A review on metal-organic framework: Synthesis, properties and ap-plication

Sanju Soni, Parmendra Kumar Bajpai, Charu Arora

Article ID: 551
Vol 3, Issue 2, 2020

VIEWS - 88169 (Abstract) 2476 (PDF)

Abstract


Metal organic framework is a class of hybrid network of supramolecular solid materials comprised of a large number of inorganic and organic linkers all bounded to metal ions in a well-organized fashion. This type of compounds possess a greater surface area with an advantage of changing pore sizes, diversified and beautiful structure which withdrew an intense interest in this field. In the present review articles, the structural aspects, classification, methods of synthesis, various factors affecting the synthesis and stability, properties and applications have been discussed. Recent advances in the field and new directions to explore the future scope and applications of MOFs have been incorporated in this article to provide current status of the field.


Keywords


Metal Organic Framework; Nanoporous Material; Drug Delivery; Gas Sensor; Secondary Building Unit

Full Text:

PDF


References


1. Eddaoudi M, Moler DB, Li H, et al. Modular chemistry: Secondary building units as basis for the design of highly porous and robust metal-organic carboxylate framework. Accounts of Chemical Research 2001; 34: 319–330.

2. Rowsell JLC, Yaghi OM. Metal-organic frameworks: A new class of porous materials. Microporous and Mesoporous Material 2004; 73: 3–14.

3. Yamada T, Kitagawa H. Protection and deprotection approach for the introduction of functional groups into metal organic frameworks. Journal of the American Chemical Society 2009; 131(18): 6312–6313.

4. Horike S, Shimomura S, Kitagawa S. Soft porous crystals. Nature Chemistry 2009; 1(9): 695–704. doi: 10.1038/nchem.444.

5. Ferey G. Hybrid porous solids: past, present, future. Chemical Society Reviews 2008; 37: 191–214.

6. Lee J, Farha OK, Roberts J, et al. Metal-organic framework material as catalyst. Chemical Society Reviews 2009; 38: 1450–1459.

7. Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery. Journal of the American Chemical Society 2008; 130: 6774–6780.

8. Horcajada P, Serre C, Valletregi M, et al. Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed Engl 2006; 45: 5974–5978.

9. Babarao R, Jiang J. Unraveling the energetic and dynamics of Ibuprofen in mesoporous metal-organic frameworks. Journal of Physical Chemistry C 2009; 113: 18287–18291.

10. Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine. Chemical Reviews 2012; 112: 1232–1268.

11. Zhuang J, Kuo C, Chou L, et al. Optimized metal-organic frameworks nanospheres for drug delivery: Evaluation of small-molecule incapsulation. ACS Nano 2014; 8(3): 2812–2819.

12. Kerbellec N, Catala L, Daiquebonne C, et al. Luminescent coordination nanoparticles. New Journal of Chemistry 2008; 32: 584–587.

13. Kitagawa S, Matsuda R. Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews 2007; 251: 2490–2509.

14. Kitagawa S, Kitaura R, Noro SI. Functional porous coordination polymers. Angew Chem Int Ed Engl 2004; 43: 2334–2375.

15. Wu H, Zhou W, Yildirim T. High-capacity methane storage in metal-organic frameworks M2 (dhtp): The important role of open metal site. Journal of the American Chemical Society 2009; 131: 4995–5000.

16. Zacher D, Shekhah O, Woll W, et al. Thin films of metal-organic frameworks. Chemical Society Reviews 2009; 38: 1418–1429.

17. Ma M. Preparation, characterization of metal-organic frameworks for biological applications [PhD thesis]. Bochum: Ruhr University; 2011. p.11.

18. Maark TA, Pal S. A model study of effect of M=Li, Na, Be, Mg and Al ion decoration on hydrogen adsorption of metal-organic framework-5. International Journal of Hydrogen Energy 2010; 35: 12846–2857.

19. Lv Y, Zhan C, Feng Y. A chiral manganese-potassium heterometallic MOF with an unusual (3, 7)-connected network. CrystEngComm 2010; 12: 3052–3056.

20. Yang L, Vajeeston P, Ravindran P, et al. Revisiting isoreticular MOFs of alkaline earth metals: A comprehensive study on phase stability, electronic structure, chemical bonding and optical properties of A-IRMOF-1 (A = Be, Mg, Ca, Sr, Ba). Physical Chemistry Chemical Physics 2011; 13: 10191–10203.

