaber EA, et al. Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine. 2019; 14(1): 173-185. doi: 10.1002/term.2984
124. Arango-Ospina M, Lasch K, Weidinger J, et al. Manuka Honey and Zein Coatings Impart Bioactive Glass Bone Tissue Scaffolds Antibacterial Properties and Superior Mechanical Properties. Frontiers in Materials. 2021; 7. doi: 10.3389/fmats.2020.610889
125. Eldeeb AE, Salah S, Mabrouk M, et al. Dual-Drug Delivery via Zein In Situ Forming Implants Augmented with Titanium-Doped Bioactive Glass for Bone Regeneration: Preparation, In Vitro Characterization, and In Vivo Evaluation. Pharmaceutics. 2022; 14(2): 274. doi: 10.3390/pharmaceutics14020274
126. Mariotti CE, Ramos‐Rivera L, Conti B, et al. Zein‐Based Electrospun Fibers Containing Bioactive Glass with Antibacterial Capabilities. Macromolecular Bioscience. 2020; 20(7). doi: 10.1002/mabi.202000059
127. Ranjbar FE, Foroutan F, Hajian M, et al. Preparation and characterization of 58S bioactive glass based scaffold with Kaempferol‐containing Zein coating for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2020; 109(9): 1259-1270. doi: 10.1002/jbm.b.34786
128. Rahman M, Dip TM, Haase T, et al. Fabrication of Zein‐Based Fibrous Scaffolds for Biomedical Applications—A Review. Macromolecular Materials and Engineering. 2023; 308(12). doi: 10.1002/mame.202300175
129. Kaya S, Derman S. Properties of ideal wound dressing. Ankara Universitesi Eczacilik Fakultesi Dergisi. 2023; 47(3): 5-5. doi: 10.33483/jfpau.1253376
130. Kimna C, Tamburaci S, Tihminlioglu F. Novel zein‐based multilayer wound dressing membranes with controlled release of gentamicin. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2018; 107(6): 2057-2070. doi: 10.1002/jbm.b.34298
131. Akhmetova A, Heinz A. Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics. 2020; 13(1): 4. doi: 10.3390/pharmaceutics13010004
132. Liu F, Li X, Wang L, et al. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: An efficient strategy to accelerate diabetic wound healing. International Journal of Biological Macromolecules. 2020; 149: 627-638. doi: 10.1016/j.ijbiomac.2020.01.277
133. Akhmetova A, Lanno GM, Kogermann K, et al. Highly Elastic and Water Stable Zein Microfibers as a Potential Drug Delivery System for Wound Healing. Pharmaceutics. 2020; 12(5): 458. doi: 10.3390/pharmaceutics12050458
134. Ariyoshi Y. Angiotensin-converting enzyme inhibitors derived from food proteins. Trends in Food Science & Technology. 1993; 4(5): 139-144. doi: 10.1016/0924-2244(93)90033-7
135. Dashdorj U, Reyes MK, Unnithan AR, et al. Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications. International Journal of Biological Macromolecules. 2015; 80: 1-7. doi: 10.1016/j.ijbiomac.2015.06.026
136. Ghalei S, Asadi H, Ghalei B. Zein nanoparticle‐embedded electrospun PVA nanofibers as wound dressing for topical delivery of anti‐inflammatory diclofenac. Journal of Applied Polymer Science. 2018; 135(33). doi: 10.1002/app.46643
137. Lin J, Li C, Zhao Y, et al. Co-electrospun Nanofibrous Membranes of Collagen and Zein for Wound Healing. ACS Applied Materials & Interfaces. 2012; 4(2): 1050-1057. doi: 10.1021/am201669z
138. Unnithan AR, Gnanasekaran G, Sathishkumar Y, et al. Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydrate Polymers. 2014; 102: 884-892. doi: 10.1016/j.carbpol.2013.10.070
139. Liu JX, Dong WH, Mou XJ, et al. In Situ Electrospun Zein/Thyme Essential Oil-Based Membranes as an Effective Antibacterial Wound Dressing. ACS Applied Bio Materials. 2019; 3(1): 302-307. doi: 10.1021/acsabm.9b00823
140. Qin M, Mou X, Dong W, et al. In Situ Electrospinning Wound Healing Films Composed of Zein and Clove Essential Oil. Macromolecular Materials and Engineering. 2020; 305(3). doi: 10.1002/mame.201900790
141. Ghorbani M, Nezhad-Mokhtari P, Ramazani S. Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. International Journal of Biological Macromolecules. 2020; 153: 921-930. doi: 10.1016/j.ijbiomac.2020.03.036
142. Gunes S, Tamburaci S, Tihminlioglu F. A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing. Journal of Materials Science: Materials in Medicine. 2019; 31(1). doi: 10.1007/s10856-019-6332-9
143. Surendranath M, Rajalekshmi R, Ramesan RM, et al. UV-Crosslinked Electrospun Zein/PEO Fibroporous Membranes for Wound Dressing. ACS Applied Bio Materials. 2022; 5(4): 1538-1551. doi: 10.1021/acsabm.1c01293
144. Gough CR, Bessette K, Xue Y, et al. Air-Jet Spun Corn Zein Nanofibers and Thin Films with Topical Drug for Medical Applications. International Journal of Molecular Sciences. 2020; 21(16): 5780. doi: 10.3390/ijms21165780
145. Wang LP, Wang HJ, Hou X, et al. Preparation of stretchable composite film and its application in skin burn repair. Journal of the Mechanical Behavior of Biomedical Materials. 2021; 113: 104114. doi: 10.1016/j.jmbbm.2020.104114
DOI: https://doi.org/10.24294/jpse.v7i1.3618
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Anns Raju Reshma, M. R. Rekha
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.