Solid waste recycling and organic particulate hybrid nanocomposite technologies for sustainable infrastructure—A comprehensive review
Vol 7, Issue 1, 2024
(Abstract)
Abstract
Solid waste has become a major environmental concern globally in recent years due to the tremendous increase in waste generation. However, these wastes (e.g., plastics and agro-residues) can serve as potential raw materials for the production of value-added products such as composites at low cost. The utilization of these waste materials in the composite industry is a good strategy for maintaining the sustainability of resources with economic and environmental benefits. In this report, the environmental impacts and management strategies of solid waste materials are discussed in detail. The study described the benefits of recycling and reusing solid wastes (i.e., plastic and agro-waste). The report also reviewed the emerging fabrication approaches for natural particulate hybrid nanocomposite materials. The results of this survey reveal that the fabrication techniques employed in manufacturing composite materials could significantly influence the performance of the resulting composite products. Furthermore, some key areas have been identified for further investigation. Therefore, this report is a state-of-the-art review and stands out as a guide for academics and industrialists.
Keywords
Full Text:
PDFReferences
1. Zhu Y, Zhang Y, Luo D, et al. A review of municipal solid waste in China: characteristics, compositions, influential factors and treatment technologies. Environment, Development and Sustainability. 2020, 23(5): 6603-6622. doi: 10.1007/s10668-020-00959-9
2. Ejeta LO. Nanoclay/organic filler-reinforced polymeric hybrid composites as promising materials for building, automotive, and construction applications- a state-of-the-art review. Composite Interfaces. 2023, 30(12): 1363-1386. doi: 10.1080/09276440.2023.2220217
3. Tian H, Gao J, Lu L, et al. Temporal Trends and Spatial Variation Characteristics of Hazardous Air Pollutant Emission Inventory from Municipal Solid Waste Incineration in China. Environmental Science & Technology. 2012, 46(18): 10364-10371. doi: 10.1021/es302343s
4. Tabari HZ, Nourbakhsh A, Ashori A. Effects of nanoclay and coupling agent on the physico‐mechanical, morphological, and thermal properties of wood flour/polypropylene composites. Polymer Engineering & Science. 2010, 51(2): 272-277. doi: 10.1002/pen.21823
5. Kord B. Nanofiller reinforcement effects on the thermal, dynamic mechanical, and morphological behavior of HDPE/rice husk flour composites. BioResources. 2011, 6(2): 1351-1358. doi: 10.15376/biores.6.2.1351-1358
6. Zhong Y, Poloso T, Hetzer M, et al. Enhancement of wood/polyethylene composites via compatibilization and incorporation of organoclay particles. Polymer Engineering & Science. 2007, 47(6): 797-803. doi: 10.1002/pen.20756
7. Kang S, Xiao L, Meng L, et al. Isolation and Structural Characterization of Lignin from Cotton Stalk Treated in an Ammonia Hydrothermal System. International Journal of Molecular Sciences. 2012, 13(12): 15209-15226. doi: 10.3390/ijms131115209
8. Kuka E, Andersons B, Cirule D, et al. Weathering properties of wood-plastic composites based on heat-treated wood and polypropylene. Composites Part A: Applied Science and Manufacturing. 2020, 139: 106102. doi: 10.1016/j.compositesa.2020.106102
9. Liu W, Drzal LT, Mohanty AK, et al. Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Composites Part B: Engineering. 2007, 38(3): 352-359. doi: 10.1016/j.compositesb.2006.05.003
10. Syduzzaman M, Al Faruque MA, Bilisik K, et al. Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings. 2020, 10(10): 973. doi: 10.3390/coatings10100973