21. Platero-Prats AE, Iglesias M, Snejko N, et al. From coordinatively weak ability of constituents to very stable alkaline earth sulphonate metal-organic framework. Crystal Growth & Design 2011; 11(5): 1750–1758.

22. Platero Prats AE, De la Peña-O’Shea VA, Iglesias M, et al. Heterogeneous catalysis with alkaline-earth metal-based MOFs: A green calcium catalyst. Chemcatchem 2010; 2: 147–149.

23. Serre C, Ferey G. Hydrothermal synthesis, thermal behaviour and structural determination from powder data of a porous three dimensional europium trimesate: Eu3(H2O)(OH)6[C6H3(CO2)3]·3H2O or MIL-63. Journal of Materials Chemistry 2002; 12: 3053–3057.

24. Serre C, Millange F, Marrot J, et al. Hydrothermal synthesis, structure determination, and thermal behavior of new three-dimensional europium tereph-thalates: MIL-51(LT,HT) and MIL-52 or EU2n(OH)x(H2O)y(O2C-C6H4-CO2)z (n = III, III, II; x = 4, 0, 0; y = 2, 0, 0; z = 1, 1, 2). Chemistry of Materials 2002; 14(5): 1965–1975.

25. Reineke TM, Eddaoudi M, O’Keeffe M, et al. A microporous lanthanide-organic framework. Angew Chem Int Ed 1999; 38: 2590–2594.

26. Serpaggi F, Ferey G. Hybride open frameworks (MIL-n) part 4: Synthesis, and crystal structure of MIL-8 a series of lanthanide glutarates with an open framework, [Ln(H2O)]2[O2C(CH2)3CO2]3.4H2O. Journal of Materials Chemistry 1998; 8: 2737–2741.

27. Serpaggi F, Ferey G. Hybrid open frameworks (MIL-n): Synthesis and crystal structure of MIL-17 a rare-earth dicarboxylate with a relatively open framework [Pr(H2O)]2[O2C(CH2)2CO2]3.H2O. Microporous & Mesoporous Materials 1999: 32: 311–318.

28. Yaghi OM, O’keeffee M, Ockwing NW, et al. Reticular synthesis and design of new materials. Nature 2003; 423: 705–714.

29. Sabouni R. Carbon dioxide adsorption by metal organic frameworks (Synthesis, testing and modeling) [PhD thesis]. Ontario: University of Western Ontario, Electronic thesis and dissertation repository; 2013. p. 28–29.

30. Dincă M, Long JR. Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3. Journal of the American Chemical Society 2005; 127: 9376–9377.

31. Hamon L, Llewellyn PL, Devic T, et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. Journal of the American Chemical Society 2009; 131: 17490–17499.

32. Llewellyn P, Bourrelly S, Serre C, et al. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium tereph-thalate MIL-53. Angew Chem Int Ed 2006; 45:

33. –7754.

34. Serre C, Mellot C, Surblé S, et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007; 315: 1828–1831.

35. Choi H, Suh M. Highly selective CO2 capture in flexible 3d coordination polymer networks. Angew Chem Int Ed 2009; 48: 6865–6869.

36. Schneemann A, Bon V, Schwedler T, et al. Flexible metal-organic frameworks. Chemical Society Reviews 2014; 43: 6062–6096.

37. Liang Z, Marshall M, Chaffee AL. CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy and Fuels 2009; 23: 2785–2789.

38. Millward A, Yaghi OM. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society 2005; 127: 17998–17999.

39. Demessence A, D’Alessandro D, Foo M, et al. Strong CO2 binding in a water stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. Journal of the American Chemical Society 2009; 131: 8784–8786.

40. Serre C, Bourrelly S, Vimont A, et al. An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. Advanced Materials 2007; 19: 2246–2251.

41. Sumida K, Rogow DL, Mason JA, et al. Carbon dioxide capture in metal-organic frameworks. Chemical Reviews 2012; 112: 724–781.

42. Wang C, Ying J. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chemistry of Materials 1999; 11: 3113–3120. doi: 10.1021/cm990180f.

43. Huang L, Wang H, Chen J, et al. Synthesis, morphology control and properties of porous metal-organic coordination polymers. Microporous & Mesoporous Materials 2003; 58: 105–114.

