Relative stability of planar clusters B11, B12, and B13 in neutral- and charged-states
Vol 3, Issue 2, 2020
VIEWS - 940 (Abstract) 294 (PDF)
Abstract
Theoretically, within the diatomic model, the relative stability of most abundant boron clusters B11, B12, and B13 with planar structures in neutral, positive and negative charged-states is studied. According to the specific (per atom) binding energy criterion, B12+ (6.49 eV) is found to be the most stable boron cluster, while B11– + B13+ (5.83 eV) neutral pair is expected to present the preferable ablation channel for boron-rich solids. Obtained results would be applicable in production of boron-clusters-based nanostructured coating materials with super-properties such as lightness, hardness, conductivity, chemical inertness, neutron-absorption, etc., making them especially effective for protection against cracking, wear, corrosion, neutron- and electromagnetic-radiations, etc.
Keywords
Full Text:
PDFReferences
1. Becker R, Chkhartishvili L, Martin P. Boron, the new graphene? Vacuum Technology & Coating 2015; 16 (4): 38–44.
2. Becker R, Chkhartishvili L, Martin P. Tribological applications for boron. Vacuum Technology & Coating 2015; 16 (10): 36–41.
3. Chkhartishvili L. Micro- and nano-structured boron. In: Perkins GL (editor). Boron. Compounds, production and application. New York: Nova Science Publishers; 2011.p. 221–294.
4. Chkhartishvili L. Nanoboron (An overview). Nano Studies 2011; 3: 227–314.
5. Chkhartishvili L. All-boron nanostructures. In: Kharisov B I, Kharissova O V, Ortiz–Mendez U (editors). CRC concise encyclopedia of nanotechnology. Boca Raton: CRC Press; 2016. p. 53–69.
6. Albert B, Hillebrecht H. Boron: Elementary challenge for experimenters and theoreticians. Angewandte Chemie International Edition 2009; 48(46): 8640–8668.
7. Boustani I. Towards novel boron nanostructural materials. In: Springborg M (editor). Chemical Modelling: Applications and theory. Cambridge: Royal Society of Chemistry; 2011. p. 1–44.
8. Fermi E. Molecules, crystals, and quantum statistics. New York, Amsterdam: W. A. Benjamin INC; 1966.
9. Novikova SI. Thermal Expansion of Solids. Mos-cow: Nauka; 1974.
10. Slutsker AI, Gilyarov VL, Luk’yanenko AS. Energy features of an adiabatically loaded anharmonic oscillator. Physics of the Solid State 2006; 48(10): 1947–1953.
11. Chkhartishvili L, Gabunia D, Tsagareishvili O, et al. Estimation of isotopic composition effect on substance melting temperature. Bulletin of the Georgian National Academy of Sciences 2004; 170(3): 530–532.
12. Chkhartishvili LS, Gabunia DL, Tsagareishvili OA. Estimation of the isotopic effect on the melting parameters of boron. Inorganic Materials 2007; 43(6): 594–596.
13. Chkhartishvili LS, Gabunia DL, Tsagareishvili OA. Effect of the isotopic composition on the lattice parameter of boron. Powder Metallurgy and Metal Ceramics 2008; 47(9-10): 616–621.
14. Gabunia D, Tsagareishvili O, Chkhartishvili L, et al. Isotopic composition dependences of lattice constant and thermal expansion of β-rhombohedral boron. Journal of Physics: Conference Series 2009; 176(012022): 1–10.
15. Chkhartishvili L, Tsagareishvili O, Gabunia D. Isotopic expansion of boron. Journal of Metallurgical Engineering 2014; 3 (3): 97–103.
16. Chkhartishvili L. On quasi-classical estimations of boron nanotubes ground-state parameters. Journal of Physics: Conference Series 2009; 176(1): 1–9.
17. Chkhartishvili L. Molar binding energy of the boron nanosystems. In: Konuk A, Kurama H, Ak H, et al. (editors). Proceedings of the 4th international boron symposium. Ankara: Osmangazi University; 2009. p.153–160.