11. Elsheikh AH, Panchal H, Shanmugan S, et al. Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment. Cleaner Engineering and Technology. 2022, 8: 100450. doi: 10.1016/j.clet.2022.100450
12. Ho M, Wang H, Lee JH, et al. Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering. 2012, 43(8): 3549-3562. doi: 10.1016/j.compositesb.2011.10.001
13. Ramachandra TV, Aithal BH, Sreejith K. GHG footprint of major cities in India. Renewable and Sustainable Energy Reviews. 2015, 44: 473-495. doi: 10.1016/j.rser.2014.12.036
14. Thanh NP, Matsui Y, Fujiwara T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management. 2010, 91(11): 2307-2321. doi: 10.1016/j.jenvman.2010.06.016
15. Kumar S. Estimation method for national methane emission from solid waste landfills. Atmospheric Environment. 2004, 38(21): 3481-3487. doi: 10.1016/j.atmosenv.2004.02.057
16. Kumar S, Mondal AN, Gaikwad SA, et al. Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study. Atmospheric Environment. 2004, 38(29): 4921-4929. doi: 10.1016/j.atmosenv.2004.05.052
17. Vaverková MD. Landfill Impacts on the Environment—Review. Geosciences. 2019, 9(10): 431. doi: 10.3390/geosciences9100431
18. Kim YJ, He W, Ko D, et al. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site. Science of The Total Environment. 2017, 607-608: 1278-1285. doi: 10.1016/j.scitotenv.2017.07.030
19. Nagendran R, Selvam A, Joseph K, et al. Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: A brief review. Waste Management. 2006, 26(12): 1357-1369. doi: 10.1016/j.wasman.2006.05.003
20. Eskandari M, Homaee M, Mahmodi S. An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste Management. 2012, 32(8): 1528-1538. doi: 10.1016/j.wasman.2012.03.014
21. Ramprasad C, Teja HC, Gowtham V, et al. Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model. MethodsX. 2022, 9: 101869. doi: 10.1016/j.mex.2022.101869
22. Hegde U, Chang TC, Yang SS. Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan. Chemosphere. 2003, 52(8): 1275-1285. doi: 10.1016/s0045-6535(03)00352-7
23. Jha AK, Sharma C, Singh N, et al. Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: A case study of Chennai landfill sites. Chemosphere. 2008, 71(4): 750-758. doi: 10.1016/j.chemosphere.2007.10.024
24. Siddiqi SA, Al-Mamun A, Sana A, et al. Characterization and pollution potential of leachate from urban landfills during dry and wet periods in arid regions. Water Supply. 2021, 22(3): 3462-3483. doi: 10.2166/ws.2021.392
25. Mukherjee S, Mukhopadhyay S, Hashim MA, et al. Contemporary Environmental Issues of Landfill Leachate: Assessment and Remedies. Critical Reviews in Environmental Science and Technology. 2014, 45(5): 472-590. doi: 10.1080/10643389.2013.876524
26. Abu-Rukah Y, Al-Kofahi O. The assessment of the effect of landfill leachate on ground-water quality—a case study. El-Akader landfill site—north Jordan. Journal of Arid Environments. 2001, 49(3): 615-630. doi: 10.1006/jare.2001.0796
27. Sultana MS, Rana S, Yamazaki S, et al. Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Kanan S, ed. Cogent Environmental Science. 2017, 3(1): 1291107. doi: 10.1080/23311843.2017.1291107
28. Lu JG, Hua AC, Bao LL, et al. Performance evaluation on complex absorbents for CO2 capture. Separation and Purification Technology. 2011, 82: 87-92. doi: 10.1016/j.seppur.2011.08.029
29. Varank G, Demir A, Top S, et al. Migration behavior of landfill leachate contaminants through alternative composite liners. Science of The Total Environment. 2011, 409(17): 3183-3196. doi: 10.1016/j.scitotenv.2011.04.044
30. Alao MA, Popoola OM, Ayodele TR. Waste‐to‐energy nexus: An overview of technologies and implementation for sustainable development. Cleaner Energy Systems. 2022, 3: 100034. doi: 10.1016/j.cles.2022.100034