44. Tranchemontagne DJ, Hunt JR, Yaghi OM. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199 and IRMOF-0. Tetrahedron 2008; 64: 8553–8557.

45. Cravillion J, Munzer S, Lohmeier SJ, et al. Rapid room temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials 2009; 21(8): 1410–1412.

46. Biemmi E, Christan S, Stock N, et al. High through screening of synthesis parameters in the formation of metal-organic frameworks MOF-5 and HKUST-1. Microporous & Mesoporous Materials 2009; 117: 111–117.

47. Nouar F, Eckert J, Eubank JF, et al. Zeolite like metal-organic framework (ZMOFs) as hydrogen storage platform: Lithium and magnesium ion exchange and H2-(rho-ZMOF) interaction studies. Journal of the American Chemical Society 2009; 131(8): 2864–2870.

48. Braga D, Giaffreda SL, Grepioni F, et al. Solvent effect in a “solvent free” reaction. CrystEngComm 2007; 9: 879–881.

49. Pichon A, James SL. An array based study of re-activity under solvent free mechanochemical conditions—Insights and trends. CrystEngComm 2008; 10: 1839–1847.

50. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOFs topologies, morphologies and composites. Chemical Reviews 2012; 112: 933–969. doi: 10.1021/cr200304e.

51. Pichon A, Lazuen-Garay A, James SL. Solvent free synthesis of a microporous metal-organic framework. CrystEngComm 2006; 8: 211–214.

52. Shinde DB, Aiyappa HB, Bhadra M, et al. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. Journal of Materials Chemistry A 2016; 4: 2682–2690. doi: 10.1039/c5ta10521h.

53. Friscic T, Fabian L. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid assisted grinding. CrystEngComm 2009; 11: 743–745.

54. Jhung S, Chang J, Hwang J et al. Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous & Mesoporous Materials 2003; 64: 33–39. doi: 10.1016/S1387-1811(03)00501-8.

55. Jhung S, Lee JH, Yoon J W, et al. Selective crystallization of CoAPO-34 and VAPO-5 molecular sieves under microwave irradiation in an alkaline or neutral condition. Microporous & Mesoporous Materials 2005; 80: 147–152. doi: 10.1016/j.micromeso.2004.11.013.

56. Kang K, Park CH, Ahn WS. Microwave preparation of titanium-substituted mesoporous molecular sieve. Catalysis Letters 1999; 59(1): 45–49.

57. Jhung S, Chang J, Hwang Y, et al. Crystal morphology control of AFI type molecular sieves with microwave irradiation. Journal of Materials Chemistry 2004; 14: 280–285.

58. Hwang Y, Chang J, Park SE, et al. Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications. Angew Chem Int Ed 2005; 44: 556–560.

59. Jhung S, Lee JH, Chang J. Microwave synthesis of nanoporous hybrid material, Chromium trimesate. Bulletin of the Korean Chemical Society 2005; 26(6): 880–881.

60. Lu C, Liu J, Xiao K, et al. Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chemical Engineering Journal 2010; 156: 465–470.

61. Schlesinger M, Schulze S, Hiestchold M, et al. Evolution of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous & Mesoporous Materials 2010; 132: 121–127.

62. Mueller U, Puetter H, Hesse M, et al. (inventors). BASF Aktiengesellschaft, Ludwigshafen, D E (assignee). Method for electrochemical production of a crystalline porous metal organic skeleton material. US patent. WO2005/049892. 2005 Jun 2.

63. Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks — Prospective industrial applications. Journal of Materials Chemistry 2006; 16: 626–636.

64. Richer I, Schubert M, Müller U (inventors). Basf S E, Ludwigshafen DE (assignee). Porous metal organic framework based on pyrroles and pyridinones. US patent. WO2007/131955. 2007 May 17.

65. Suslick KS, Choe SB, Cichowlas AA, et al. Sono-chemical synthesis of amorphous iron. Nature 1991; 353: 414–416.

66. Gedanken A. Sonochemical synthesis of amorphous iron. Ultrason Sonochem 2004; 11: 47–55.

67. Sono T, Mingos DMP, Baghurst DR, et al. Novel energy source for reactions. In: The new chemistry. In: Hall N (editor). Cambridge: Syndicate of the University of Cambridge; 2004.