18. Chkhartishvili L. Nanotubular boron: Ground-state estimates. In: Chikoidze E, Tchelidze T (editors). New developments in materials science. New York: Nova Science Publishers; 2011. p. 67–80.
19. Oganov AR, Chen J, Gatti C, et al. Ionic high-pressure form of elemental boron. Nature 2009; 457(7251): 863–867.
20. Chkhartishvili L, Becker R. Effective atomic charges and dipole moment of small boron clusters. Proceedings of the ICANM 2015. Ottawa: IAEMM; 2015. p. 130–147.
21. Becker R, Chkhartishvili L. Dipole moment of quasi-planar boron clusters. Nano Studies 2015; 11: 29–48.
22. Chkhartishvili L, Becker R, Avci R. Relative stability of boron quasi-planar clusters. In: Darsavelidze G, Guldamashvili A, Chedia R, et al. (editors). Proceedings of the international conference “Advanced Materials & Technologies”. Tbilisi: Uni-versal; 2015. p. 42–46.
23. Chkhartishvili L. Small elemental clusters in pair interaction approximation. Proceedings of the ICANM 2016. Montreal: IAEMM 2016. p. 128–132.
24. Chkhartishvili L. Planar clusters of identical atoms in equilibrium: 1. Diatomic model approach. American Journal of Nano Research & Applications 2017; 5(3-1): 1–4.
25. Chkhartishvili L. Quasi-planar elemental clusters in pair interactions approximation. Open Physics 2016; 14(1): 617–620.
26. Chkhartishvili L. Boron quasi-planar clusters. In: Pogrebnjak A D (editor). A mini-review on diatomic approach. Proceedings of the IEEE 7th internation-al conference on nanomaterials: Applications & properties (NAP—2017), Part 4, Track: Nano-materials for electronics, spintronics and photonics; Sumy: Sumy State University; 2017. p. 1–5.
27. Chkhartishvili L, Lezhava D, Tsagareishvili O. Quasi-classical determination of electronic energies and vibration frequencies in boron compounds. Journal of Solid State Chemistry 2000; 154(1): 148–152.
28. Chkhartishvili L, Mamisashvili N, Maisuradze N. Single-parameter model for multi-walled geometry of nanotubular boron. Solid State Sciences 2015; 47: 61–67.
29. Hayes WM (editor-in-chief). Handbook of Chemistry and Physics (94th Ed.). Boca Raton: CRC Press; 2013. p. 10–147 & 10–197.
30. Bambakidis G, Wagner RP. Electronic structure and binding energy of the icosahedral boron cluster B12. Journal of Physics and Chemistry of Solids 1981; 42(11): 1023–1025.
31. Kawai R, Weare JH. Instability of the B12 icosahedral cluster: Rearrangement to a lower energy structure. The Journal of Chemical Physics 1991; 95(2): 1151–1159.
32. Boustani I. Structure and stability of small boron clusters. A density functional theoretical study. Chemical Physics Letters 1995; 240(1-3): 135–140.
33. Boustani I. Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n = 2–14). Physical Review B 1997; 55(24): 16426–16438.
34. Zhai H, Kiran B, Li J, et al. Hydrocarbon analogues of boron clusters — planarity, aromaticity and anti-aromaticity. Nature Materials 2003; 2(12): 827–833.
35. Atis M, Ozdogan C, Guvenc ZB. Structure and energetic of Bn (n = 2–12) clusters: Electronic structure calculations. International Journal of Quantum Chemistry 2007; 107(3): 729–744.
36. Kiran B, Kumar GG, Nguyen MT, et al. Origin of the unusual stability of B12 and B13+ clusters. Inorganic Chemistry 2009; 48(21): 9965–9967.
37. Bhattacharyya P, Boustani I, Shukla A. First principles electronic structure study of B12 isomers: Jahn–Teller distortion flattens the icosahedron into a disc. arXiv: 1802.01072v1 [physics.atmclus] 4 Feb 2018; 1–32.
DOI: https://doi.org/10.24294/can.v3i2.761
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Characterization and Application of Nanomaterials
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.