31. Mousavi S, Hosseinzadeh A, Golzary A. Challenges, recent development, and opportunities of smart waste collection: A review. Science of The Total Environment. 2023, 886: 163925. doi: 10.1016/j.scitotenv.2023.163925
32. dos Muchangos LS, Tokai A. Greenhouse gas emission analysis of upgrading from an open dump to a semi-aerobic landfill in Mozambique – the case of Hulene dumpsite. Scientific African. 2020, 10: e00638. doi: 10.1016/j.sciaf.2020.e00638
33. Malinauskaite J, Jouhara H, Czajczyńska D, et al. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy. 2017, 141: 2013-2044. doi: 10.1016/j.energy.2017.11.128
34. Al-Jarallah R, Aleisa E. A baseline study characterizing the municipal solid waste in the State of Kuwait. Waste Management. 2014, 34(5): 952-960. doi: 10.1016/j.wasman.2014.02.015
35. Tałałaj IA, Biedka P, Bartkowska I. Treatment of landfill leachates with biological pretreatments and reverse osmosis. Environmental Chemistry Letters. 2019, 17(3): 1177-1193. doi: 10.1007/s10311-019-00860-6
36. Law HJ, Ross DE. Importance of long-term care for landfills. Waste Management & Research: The Journal for a Sustainable Circular Economy. 2021, 39(4): 525-527. doi: 10.1177/0734242x21999288
37. Bagchi A, Bhattacharya A. Post-closure care of engineered municipal solid waste landfills. Waste Management & Research: The Journal for a Sustainable Circular Economy. 2015, 33(3): 232-240. doi: 10.1177/0734242x14567501
38. Ritzkowski M, Stegmann R. Landfill aeration within the scope of post-closure care and its completion. Waste Management. 2013, 33(10): 2074-2082. doi: 10.1016/j.wasman.2013.02.004
39. Yu X, Sui Q, Lyu S, et al. Municipal Solid Waste Landfills: An Underestimated Source of Pharmaceutical and Personal Care Products in the Water Environment. Environmental Science & Technology. 2020, 54(16): 9757-9768. doi: 10.1021/acs.est.0c00565
40. Wang LK, Wang MHS. Innovative Bioreactor Landfill and Its Leachate and Landfill Gas Management. Handbook of Environmental Engineering. Published online 2022: 583-614. doi: 10.1007/978-3-030-96989-9_10
41. Yang HS, Kim HJ, Park HJ, et al. Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures. 2006, 72(4): 429-437. doi: 10.1016/j.compstruct.2005.01.013
42. Warith M. Bioreactor landfills: experimental and field results. Waste Management. 2002, 22(1): 7-17. doi: 10.1016/s0956-053x(01)00014-9
43. Molla AS, Tang P, Sher W, et al. Chemicals of concern in construction and demolition waste fine residues: A systematic literature review. Journal of Environmental Management. 2021, 299: 113654. doi: 10.1016/j.jenvman.2021.113654
44. Weng YC, Chang NB. The development of sanitary landfills in Taiwan: status and cost structure analysis. Resources, Conservation and Recycling. 2001, 33(3): 181-201. doi: 10.1016/s0921-3449(01)00084-2
45. Slack RJ, Gronow JR, Voulvoulis N. Household hazardous waste in municipal landfills: contaminants in leachate. Science of The Total Environment. 2005, 337(1-3): 119-137. doi: 10.1016/j.scitotenv.2004.07.002
46. Mora JC, Baeza A, Robles B, et al. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills. Journal of Hazardous Materials. 2016, 310: 161-169. doi: 10.1016/j.jhazmat.2016.02.039
47. Stemn E, Kumi-Boateng B. Hazardous waste landfill site selection in Western Ghana: An integration of multi-criteria decision analysis and geographic information system. Waste Management & Research. 2019, 37(7): 723-736. doi: 10.1177/0734242x19854530
48. Gautam P, Kumar S, Lokhandwala S. Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. Journal of Cleaner Production. 2019, 237: 117639. doi: 10.1016/j.jclepro.2019.117639
49. Madadian E, Haelssig JB, Pegg M. A Comparison of Thermal Processing Strategies for Landfill Reclamation: Methods, Products, and a Promising Path Forward. Resources, Conservation and Recycling. 2020, 160: 104876. doi: 10.1016/j.resconrec.2020.104876