68. Qiu L, Li Z, Yun W, et al. Facile synthesis of nano-crystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008; (31): 3642–3644.

69. Li Z, Qiu L, Su T, et al. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters 2009: 63: 78–80.

70. Zacher D, Yusenko K, A Bétard, et al. Liquid-phase epitaxy of multicomponent layer-based porous coordination polymer thin films of [M(L)(P)0.5] type: Importance of deposition sequence on the oriented growth. Chemistry 2011; 17(5): 1448–1455.

71. Bai M, Zhang J, Cao L, et al. Zinc(II) and cadmium(II) metal complexes with bis(tetrazole) ligands: synthesis and crystal structure. Journal of the Chinese Chemical Society 2011; 58: 69–74.

72. Shekhah O. Layer by layer method for the synthesis and growth of surface mounted metal-organic frame-works (SURMOFs). Materials 2010; 3: 1302–1315.

73. Shekhah O, Wang H, Zacher D, et al. Growth mechanism of metal-organic framework: Insights into the nucleation by employing a step by step route. Angew Chem Int Ed 2009; 48: 5038–5041.

74. Horcajada P, Serre C, Grosso D, et al. Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks. Advanced Materials 2009; 21: 1931–1935.

75. Demessence A, Horcajada P, Serre C, et al. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). Chemical Communications 2009; 101(46): 7149–7151.

76. Demessence A, Boissiѐre C, Grosso D, et al. Adsorption properties in high optical quality nanoZIF-8 thin folms with tunable thickness. Journal of Mate-rials Chemistry 2010; 20: 7676–7681.

77. Cooper ER, Andrews CD, Wheatley PS, et al. Ionic liquids as eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004; 430: 1012–1016.

78. Parnham ER, Morris RE. Ionothermal synthesis of zeolites, metal-organic frameworks and inorganic-organic hybrids. Accounts of Chemical Research 2007; 40(10): 1005–1013.

79. Aiyappa HB, Saha S, Garai B, et al. A distinctive PdCl2-mediated transformation of Fe-based metal-logels into metal−organic frameworks. Crystal Growth & Design 2014; 14(7): 3434–3437.

80. Yakovenko AA, Wei Z, Wriedt M, et al. Study of guest molecules in metal-organic frameworks by powder X-ray diffraction: analysis of difference envelope density. Crystal Growth & Design 2014; 14(11): 5397–5407.

81. Akhbari K, Morsali A. Effect of the guest solvent molecules on preparation of different morphologies of ZnO nanomaterials from the [Zn2(1,4-bdc)2(dabco)] metal-organic framework. Journal of Coordination Chemistry 2011; 64(20): 352–3530.

82. Banerjee D, Finkelstein J, Smirnov A, et al. Synthesis and structural characterization of magnesium based coordination networks in different solvents. Crystal Growth & Design 2011; 11: 2572–2579.

83. Huang W, Yang G, Chen J, et al. Solvent influence on sizes of channels in three new Co(II) complexes, exhibiting an active replaceable coordinated site. Crystal Growth & Design 2013; 13(1): 66–73.

84. He Y, Guo J, Zhang H, et al. Tuning the void volume in a series of isomorphic porous metal-organic frameworks by varying the solvent size and length of organic ligands. CrystEngComm 2014; 16(24): 5450–5457.

85. Seetharaj R, Vandana P, Arya P, et al. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic frameworks. Arabian Journal of Chemistry 2016; 12(3): 295–315. doi: 10.1016/j.arabjc.2016.01.003.

86. Volkringer C, Loiseau T, Guillou N, et al. High thoughput aided synthesis of the porous metal-organic framework-type aluminium pyromillitate MIL-121 with extra carboxylic acid functionalization. Inorganic Chemistry 2010; 49(21): 9852–62.

87. Yuan F, Xie J, Hu H, et al. Effect of pH/metal ion on the structure of metal-organic frameworks based on novel bifunctionalized ligand 4’-carboxy-4,2’:6’, 4’’-terpyridine. CrystEngComm 2013; 15(7): 1460–1467.

88. Luo L, Lv G, Wang P, et al. pH-Dependent cobalt(ii) frameworks with mixed 3,3’,5,5’-tetra(1H-imidazol-1-yl)-1,1’-biphenyl and 1,3,5-benzenetricarboxylate ligands: synthesis, structure and sorption property. CrystEngComm 2013; 15(45): 9537–9543.

