Advancing Plant Leaf Disease Identification Using Improved Residual Networks

Xiong Bi, Hongchun Wang

Article ID: 3639
Vol 6, Issue 5, 2023

VIEWS - 260 (Abstract) 87 (PDF)

Abstract


In agriculture, crop yield and quality are critical for global food supply and human survival. Challenges such as plant leaf diseases necessitate a fast, automatic, economical, and accurate method. This paper utilizes deep learning, transfer learning, and specific feature learning modules (CBAM, Inception-ResNet) for their outstanding performance in image processing and classification. The ResNet model, pretrained on ImageNet, serves as the cornerstone, with introduced feature learning modules in our IRCResNet model. Experimental results show our model achieves an average prediction accuracy of 96.8574% on public datasets, thoroughly validating our approach and significantly enhancing plant leaf disease identification.


Keywords


Image Recognition; Transfer Learning; Deep Convolutional Neural Network; Deep Learning

Full Text:

PDF


References


1. Jiang F., Lu Y., Chen Y., Cai D., Li G.F. 2020. Image recognition of four rice leaf diseases based on deep learning and support vector machine. COMPUT ELECTRON AGR. 179:105824.

2. Deb M., Dhal K.G., Mondal R., Gálvez J. 2021. Paddy Disease Classification Study: A Deep Convolutional Neural Network Approach. OPT MEMORY NEURAL. 30:338-357.

3. Deb M., Garai A., Das A., Dhal K.G. 2022. LS-Net: a convolutional neural network for leaf segmentation of rosette plants. NEURAL COMPUT APPL. 34:18511-18524.

4. Pandian A.J., Kanchanadevi K., Kumar D.V., Jasinska E., Gono R., Leonowicz Z., Jasinski M. 2022. A Five Convolutional Layer Deep Convolutional Neural Network for Plant Leaf Disease Detection. ELECTRONICS-SWITZ. 11.

5. Kaur P., Harnal S., Gautam V., Singh M.P., Singh S.P. 2022. A novel transfer deep learning method for detection and classification of plant leaf disease. J AMB INTEL HUM COMP.

6. Omer S.M., Ghafoor K.Z., Askar S.K. 2022. An Intelligent System for Cucumber Leaf Disease Diagnosis Based on the Tuned Convolutional Neural Network Algorithm. MOB INF SYST. 2022:1-16.

7. He K.M., Zhang X.Y., Ren S.Q., Sun J. 2016. Deep residual learning for image recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2016-Decem:770-778.

8. Chen L., Zhang H.W., Xiao J., Nie L.Q., Shao J., Liu W., Chua T.S. 2017. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning. Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017. 2017-Janua:6298-6306.

9. Woo S., Park J., Lee J.Y., Kweon I.S. 2018. CBAM: Convolutional block attention module. ECCV. pp. 3-19.

10. Szegedy C., Ioffe S., Vanhoucke V., and Alemi A. 2016. Inception-v4, Inception-ResNet and the impact of residual connections on learning. Comput Sci.

11. Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., and Berg AC. 2015. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis Springer US.

12. Plantvillage dataset. Available from: https://www.kaggle.com/ search?q= plantvillage+dataset.

13. Zeng W.H., Li H.D., Hu G.S., Liang D. 2022. Lightweight dense-scale network (LDSNet) for corn leaf disease identification. COMPUT ELECTRON AGR. 197:106943.




DOI: https://doi.org/10.24294/ijmss.v6i5.3639

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.