50. Hoornwerg D, Bhada-Tata P. What A Waste: A Global Review of Solid Waste Management. World Bank; 2012.
51. Lohri CR, Diener S, Zabaleta I, et al. Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings. Reviews in Environmental Science and Bio/Technology. 2017, 16(1): 81-130. doi: 10.1007/s11157-017-9422-5
52. Policastro G, Cesaro A. Composting of Organic Solid Waste of Municipal Origin: The Role of Research in Enhancing Its Sustainability. International Journal of Environmental Research and Public Health. 2022, 20(1): 312. doi: 10.3390/ijerph20010312
53. Meena MD, Yadav RK, Narjary B, et al. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Management. 2019, 84: 38-53. doi: 10.1016/j.wasman.2018.11.020
54. Bohacz J. Microbial strategies and biochemical activity during lignocellulosic waste composting in relation to the occurring biothermal phases. Journal of Environmental Management. 2018, 206: 1052-1062. doi: 10.1016/j.jenvman.2017.11.077
55. Onwosi CO, Igbokwe VC, Odimba JN, et al. Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management. 2017, 190: 140-157. doi: 10.1016/j.jenvman.2016.12.051
56. Viaene J, Agneessens L, Capito C, et al. Co-ensiling, co-composting and anaerobic co-digestion of vegetable crop residues: Product stability and effect on soil carbon and nitrogen dynamics. Scientia Horticulturae. 2017, 220: 214-225. doi: 10.1016/j.scienta.2017.03.015
57. Lim SL, Lee LH, Wu TY. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production. 2016, 111: 262-278. doi: 10.1016/j.jclepro.2015.08.083
58. Pujara Y, Pathak P, Sharma A, et al. Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. Journal of Environmental Management. 2019, 248: 109238. doi: 10.1016/j.jenvman.2019.07.009
59. Xiao R, Awasthi MK, Li R, et al. Recent developments in biochar utilization as an additive in organic solid waste composting: A review. Bioresource Technology. 2017, 246: 203-213. doi: 10.1016/j.biortech.2017.07.090
60. Cao X, Williams PN, Zhan Y, et al. Municipal solid waste compost: Global trends and biogeochemical cycling. Soil & Environmental Health. 2023, 1(4): 100038. doi: 10.1016/j.seh.2023.100038
61. Sánchez-García M, Alburquerque JA, Sánchez-Monedero MA, et al. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresource Technology. 2015, 192: 272-279. doi: 10.1016/j.biortech.2015.05.003
62. Surendra KC, Takara D, Hashimoto AG, et al. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews. 2014, 31: 846-859. doi: 10.1016/j.rser.2013.12.015
63. Murphy JD, McKeogh E, Kiely G. Technical/economic/environmental analysis of biogas utilisation. Applied Energy. 2004, 77(4): 407-427. doi: 10.1016/j.apenergy.2003.07.005
64. Varjani S, Shahbeig H, Popat K, et al. Sustainable management of municipal solid waste through waste-to-energy technologies. Bioresource Technology. 2022, 355: 127247. doi: 10.1016/j.biortech.2022.127247
65. Pham TPT, Kaushik R, Parshetti GK, et al. Food waste-to-energy conversion technologies: Current status and future directions. Waste Management. 2015, 38: 399-408. doi: 10.1016/j.wasman.2014.12.004
66. Yap HY, Nixon JD. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Management. 2015, 46: 265-277. doi: 10.1016/j.wasman.2015.08.002
67. Fan YV, Klemeš JJ, Lee CT, et al. Anaerobic digestion of municipal solid waste: Energy and carbon emission footprint. Journal of Environmental Management. 2018, 223: 888-897. doi: 10.1016/j.jenvman.2018.07.005
68. Zaman AU. Comparative study of municipal solid waste treatment technologies using life cycle assessment method. International Journal of Environmental Science & Technology. 2010, 7(2): 225-234. doi: 10.1007/bf03326132
69. Tan ST, Hashim H, Lim JS, et al. Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia. Applied Energy. 2014, 136: 797-804. doi: 10.1016/j.apenergy.2014.06.003
70. Lu JW, Zhang S, Hai J, et al. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Management. 2017, 69: 170-186. doi: 10.1016/j.wasman.2017.04.014
71. Sim EYS, Wu TY. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting. Journal of the Science of Food and Agriculture. 2010, 90(13): 2153-2162. doi: 10.1002/jsfa.4127