89. Chu Q, Liu G, Okamura T, et al. Structure modulation of metal–organic frameworks via reaction pH: Self-assembly of a new carboxylate containing lig-and N-(3-carboxyphenyl) iminodiacetic acid with cadmium (II) and cobalt (II) salts. Polyhedron 2008; 27(2): 812–820.

90. Wang C, Jing H, Wang P, et al. Series metal-organic frameworks constructed from 1,10-phenanthroline and 3,3’,4,4’-biphenyltetracarboxylic acid: Hydro-thermal synthesis, luminescence and photocatalytic properties. Journal of Molecular Structure 2015; 1080: 44–51.

91. Zang C, Wang M, Li Q, et al. Hydrothermal synthesis, crystal structure and luminescent properties of two zin(II) and cadmium(II) 3D metal-organic frameworks. Zeitschrift Füranorganisch and Allgemeine Chemie 2013; 639(5): 826–831.

92. Yang L, Qiu L, Hu S, et al. Rapid hydrothermal synthesis of MIL-101(Cr) metal–organic framework nanocrystals using expanded graphite as a structure-directing template. Inorganic Chemical Com-munications 2013; 35: 265–267.

93. De Oliveira CAF, da Silva FF, Malvestiti I, et al. Effect of temperature on formation of two new lanthanide metal-organic frameworks: synthesis, characterization and theoretical studies of Tm(III)-succinate. Journal of Solid State Chemistry 2013; 197: 7–13.

94. Bernini MC, Brusau E V, Narda GE, et al. The effect of hydrothermal and non-hydrothermal synthesis on the formation of holmium(III) succinate hydrate frameworks. European Journal of Inorganic Chemistry 2007; 5: 684–693.

95. Zhang K, Hou C, Song J, et al. Temperature and auxiliary ligand-controlled supramolecular assembly in a series of Zn(ii)-organic frameworks: syntheses, structures and properties. CrystEngComm 2012; 14(2): 590–600.

96. Mcguire CV, Forgan RS. The surface chemistry of metal-organic frameworks. Chemical Communications 2015; 51: 5199–5217.

97. Jin L, Liu Q, Sun W. Size-controlled indium (III)-benzendicarboxylate hexagonal rods and their transformation to In2O3 hollow structure. CrystEngComm 2013; 15: 4779–4784.

98. Goesten M, Stavitski E, Pidko EA, et al. The molecular pathway to ZIF-7 microrods revealed by in situ time resolved small- and wide-angle X-ray scattering, quick scanning X-ray absorption spectroscopy and DFT calculation. Chemistry-A European Journal 2013; 19: 7809–7816.

99. Zhao J, Guo Y, Guo H, et al. Solvothermal synthesis of mono- and bi- metallic flower-like infinite coordination polymer and formation mechanism. Inorganic Chemical Communications 2012; 18: 21–24.

100. (a) Guo H, Zhu Y, Qiu S, et al. Coordination modulation induced synthesis of nanoscale Eu1-xTbx- metal-organic frameworks for luminescent thin films. Advanced Materials 2010; 22: 4190– 4192; (b) Guo G, Zhu Y, Wang S, et al. Combining coordination modulation with acid base adjustment for the control over size of metal-organic frameworks. Chemical Materials 2012; 24: 444–450.

101. Wang F, Guo H, Chai Y, et al. The controlled regulation of morphology and size of HKUST-1 by “coordination modulation method”. Microporous & Mesoporous Materials 2013; 173: 181–188.

102. Cravillon J, Nayuk R, Springer S, et al. Controlling zeolitic imizolate framework nano and micro-crystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chemical Materials 2011; 23: 2130–2141.

103. Chin J, Chen E, Menon AG, et al. Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nano-rods via coordination modulation. CrystEngComm 2013; 15: 654–657.

104. Schaate A, Roy P, Godt A, et al. Modulated synthesis of Zr-based metal-organic framework: from nano to single crystal. Chemistry-A European Journal 2011; 17: 6643–6651.

105. Pham MH, Vuong GT, Fontaine FG, et al. Rational synthesis of metal-organic frameworks nanocubes and nanosheets using selective modulators and their morphology dependent gas-adsorption properties. Crystal Growth & Design 2012; 12(6): 3091–3095.

