Enhanced photocatalytic performance by ZnO/Graphene heterojunction grown on Ni foam for methylene blue removal

Lucas F. Melia, María V. Gallegos, Luciana Juncal, Marcos Meyer, Francisco J. Ibañez, Laura C. Damonte

Article ID: 5756
Vol 7, Issue 1, 2024

VIEWS - 221 (Abstract) 38 (PDF)

Abstract


ZnO nanostructures were obtained by electrodeposition on Ni foam, where graphene was previously grown by chemical vapor deposition (CVD). The resulting heterostructures were characterized by X-ray diffraction and SEM microscopy, and their potential application as a catalyst for the photodegradation of methylene blue (MB) was evaluated. The incorporation of graphene to the Ni substrate increases the amount of deposited ZnO at low potentials in comparison to bare Ni. SEM images show homogeneous growth of ZnO on Ni/G but not on bare Ni foam. A percent removal of almost 60% of MB was achieved by the Ni/G/ZnO sample, which represents a double quantity than the other catalysts proved in this work. The synergistic effects of ZnO-graphene heterojunctions play a key role in achieving better adsorption and photocatalytic performance. The results demonstrate the ease of depositing ZnO on seedless graphene by electrodeposition. The use of the film as a photocatalyst delivers interesting and competitive removal percentages for a potentially scalable degradation process enhanced by a non-toxic compound such as graphene.


Keywords


Ni foam; electrodeposition; zinc oxide; photocatalysis; graphene; methylene blue degradation

Full Text:

PDF


References


1. Xu X, Yang H, Li C. Theoretical Model and Actual Characteristics of Air Pollution Affecting Health Cost: A Review. International Journal of Environmental Research and Public Health. 2022; 19(6): 3532. doi: 10.3390/ijerph19063532

2. Lin L, Yang H, Xu X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Frontiers in Environmental Science. 2022; 10. doi: 10.3389/fenvs.2022.880246

3. Lanjwani MF, Tuzen M, Khuhawar MY, et al. Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review. Inorganic Chemistry Communications. 2024; 159: 111613. doi: 10.1016/j.inoche.2023.111613

4. Saleh TA. Advanced Nanomaterials for Water Engineering, Treatment, and Hydraulics. IGI Global; 2017.

5. Gupta VK, Mohan D, Suhas, et al. Removal of 2-Aminophenol Using Novel Adsorbents. Industrial & Engineering Chemistry Research. 2006; 45(3): 1113-1122. doi: 10.1021/ie051075k

6. Saleh TA. Mercury sorption by silica/carbon nanotubes and silica/activated carbon: a comparison study. Journal of Water Supply: Research and Technology - Aqua. 2015; 64(8): 892-903. doi: 10.2166/aqua.2015.050

7. Bin-Dahman OA, Saleh TA. Synthesis of polyamide grafted on biosupport as polymeric adsorbents for the removal of dye and metal ions. Biomass Conversion and Biorefinery. 2022; 14(2): 2439-2452. doi: 10.1007/s13399-022-02382-8

8. Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology. 2006; 97(9): 1061-1085. doi: 10.1016/j.biortech.2005.05.001

9. Lellis B, Fávaro-Polonio CZ, Pamphile JA, et al. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation. 2019; 3(2): 275-290. doi: 10.1016/j.biori.2019.09.001

10. Kulis-Kapuscinska A, Kwoka M, Borysiewicz MA, et al. Photocatalytic degradation of methylene blue at nanostructured ZnO thin films. Nanotechnology. 2023; 34(15): 155702. doi: 10.1088/1361-6528/aca910

11. Begum R, Najeeb J, Sattar A, et al. Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review. Reviews in Chemical Engineering. 2019; 36(6): 749-770. doi: 10.1515/revce-2018-0047

12. American Association of Textile Chemists and Colorists. Color technology in the textile industry, 2nd ed. Amer Assn of Textile; 1997.

13. Varjani S, Rakholiya P, Shindhal T, et al. Trends in dye industry effluent treatment and recovery of value added products. Journal of Water Process Engineering. 2021; 39: 101734. doi: 10.1016/j.jwpe.2020.101734

14. Senobari S, Nezamzadeh-Ejhieh A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. Journal of Molecular Liquids. 2018; 261: 208-217. doi: 10.1016/j.molliq.2018.04.028

15. Yazdani O, Irandoust M, Ghasemi JB, et al. Thermodynamic study of the dimerization equilibrium of methylene blue, methylene green and thiazole orange at various surfactant concentrations and different ionic strengths and in mixed solvents by spectral titration and chemometric analysis. Dyes and Pigments. 2012; 92(3): 1031-1041. doi: 10.1016/j.dyepig.2011.07.006

16. Pereira AGB, Rodrigues FHA, Paulino AT, et al. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production. 2021; 284: 124703. doi: 10.1016/j.jclepro.2020.124703