72. Nanda S, Berruti F. Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters. 2020, 19(2): 1433-1456. doi: 10.1007/s10311-020-01100-y
73. Samolada MC, Zabaniotou AA. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Management. 2014, 34(2): 411-420. doi: 10.1016/j.wasman.2013.11.003
74. Zaman AU. Identification of waste management development drivers and potential emerging waste treatment technologies. International Journal of Environmental Science and Technology. 2013, 10(3): 455-464. doi: 10.1007/s13762-013-0187-2
75. Shekdar AV. Sustainable solid waste management: An integrated approach for Asian countries. Waste Management. 2009, 29(4): 1438-1448. doi: 10.1016/j.wasman.2008.08.025
76. Song Q, Li J, Zeng X. Minimizing the increasing solid waste through zero waste strategy. Journal of Cleaner Production. 2015, 104: 199-210. doi: 10.1016/j.jclepro.2014.08.027
77. Karak T, Bhagat RM, Bhattacharyya P. Municipal Solid Waste Generation, Composition, and Management: The World Scenario. Critical Reviews in Environmental Science and Technology. 2012, 42(15): 1509-1630. doi: 10.1080/10643389.2011.569871
78. Nassar MMA, Alzebdeh KI, Pervez T, et al. Progress and challenges in sustainability, compatibility, and production of eco‐composites: A state‐of‐art review. Journal of Applied Polymer Science. 2021, 138(43). doi: 10.1002/app.51284
79. Deka BK, Maji TK, Mandal M. Study on properties of nanocomposites based on HDPE, LDPE, PP, PVC, wood and clay. Polymer Bulletin. 2011, 67(9): 1875-1892. doi: 10.1007/s00289-011-0529-5
80. Kazemi Y, Cloutier A, Rodrigue D. Mechanical and morphological properties of wood plastic composites based on municipal plastic waste. Polymer Composites. 2013, 34(4): 487-493. doi: 10.1002/pc.22442
81. Guna V, Ilangovan M, Rather MH, et al. Groundnut shell / rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building Engineering. 2020, 27: 100991. doi: 10.1016/j.jobe.2019.100991
82. Sienkiewicz N, Dominic M, Parameswaranpillai J. Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review. Polymers. 2022, 14(2): 265. doi: 10.3390/polym14020265
83. Kopparthy SDS, Netravali AN. Review: Green composites for structural applications. Composites Part C: Open Access. 2021, 6: 100169. doi: 10.1016/j.jcomc.2021.100169
84. Li M, Pu Y, Thomas VM, et al. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering. 2020, 200: 108254. doi: 10.1016/j.compositesb.2020.108254
85. Abhiram Y, Das A, Sharma KK. Green composites for structural and non-structural applications: A review. Materials Today: Proceedings. 2021, 44: 2658-2664. doi: 10.1016/j.matpr.2020.12.678
86. Ashori A. Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology. 2008, 99(11): 4661-4667. doi: 10.1016/j.biortech.2007.09.043
87. Satyanarayana KG, Guimarães JL, Wypych F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing. 2007, 38(7): 1694-1709. doi: 10.1016/j.compositesa.2007.02.006
88. Ticoalu A, Aravinthan T, Cardona F. A review of current development in natural fiber composites for structural and infrastructure applications. In: Proceedings of the Southern Region Engineering Conference (SREC 2010); 11–12 November 2010; Toowoomba, Australia.
89. AL-Oqla FM, Sapuan SM. Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production. 2014, 66: 347-354. doi: 10.1016/j.jclepro.2013.10.050
90. Liu D, Song J, Anderson DP, et al. Bamboo fiber and its reinforced composites: structure and properties. Cellulose. 2012, 19(5): 1449-1480. doi: 10.1007/s10570-012-9741-1
91. Sanjay MR, Madhu P, Jawaid M, et al. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production. 2018, 172: 566-581. doi: 10.1016/j.jclepro.2017.10.101
92. John M, Thomas S. Biofibres and biocomposites. Carbohydrate Polymers. 2008, 71(3): 343-364. doi: 10.1016/j.carbpol.2007.05.040
93. Mukherjee T, Kao N. PLA Based Biopolymer Reinforced with Natural Fibre: A Review. Journal of Polymers and the Environment. 2011, 19(3): 714-725. doi: 10.1007/s10924-011-0320-6
94. Thomas MG, Abraham E, Jyotishkumar P, et al. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. International Journal of Biological Macromolecules. 2015, 81: 768-777. doi: 10.1016/j.ijbiomac.2015.08.053