106. Umemura A, Diring S, Furukawa S, et al. Morphology design of porous coordination polymer crystals by coordination modulation. Journal of the American Chemical Society 2011; 133: 15506–15513.

107. Vermoortele F, Bueken B, Le Bars G, et al. Synthesis modulation as a tool to increase catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). Journal of the American Chemical Society 2013; 135: 11465–11468.

108. Rieter WJ, Taylor KML, Lin W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlling release and luminescent sensing. Journal of the American Chemical Society 2007; 129: 9852–9853.

109. Horcajada P, Chalati T, Serre C, et al. Porous metal-

110. organic framework nanoscale carriers as a potential plateform for drug delivery and imaging. Nature Materials 2010; 9: 172–178.

111. Diring S, Furukawa S, Takashima Y, et al. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chemical Materials 2010; 22: 4531–4538.

112. Taylor KLM, Rieter WJ, Lin W, et al. Manganese based nanoscale metal-organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society 2008; 130: 14358–14359.

113. Huxford RC, deKrafft KE, Boyle W, et al. Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cell. Chemical Science 2012; 3: 198–204.

114. Kondo M, Furukawa S, Hirai K, et al. Coordinatively immobilized monolayers on porous coordination polymer crystals. Angew Chem Int Ed 2010; 49: 5327–5330.

115. Liu X, Li Y, Ban Y, et al. Improvement of hydro-thermal stability zeolitic imidazolate frameworks. Chemical Communications 2013; 49: 9140–9142.

116. Hirai K, Chen K, Fukushima T, et al. Programmed crystallization via epitaxial growth and ligand replacement towards hybridising porous coordination polymer crystals. Dalton Trans 2013; 42: 15868–15872.

117. Furukawa S, Hirai K, Nakagawa K, et al. Heterogeneously hybridizes porous coordination polymer crystal: fabrication of heterometallic core-shell single crystal with an in-plane rotational epitaxial relationship. Angew Chem 2009; 121: 1798–1802.

118. Corma A, Garcia H, Llabrés i Xamena FX. Engineering metal organic framework in heterogeneous catalysis. Chemical Reviews 2010; 110: 4606–4655.

119. Wong-Foy AG, Matzger AJ, Yaghi OM. Exceptional H2 saturation in microporous metal-organic frameworks. Journal of the American Chemical Society 2006; 128: 3494–3495. doi: 10.1021/ja058213h.

120. Wang X, Ma S, Forster PM, et al. Enhancing H2 up-take by “close-packing” alignment of open copper sites in metal-organic frameworks. Angew Chem Int Ed 2008; 47: 7263–7266.

121. Lin X, Telepeni I, Blake AJ, et al. High capacity H2 adsorption in Cu(II) tetracarboxylate frameworks materials. The role of pore size, ligand functionalization and exposed metal sites. Journal of the American Chemical Society 2009; 131: 2159–2171.

122. Farha OK, Yazaydin AO, Eryazici I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry 2010; 2: 944–948.

123. Furukawa H, Ko N, Go YB, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010; 329: 424–428.

124. Dincă M, Long JR. High-enthalpy hydrogen adsorption in cation-exchanged variants of microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. Journal of the American Chemical Society 2007; 129: 11172–11176.

125. Suh MP, Park HJ, Prasad TK, et al. Hydrogen storage in metal-organic frameworks. Chemical Reviews 2012; 112: 782–835.

126. An J, Geib SJ, Rosi NL. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine and amino decorated pores. Journal of the American Chemical Society 2009; 132: 38–39.

127. Noro S, Kitagawa S, Kondo M, et al. A new methane adsorbent porous coordination polymer [{CuSiF6(4,4’-bipyridine)2}n]. Angew Chem Int Ed 2000; 39: 2081–2084.

128. Ma S, Sun D, Simmons JM, et al. Metal organic framework from an anthracene derivative containing nanoscopic cage exhibiting high methane up-take. Journal of the American Chemical Society 2008; 130: 1012–1016.

129. Allan PK, Xiao B, Teat SJ, et al. In situ single crystal diffraction studies of structural transition of metal-organic framework copper 5-sulphoisophthalate, Cu-SIP-3. Journal of the American Chemical Society 2010; 132: 3605–3611.