17. Muzammal S, Ahmad A, Sheraz M, et al. Polymer-supported nanomaterials for photodegradation: Unraveling the methylene blue menace. Energy Conversion and Management: X. 2024; 22: 100547. doi: 10.1016/j.ecmx.2024.100547

18. Khan I, Saeed K, Zekker I, et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water. 2022; 14(2): 242. doi: 10.3390/w14020242

19. Radoor S, Karayil J, Jayakumar A, et al. Efficient removal of dyes, heavy metals and oil-water from wastewater using electrospun nanofiber membranes: A review. Journal of Water Process Engineering. 2024; 59: 104983. doi: 10.1016/j.jwpe.2024.104983

20. Rafatullah Mohd, Sulaiman O, Hashim R, et al. Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials. 2010; 177(1-3): 70-80. doi: 10.1016/j.jhazmat.2009.12.047

21. Yaseen M, Khan A, Humayun M, et al. Fabrication and characterization of CuO–SiO2/PVA polymer nanocomposite for effective wastewater treatment and prospective biological applications. Green Chemistry Letters and Reviews. 2024; 17(1). doi: 10.1080/17518253.2024.2321251

22. Buthiyappan A, Abdul Aziz AR, Wan Daud WMA. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Reviews in Chemical Engineering. 2016; 32(1): 1-47. doi: 10.1515/revce-2015-0034

23. Chan SHS, Yeong Wu T, Juan JC, et al. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. Journal of Chemical Technology & Biotechnology. 2011; 86(9): 1130-1158. doi: 10.1002/jctb.2636

24. Herrmann JM. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today. 1999; 53: 115-29.

25. Lee YY, Moon JH, Choi YS, et al. Visible-Light Driven Photocatalytic Degradation of Organic Dyes over Ordered Mesoporous CdxZn1–xS Materials. The Journal of Physical Chemistry C. 2017; 121(9): 5137-5144. doi: 10.1021/acs.jpcc.7b00038

26. Saleh TA. Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): from surface properties to sorption mechanism. Desalination and Water Treatment. 2015; 57(23): 10730-10744. doi: 10.1080/19443994.2015.1036784

27. Ravishankar TN, Manjunatha K, Ramakrishnappa T, et al. Comparison of the photocatalytic degradation of trypan blue by undoped and silver-doped zinc oxide nanoparticles. Materials Science in Semiconductor Processing. 2014; 26: 7-17. doi: 10.1016/j.mssp.2014.03.027

28. Jasso-Salcedo AB, Palestino G, Escobar-Barrios VA. Effect of Ag, pH, and time on the preparation of Ag-functionalized zinc oxide nanoagglomerates as photocatalysts. Journal of Catalysis. 2014; 318: 170-178. doi: 10.1016/j.jcat.2014.06.008

29. Wang Y, Wang Q, Zhan X, et al. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale. 2013; 5(18): 8326. doi: 10.1039/c3nr01577g

30. Fei W, Li H, Li N, et al. Facile fabrication of ZnO/MoS2 p-n junctions on Ni foam for efficient degradation of organic pollutants through photoelectrocatalytic process. Solar Energy. 2020; 199: 164-172. doi: 10.1016/j.solener.2020.02.037

31. Mustajab MA, Winata T, Arifin P. Lithium doping effect on microstructural and electrical properties of zinc oxide thin film grown by metal-organic chemical vapor deposition. Journal of Physics: Conference Series. 2022; 2243(1): 012054. doi: 10.1088/1742-6596/2243/1/012054

32. Bui QC, Ardila G, Roussel H, et al. Tuneable polarity and enhanced piezoelectric response of ZnO thin films grown by metal–organic chemical vapour deposition through the flow rate adjustment. Materials Advances. 2022; 3(1): 498-513. doi: 10.1039/d1ma00921d

33. Imran M, Ahmad R, Afzal N, et al. Copper ion implantation effects in ZnO film deposited on flexible polymer by DC magnetron sputtering. Vacuum. 2019; 165: 72-80. doi: 10.1016/j.vacuum.2019.04.010

34. Ghalmi L, Bensmaine S, Merzouk CEH. Structural Characterization of ZnO Thin Films Deposited onto Silicon Substrates using Cathodic Magnetron Sputtering. Journal of Renewable Energies. 2023; 26(1). doi: 10.54966/jreen.v26i1.1116

35. Mathew JA, Tsiumra V, Sajkowski JM, et al. Photoluminescence of Europium in ZnO and ZnMgO thin films grown by Molecular Beam Epitaxy. Journal of Luminescence. 2022; 251: 119167. doi: 10.1016/j.jlumin.2022.119167

36. Kennedy OW, Coke ML, White ER, et al. MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction. Materials Letters. 2018; 212: 51-53. doi: 10.1016/j.matlet.2017.10.017