95. Asyraf MRM, Rafidah M, Azrina A, et al. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: a comprehensive review on chemical treatments. Cellulose. 2021, 28(5): 2675-2695. doi: 10.1007/s10570-021-03710-3
96. Wu H, Liang X, Huang L, et al. The utilization of cotton stalk bark to reinforce the mechanical and thermal properties of bio-flour plastic composites. Construction and Building Materials. 2016, 118: 337-343. doi: 10.1016/j.conbuildmat.2016.02.095
97. Ejeta LO. The mechanical and thermal properties of wood plastic composites based on heat-treated composite granules and HDPE. Journal of Materials Science. 2023, 58(48): 18090-18104. doi: 10.1007/s10853-023-09169-w
98. Machado JS, Knapic S. Short term and long-term properties of natural fibre composites. Advanced High Strength Natural Fibre Composites in Construction. Published online 2017: 447-458. doi: 10.1016/b978-0-08-100411-1.00017-0
99. Nourbakhsh A, Hosseinzadeh A, Basiji F. Effects of Filler Content and Compatibilizing Agents on Mechanical Behavior of the Particle-Reinforced Composites. Journal of Polymers and the Environment. 2011, 19(4): 908-911. doi: 10.1007/s10924-011-0349-6
100. Singh N, Hui D, Singh R, et al. Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering. 2017, 115: 409-422. doi: 10.1016/j.compositesb.2016.09.013
101. Kreiger MA, Mulder ML, Glover AG, et al. Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament. Journal of Cleaner Production. 2014, 70: 90-96. doi: 10.1016/j.jclepro.2014.02.009
102. Turku I, Keskisaari A, Kärki T, et al. Characterization of wood plastic composites manufactured from recycled plastic blends. Composite Structures. 2017, 161: 469-476. doi: 10.1016/j.compstruct.2016.11.073
103. Bertin S, Robin JJ. Study and characterization of virgin and recycled LDPE/PP blends. European Polymer Journal. 2002, 38(11): 2255-2264. doi: 10.1016/s0014-3057(02)00111-8
104. Schürmann BL, Niebergall U, Severin N, et al. Polyethylene (PEHD)/polypropylene (iPP) blends: mechanical properties, structure and morphology. Polymer. 1998, 39(22): 5283-5291. doi: 10.1016/s0032-3861(97)10295-6
105. Majeed K, Jawaid M, Hassan A, et al. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design (1980-2015). 2013, 46: 391-410. doi: 10.1016/j.matdes.2012.10.044
106. Morais DDS, Barbosa R, Medeiros KM, et al. Modification of Brazilian Bentonite Clay for Use Nano-Biocomposites. Materials Science Forum. 2012, 727-728: 867-872. doi: 10.4028/www.scientific.net/msf.727-728.867
107. Stokke DD, Gardner DJ. Fundamental aspects of wood as a component of thermoplastic composites. Journal of Vinyl and Additive Technology. 2003, 9(2): 96-104. doi: 10.1002/vnl.10069
108. Mohanty AK, Wibowo A, Misra M, et al. Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composites Part A: Applied Science and Manufacturing. 2004, 35(3): 363-370. doi: 10.1016/j.compositesa.2003.09.015
109. Alver E, Metin AÜ, Çiftçi H. Synthesis and Characterization of Chitosan/Polyvinylpyrrolidone/Zeolite Composite by Solution Blending Method. Journal of Inorganic and Organometallic Polymers and Materials. 2014, 24(6): 1048-1054. doi: 10.1007/s10904-014-0087-z
110. Filippi S, Mameli E, Marazzato C, et al. Comparison of solution-blending and melt-intercalation for the preparation of poly(ethylene-co-acrylic acid)/organoclay nanocomposites. European Polymer Journal. 2007, 43(5): 1645-1659. doi: 10.1016/j.eurpolymj.2007.02.015
111. Mark UC, Madufor IC, Obasi HC, et al. Influence of filler loading on the mechanical and morphological properties of carbonized coconut shell particles reinforced polypropylene composites. Journal of Composite Materials. 2019, 54(3): 397-407. doi: 10.1177/0021998319856070
112. Oladele IO, Ibrahim IO, Adediran AA, et al. Modified palm kernel shell fiber/particulate cassava peel hybrid reinforced epoxy composites. Results in Materials. 2020, 5: 100053. doi: 10.1016/j.rinma.2019.100053
DOI: https://doi.org/10.24294/jpse.v7i1.3440
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Lucky Ogheneakpobo Ejeta, Ehiaghe Agbovhimen Elimian
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.