130. Shimomura S, Higuchi M, Matsuda R, et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chemistry 2010; 2: 633–637.

131. McKinlay AC, Xiao B, Wragg DS, et al. Exceptional behaviour over the whole adsorption-storage-delivery cycle for NO in porous metal-organic frameworks. Journal of the American Chemical Society 2008; 130: 10440–10444.

132. Yan D, Chen B, Duan Q. A copper based metal-organic framework constructed from a new tetra-carboxylic acid for selective gas separation. Inorganic chemistry communication 2014; 49: 34–36.

133. Biswal BP, Kandambeth S, Chandra S, et al. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption. Journal of Materials Chemistry A 2015; 3: 23664–23669.

134. Kurmoo M. Magnetic metal-organic frameworks. Chemical Society Reviews 2009; 38: 1353–1379. doi: 10.1039/b804757j.

135. Cheetham AK, Rao CNR. Materials science. There’s room in the middle. Science 2007; 318: 58–59.

136. Cheetham AK, Rao CNR, Feller RK. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chemical Commu-nications 2006; 46: 4780–4795.

137. Coronado E, Mínguez Espallargas G. Dynamic magnetic MOFs. Chemical Society Reviews 2013; 42: 1525–1539.

138. Okawa H, Shigematsu A, Sadakiyo M, et al. Oxa-late–bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = MnII, FeII, CoII, NH(prol)3+ = Tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. Journal of the American Chemical Society 2009; 131: 13516–13522.

139. Rao CNR, Natarajan S, Vaidhyanathan R. Metal carboxylates with open architectures. Angew Chem Int Ed 2004; 43: 1466–1496.

140. Mohideen MIH. Novel metal organic frameworks: synthesis, characterization and functions [PhD thesis]. Scotland: University of St. Andrews; 2011. Available from: http://hdl.handle.net/10023/1892.

141. Maspoch D, Ruiz-Molina D, Wurst K, et al. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nat Mater 2003; 2: 190–195.

142. Roques N, Maspoch D, Imaz I. A three dimensional lanthanide-organic radical open-framework. Chemical Communications 2008; 3160–3162.

143. Roques N, Maspoch D, Luis F, et al. A hexacarboxylic open shell building block: synthesis structure and magnetism of a three dimensional metal-radical framework. Journal of Materials Chemistry 2008; 18: 98–108.

144. Guillou N, Livage C, Drillon M, et al. The chirality porosity and ferromagnetism of a 3D Nickel glutarate with intersecting 20 membered ring channels. Angew Chem Int Ed 2003; 42: 5314–5317.

145. Zhang X, Chui S, Williams ID. Cooperative magnetic behaviour in the coordination polymers [Cu3(TMA)2L3], (L = H2O, pyridine). Journal Applied Physics 2000; 87: 6007–6009.

146. Livage C, Egger C, Nogues M, et al. Hybrid open frameworks (MIL-n) part 5 synthesis and crystal structure of MIL-9: a new three dimensional ferro-magnetic cobalt (II) carboxylates with a two dimensional array of edge sharing Co octahedral with 12-membered rings. Journal of Materials Chemistry 1998; 8: 2743–2747.

147. Jain P, Ramachandran V, Clark RJ, et al. Multiferroic behaviour associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architacture. Journal of the American Chemical Society 2009; 131: 13625–13627.

148. Chen M, Zhao H, Wang Z, et al. Two magnetic lanthanide-organic frameworks based on semi-rigid tripodal multicarboxylate ligand and different rod-shaped SBUs. Inorganic Chemistry Communications 2015; 56: 48–52.

149. Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced grapheme oxide composite for arsenic removal. ACS Nano 2010; 7(4): 3979–3986.

150. Tu Y, You C, Chang C, et al. XANES evidence arsenate removal from water with magnetic ferrite. Journal of Environmental Management 2013; 120: 114–119.

151. Rocha J, Carlos LD, Paz FAA, et al. Luminescent multifunctional lanthanides-based metal–organic frameworks. Chemical Society Reviews 2011; 40: 926–940.

152. Lu Z, Zhang R, Li Y, et al. Solvatochromic behavior of a nanotubular metal–organic framework for sensing small molecules. Journal of the American Chemical Society 2011; 133: 4172–4174.

