C-dots dispersed macro-mesoporous TiO2 phtocatalyst for effective waste water treatment

M. Abd Elkodous, (Dr.) Ahmed Hassaan, Prof (Dr.) KAUSHIK PAL, (Dr.) A I Ghoneim, (Dr.) Zizi Abdeen

Article ID: 585
Vol 1, Issue 2, 2018


Abstract


Synthesis of macro-mesoporous Titania (Titanium dioxide-TiO2) nanospheres was successfully achieved using a modified template-free methodology to incorporate macroporous channels into a mesoporous TiO2 framework to form mixed macro-mesoporous TiO2 spheres (MMPT), which were doped with carbon dots (C-dots) to form improved nanocomposites (C-dots@MMPT). Elemental composition, surface bonding and optical properties of these nanocomposites were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and ultraviolet-visible absorption spectroscopy (UV-VIS). Evaluation of photocatalytic activity for each (C-Dots@MMPT) sample was performed via degrading the Methylene Blue (MB) dye compared with bare samples (MMPT) under visible light irradiation using 300 Watt halogen lamp.


Keywords


Photocatalysis; macro-mesoporous TiO2; up-conversion photoluminescence; MB degradation

Full Text:

PDF


References


1. Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ 2012; 125: 331–349.

2. Cheng C, Wei Y, Xiong JY, et al. Same titanium glycolate precursor but different products: successful synthesis of twinned anatase TiO2 nanocrystals with excellent solar photocatalytic hydrogen evolution capability. Inorganic Chemistry Frontiers 2017; 4(8): 1319-1329.

3. Linse bigler AL, Lu G, Yates JT. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995; 95: 735–758.

4. Schneider J, Matsuoka M, Takeuchi M. et al. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014; 114: 140919080959008.

5. Parastar S, Nasseri S, Borji SH,et al. Application of Ag-doped TiO2 nanoparticle prepared by photodeposition method for nitrate photocatalytic removal from aqueous solutions. Desalin. Water Treat 2013; 51: 7137–7144.

6. Zhang N, Liu S, Fu X, et al. Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity. J. Phys. Chem. C. 2011; 115: 9136–9145.

7. Han C, Pelaez M, Likodimos V, et al. Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B Environ 2011; 107: 77–87.

8. Yuan R, Chen T, Fei E, et al. Surface Chlorination of TiO2 -Based Photocatalysts: A Way to Remarkably Improve Photocatalytic Activity in Both UV and Visible Region.ACS Catal2011; 1: 200–206.

9. Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl. Catal. A Gen. 2005; 284: 131–137.

10. Rashad MM, ElsayedEM, Al-kotb MS, et al. The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles. Journal of Alloys and Compounds 2013; 581.

11. Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic Carbon-Nanotube-TiO2 Composites. Adv. Mater.2009; 21: 2233–2239.

12. TetteyKE, YeeMQ, LeeD. Photocatalytic and conductive MWCNT/TiO2 nanocomposite thin films. ACS Appl. Mater. Interfaces2010; 2: 2646–2652.

13. Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev.2012; 41: 782–796.

14. Zhang Y, Tang ZR, Fu X,et al. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano2011; 5: 7426–7435.

15. Wang C, Meng, D, Sun, J, et al. Graphene wrapped TiO2based catalysts with enhanced photocatalytic activity. Adv. Mater. Interfaces 2014; 1.

16. Kamat, PV. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett.2010; 1: 520–527.

17. Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon N. Y.2011; 49: 741–772.

18. Xu X, Ray R, GuY, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc.2004; 126: 12736–12737.

19. He X, Li H, Liu Y,et al. Water soluble carbon nanoparticles: hydrothermal synthesis and excellent photoluminescence properties. Colloids Surf. B. Biointerfaces2011; 87: 326–332.

20. Zhang H, Ming H, Lian S,et al. Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Trans.2011; 40: 10822–10825.

21. Yu H, Zhang H, Huang H,et al. ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J. Chem2012; 36: 1031.

22. Zhang H, Huang H, Ming H,et al. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible. light. J. Mater. Chem.2012; 22: 10501.

23. Ming H, Ma Z, Liu Y,et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans.2012; 41: 9526–9531.

24. Wang X, Cao L, Lu F, et al. Photoinduced electron transfers with carbon dots. Chem. Commun. (Camb). 2009; 3774–3776.

25. Zhang Y, Li G, WuY,et al. The formation of mesoporous TiO2 spheres via a facile chemical process. J. Phys. Chem. B2005; 109: 5478–5481.

26. Jia XF, Li J, Erkang Wang. One-pot green synthesis of optically PH-sensitive carbon dots with upconversion luminescence. Nanoscal2012; 4: 5572.

27. Abazari R, Mahjoub AR, Sanati S. A facile and efficient preparation of anatase titania nanoparticles in micelle nanoreactors: Morphology, structure, and their high photocatalytic activity under UV light illumination, RSC Adv.2014; 56406-56414.

28. Li H, He X, Kang Z, et al. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design2010; 4430–4434.

29. Esteves da Silva JCG, Gonçalves HMR. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem 2011; 30: 1327–1336.

30. Tahir, M.N., et al., Extraordinary Performance of Carbon‐Coated Anatase TiO(2) as Sodium‐Ion Anode. Advanced Energy Materials, 2016. 6(4): p. 1501489.




DOI: https://doi.org/10.24294/can.v1i2.585

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Characterization and Application of Nanomaterials



This site is licensed under a Creative Commons Attribution 4.0 International License.