37. Chander Joshi B, Chaudhri AK. Sol–Gel-Derived Cu-Doped ZnO Thin Films for Optoelectronic Applications. ACS Omega. 2022; 7(25): 21877-21881. doi: 10.1021/acsomega.2c02040

38. Rabeel M, Javed S, Khan R, et al. Controlling the Wettability of ZnO Thin Films by Spray Pyrolysis for Photocatalytic Applications. Materials. 2022; 15(9): 3364. doi: 10.3390/ma15093364

39. Badawi A, Althobaiti MG, Ali EE, et al. A comparative study of the structural and optical properties of transition metals (M = Fe, Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Optical Materials. 2022; 124: 112055. doi: 10.1016/j.optmat.2022.112055

40. Donderis V, Orozco J, Cembrero J, et al. Doped Nanostructured Zinc Oxide Films Grown by Electrodeposition. Journal of Nanoscience and Nanotechnology. 2010; 10(2): 1387-1392. doi: 10.1166/jnn.2010.1869

41. Lghazi Y, Bahar J, Youbi B, et al. Nucleation/Growth and Optical Proprieties of Co-doped ZnO Electrodeposited on ITO Substrate. Biointerface Research in Applied Chemistry. 2021; 12(5): 6776-6787. doi: 10.33263/briac125.67766787

42. Reyes Tolosa MD, Alajami M, Montero Reguera AE, et al. Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films. SN Applied Sciences. 2019; 1(10). doi: 10.1007/s42452-019-1293-7

43. Nedzinskas R, Suchodolskis A, Trinkler L, et al. Optical characterization of high-quality ZnO (0002) / Cu (111) epilayers grown by electrodeposition. Optical Materials. 2023; 138: 113650. doi: 10.1016/j.optmat.2023.113650

44. Chatterjee S, Kar AK. Precursor concentration induced nanostructural evolution of electrodeposited ZnO thin films and its effect on their optical and photocatalytic properties. Journal of Materials Science: Materials in Electronics. 2021; 33(11): 8970-8986. doi: 10.1007/s10854-021-07010-1

45. Lim HC, Park E, Shin I, et al. Electrodeposition of Zinc Oxide Nanowires as a Counter Electrode in Electrochromic Devices. Bulletin of the Korean Chemical Society. 2020; 41(3): 358-361. doi: 10.1002/bkcs.11953

46. Kim H, Moon JY, Lee HS. Effect of ZnCl2 concentration on the growth of ZnO by electrochemical deposition. Current Applied Physics. 2012; 12: S35-S38. doi: 10.1016/j.cap.2012.05.036

47. Haga H, Jinnai M, Ogawa S, et al. Rapid fabrication of ZnO film by electrochemical deposition method from aqueous solution. Electrical Engineering in Japan. 2021; 214(2). doi: 10.1002/eej.23320

48. Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions. Journal of Materials Chemistry. 2002; 12(12): 3773-3778. doi: 10.1039/b205384e

49. Londhe PU, Chaure NB. Effect of pH on the properties of electrochemically prepared ZnO thin films. Materials Science in Semiconductor Processing. 2017; 60: 5-15. doi: 10.1016/j.mssp.2016.12.005

50. Xu L, Guo Y, Liao Q, et al. Morphological Control of ZnO Nanostructures by Electrodeposition. The Journal of Physical Chemistry B. 2005; 109(28): 13519-13522. doi: 10.1021/jp051007b

51. El-Shamy A, Elsayed E, Eessaa A, et al. Fabrication, characterization and monitoring the propagation of nanocrystalline zno thin film on ito substrate using electrodeposition technique. Egyptian Journal of Chemistry. 2022. doi: 10.21608/ejchem.2022.126134.5595

52. Liu WL, Chang YC, Hsieh SH, Chen WJ. Effects of Anions in Electrodeposition Baths on Morphologies of Zinc Oxide Thin Films. International Journal of Electrochemical Science. 2013; 8: 983-90.

53. Ghannam H, Bazin C, Chahboun A, et al. Control of the growth of electrodeposited zinc oxide on FTO glass. CrystEngComm. 2018; 20(41): 6618-6628. doi: 10.1039/c8ce01223g

54. Cembrero J, Busquets-Mataix D. ZnO crystals obtained by electrodeposition: Statistical analysis of most important process variables. Thin Solid Films. 2009; 517(9): 2859-2864. doi: 10.1016/j.tsf.2008.10.069

55. Urade AR, Lahiri I, Suresh KS. Graphene Properties, Synthesis and Applications: A Review. JOM. 2022; 75(3): 614-630. doi: 10.1007/s11837-022-05505-8