153. Sun C, Wang X, Qin C, et al. Solvatochromic behaviour of chiral mesoporous metal-organic frameworks and their application for sensing small molecules and separating cationic dyes. Chemistry-A European Journal 2013; 19: 3639–3645.

154. Harbuzaru BV, Corma A, Rey F, et al. A miniaturized linear pH sensor based on a photoluminescent self-assembled Europium (III) metal-organic framework. Angew Chem Int Ed 2009; 48: 6476–6479.

155. White KA, Chengelis DA, Zeller M, et al. Near Infrared emitting ytterbium metal-organic framework with tunable excitation properties. Chemical Communications 2009; 4506–4508.

156. Lim YT, Noh YW, Cho JH, et al. Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent naocomposite emulsions. Journal of the American Chemical Society 2009; 131: 17145–17154.

157. Desai AV, Manna B, Karmakar A, et al. A Water-stable cationic metal-organic framework as a dual adsorbent of oxoanion pollutants. Angew Chem Int Ltd 2016; 55: 7811–7815.

158. Mukherjee S, Aamod V, Desai AV, et al. Exploitation of guest accessible aliphatic amine functionality of a metal-organic framework for selective detection of 2,4,6-Trinitrophenol (TNP) in water. Crystal Growth & Design 2015; 15: 4627−4634.

159. Deep A, Bhardwaj SK, Paul AK, et al. Surface assembly of nano metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosensors and Bioelectronics 2015; 65: 226-231.

160. Garai B, Mallick A, Banerjee R. Photochromic metal-organic frameworks for inkless and erasable print printing. Chemical Science 2016; 7: 2195. doi: 10.1039/c5sc04450b.

161. Prestipino C, Regli L, Vitillo JG, et al. Local structure of framework Cu(II) in HKUST-1 metallorganic framework: Spectroscopic characterization upon activation and interaction with adsorbets. Chemistry of Materials 2006; 18: 1337–1346.

162. Hasegawa S, Horike S, Matsuda R, et al. Three dimensional porous coordination polymer functionalized with amide group based on tridentate ligand: selective sorption and caralysis. Journal of the American Chemical Society 2007; 129(9): 2607–2614.

163. Hwang Y, Hong D, Chang J, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew Chem Int Ed 2008; 47: 4144–4148.

164. Xu J, Shimakoshi H, Hisaeda Y. Development of metal-organic framework (MOF)-B12 system as new bio-inspired heterogeneous catalysis. Journal of Organometallic Chemistry 2015; 782: 89–95.

165. Taylor-poshow KML, Rocca JD, Xie Z, et al. Postsynthetis modification of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. Journal of the American Chemical Society 2009; 131: 14261–14263.

166. McKinlay AC, Morris RE, Horcajada P, et al. Bio-MOFs: Metal-organic frameworks for biological and medical applications. Angew Chem Int Ed 2010; 49: 6260–6266.

167. Ke F, Yuan Y, Qiu L, et al. Facile fabrication of magnetic metal-organic framework nanocomposite for potential targeted drug delivery. Journal of Materials Chemistry 2011; 21: 3843–3848.

168. Bernini MC, Jimenez DF, Pasinetti M, et al. Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations. Journal of Materials Chemistry B 2014; 2: 766–774.

169. Diaz R, Orcajo MG, Botas JA, et al. Co8-MOF-5 as electrode for supercapacitors. Materials Letters 2012; 68: 16–128.

170. Lee DY, Yoon SJ, Shrestha NK, et al. Unusual energy storage and charge retention in Co-based meal-organic frameworks. Microporous & Mesoporous Materials 2012; 153: 163–165.

171. Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF materials for high supercapacitive performance. Journal of Materials Chemistry A 2014; 2: 19005–19010.

172. Choi KM, Jeong HM, Park JH, et al. Supercapacititors for nanorystalline metal-organic frameworks. ACS Nano 2014; 8: 7451–7458.

173. Qiao Q, Li G, Wang Y, et al. To enhance the capacity of Li-rich layered oxides by surface modification with metal-organic frameworks as cathodes for advanced Lithiumion batteries. Journal of Materials Chemistry A 2016; 4: 4440–4447.




DOI: https://doi.org/10.24294/can.v3i2.551

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Characterization and Application of Nanomaterials

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.