56. Jain P, Rajput RS, Kumar S, et al. Recent Advances in Graphene-Enabled Materials for Photovoltaic Applications: A Comprehensive Review. ACS Omega. 2024; 9(11): 12403-12425. doi: 10.1021/acsomega.3c07994

57. Yang H, Li J, Yu D, et al. Seed/Catalyst Free Growth and Self-Powered Photoresponse of Vertically Aligned ZnO Nanorods on Reduced Graphene Oxide Nanosheets. Crystal Growth & Design. 2016; 16(9): 4831-4838. doi: 10.1021/acs.cgd.6b00034

58. Messina MM, Picone AL, dos Santos Claro PC, et al. Graphene Grown on Ni Foam: Molecular Sensing, Graphene-Enhanced Raman Scattering, and Galvanic Exchange for Surface-Enhanced Raman Scattering Applications. The Journal of Physical Chemistry C. 2018; 122(16): 9152-9161. doi: 10.1021/acs.jpcc.7b12021

59. Gao C, Zhong K, Fang X, et al. Brief Review of Photocatalysis and Photoresponse Properties of ZnO–Graphene Nanocomposites. Energies. 2021; 14(19): 6403. doi: 10.3390/en14196403

60. Singh P, Shandilya P, Raizada P, et al. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arabian Journal of Chemistry. 2020; 13(1): 3498-3520. doi: 10.1016/j.arabjc.2018.12.001

61. Yoo DH, Cuong TV, Luan VH, et al. Photocatalytic Performance of a Ag/ZnO/CCG Multidimensional Heterostructure Prepared by a Solution-Based Method. The Journal of Physical Chemistry C. 2012; 116(12): 7180-7184. doi: 10.1021/jp210216w

62. Cai R, Wu J gen, Sun L, et al. 3D graphene/ZnO composite with enhanced photocatalytic activity. Materials & Design. 2016; 90: 839-844. doi: 10.1016/j.matdes.2015.11.020

63. Messina MM, Coustet ME, Ubogui J, et al. Simultaneous Detection and Photocatalysis Performed on a 3D Graphene/ZnO Hybrid Platform. Langmuir. 2020; 36(9): 2231-2239. doi: 10.1021/acs.langmuir.9b03502

64. Lv S, Geng P, Wang H, et al. In Situ Construction of ZnO/Ni2S3 Composite on Ni Foam by Combing Potentiostatic Deposition with Cyclic Voltammetric Electrodeposition. Micromachines. 2021; 12(7): 829. doi: 10.3390/mi12070829

65. Zhong Y, Yang S, Fang Y, et al. In situ constructing Ni foam supported ZnO-CdS nanorod arrays for enhanced photocatalytic and photoelectrochemical activity. Journal of Alloys and Compounds. 2021; 868: 159187. doi: 10.1016/j.jallcom.2021.159187

66. Miao F, Wu W, Miao R, et al. Graphene/nano-ZnO hybrid materials modify Ni-foam for high-performance electrochemical glucose sensors. Ionics. 2018; 24(12): 4005-4014. doi: 10.1007/s11581-018-2539-x

67. Abbas SI, Alattar AM, Al-Azawy AA. Enhanced ultraviolet photodetector based on Al-doped ZnO thin films prepared by spray pyrolysis method. Journal of Optics. 2023; 53(1): 396-403. doi: 10.1007/s12596-023-01164-3

68. Bidault F, Brett DJL, Middleton PH, et al. A new application for nickel foam in alkaline fuel cells. International Journal of Hydrogen Energy. 2009; 34(16): 6799-6808. doi: 10.1016/j.ijhydene.2009.06.035

69. Zhang F, Lan J, Yang Y, et al. Adsorption behavior and mechanism of methyl blue on zinc oxide nanoparticles. Journal of Nanoparticle Research. 2013; 15(11). doi: 10.1007/s11051-013-2034-2

70. He X, Yang Y, Li Y, et al. Effects of structure and surface properties on the performance of ZnO towards photocatalytic degradation of methylene blue. Applied Surface Science. 2022; 599: 153898. doi: 10.1016/j.apsusc.2022.153898

71. Waghchaure RH, Adole VA, Jagdale BS. Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorganic Chemistry Communications. 2022; 143: 109764. doi: 10.1016/j.inoche.2022.109764

72. Prerna, Agarwal H, Goyal D. Photocatalytic degradation of textile dyes using phycosynthesised ZnO nanoparticles. Inorganic Chemistry Communications. 2022; 142: 109676. doi: 10.1016/j.inoche.2022.109676

73. Saleh TA, Gondal MA, Drmosh QA. Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnology. 2010; 21(49): 495705. doi: 10.1088/0957-4484/21/49/495705




DOI: https://doi.org/10.24294/can.v7i1.5756

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Lucas F. Melia, María V. Gallegos, Luciana Juncal, Marcos Meyer, Francisco J. Ibañez, Laura C. Damonte

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.