A review on metal-organic framework: synthesis, properties and application

Sanju Soni 1, Parmendra Kumar Bajpai 2, Charu Arora 2

Abstract


 Metal organic framework is a class of hybrid network of supramolecular solid materials comprised of a large number of inorganic and organic linkers all bounded to metal ions in a well organised fashion. This type of compounds possess a greater surface area with an advantage of changing pore sizes, diversified and beautiful structure which withdrew an intense interest in this field. In the present review article structural aspects; classification; methods of synthesis; various factors affecting the synthesis and stability; properties and applications have been discussed. Recent advances in the field and new directions to explore the future scope and applications of MOFs have been incorporated to provide current status of the field.


Keywords


Metal organic framework;nanoporous material; drug delivery; gas sensor; secondary building unit.

Full Text:

PDF

References


References

Eddaoudi M, Moler DB,Li H, et al. Modular Chemistry: Secondary building units as basis for the design of highly porous and robust metal-organic carboxylate framework. Accountsof Chemical Research 2001; 34: 319-330.

Rowsell JLC, Yaghi OM. Metal-organic frameworks: a new class of porous materials.Microporous and MesoporousMater 2004; 73: 3-14.

Yamada T, Kitagawa H. Protection and deprotection approach for the introduction of functional groups into metal organic frameworks. Journal of the American Chemical Society 2009; 131: 6312-6313.

Horike S, Shimomura S,Kitagawa S. Soft porous crystals.Nature Chemistry2009; (9):695-704, Doi: 10.1038/nchem.444.

Ferey G. Hybrid porous solids: Past, present, future.Chemical Society Reviews 2008; 37:191-214.

Lee J, Farha OK, Roberts J, et al. Metal-organic framework material as catalyst. Chemical Society Reviews 2009; 38: 1450-1459.

Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery. Journal of the American Chemical Society 2008; 130:6774-6780.

Horcajada P, Serre C, Vallet-regi M, et al. Metal-organic frameworks as efficient materials for drug delivery. AngewandteChemie International Edition 2006; 45:5974-5978.

Babarao R, Jiang J. Unraveling the energatics and dynamics of Ibuprofen in mesoporous metal-organic frameworks. The Journal of Physical Chemistry 2009; 113:18287-18291.

Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in Biomedicine. ChemicalReviews 2012; 112: 1232-1268.

Zhuang J, Kuo CH, Chou LY, et al. Optimized metal-organic frameworks nanospheres for drug delivery: evaluation of small-molecule incapsulation. ACSnano 2014; 8(3):2812-2819.

Kerbellec N, Catala L, Daiquebonne C, et al. Luminescent coordination nanoparticles. New Journal of Chemistry 2008; 32: 584-587.

Kitagawa S, Matsuda R. Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews 2007; 251: 2490-2509.

Kitagawa S, Kitaura R, Noro SI. Functional porous coordination polymers. Angewandte Chemie International Edition 2004; 43: 2334-2375.

Wu H, Zhou W, Yildirim T. High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal site. Journal of the American Chemical Society 2009; 131: 4995-5000.

Zacher D, Shekhah O, Woll W, et al. Thin films of metal-organic fameworks. Chemical Society Reviews 2009; 38: 1418-1429.

Ma M. Preparation, characterization of metal-organic frameworks for biological applications. Ph.D. thesis, Ruhr Universitty, Bochum. 2011, 11.

Maark TA, Pal S. A model study of effect of M = Li, Na, Be, Mg and Al ion decoration on hydrogen adsorption of metal-organic framework-5. International Journal of Hydrogen Energy 2010; 35:12846-12857.

Lv YK, Zhan CH, Feng YL. A Chiral manganese-potassium heterometallic MOF with an unusual (3,7)-connected network CrysEngComm 2010; 12:3052-3056.

Yang LM, Vajeeston P, Ravindran P, et al. Revisiting isoreticular MOFs of alkaline earth metals: A comprehensive study on phase stability, electronic structure, chemical bonding and optical properties of A-IRMOF-1 (A = Be, Mg, Ca, Sr, Ba). Physical Chemistry Chemical Physics 2011; 13: 10191-10203.

Platero-Prats AE, Iglesias M, Snejko N, et al. From coordinatively weak ability of constituents to very stable alkaline earth sulphonate metal-organic framework. Crystal Growth & Design 2011; 11(5): 1750-1758.

PlateroPrats AE, de la Peña-O'Shea VA, Iglesias M, et al. Heterogeneous catalysis with alkaline-earth metal-based MOFs: A Green calcium catalyst. Chem Cat Chem 2010; 2: 147-149.

Serre C, Ferey G. Hydrothermal synthesis, thermal behaviour and structural determination from powder data of a porous three dimensional europium trimesate: Eu3(H2O)(OH)6[C6H3(CO2)3].3H2O or MIL-63. Journal of Materials Chemistry 2002; 12: 3053-3057.

Serre C, Millange F, Marrot J, et al. Hydrothermal synthesis, structural determination and thermal behaviourofthree dimensional europium terephthalates: MIL-51LT,HT and MIL-53 or Eu2n(OH)x(H2O)y[O2C-C6H4-CO2]z (n – III, III, II; x = 4, 0, 0; y = 2, 0, 0; z = 1, 1, 2). Journal of Materials Chemistry 2002; 14: 2409-2415.

Reineke TM, Eddaoudi M, O'Keeffe M, et al. A microporous lanthanide-organic framework. Angewandte Chemie International Edition 1999; 38:2590-2594.

Serpaggi F, Ferey G. Hybride open frameworks (MIL-n) part 4 synthesis, and crystal structure of MIL-8 a series of lanthanide glutarates with an open framework, [Ln(H2O)]2[O2C(CH2)3CO2]3.4H2O. Journal of Materials Chemistry 1998; 8:2737-2741.

Serpaggi F, Ferey G. Hybrid open frameworks (MIL-n): synthesis and crystal structure of MIL-17 a rare-earth dicarboxylate with a relatively open framework [Pr(H2O)]2[O2C(CH2)2CO2]3.H2O. MicroporousMesoporous Mater 1999; 32: 311-318.

Yaghi OM, O’keeffee M, Ockwing NW, et al. Reticular synthesis and design of new materials Nature 2003; 423: 705-714.

Sabouni R. Carbon dioxide adsorption by metal organic frameworks (Synthesis, testing and modeling) Ph.D. thesis, University of western Ontario, Electronic thesis and dissertation repository 2013, 28-29.

Dincă M, Long JR. Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3. Journal of the American Chemical Society 2005; 127:9376-9377.

Hamon L, Llewellyn PL, Devic T, et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. Journal of the American Chemical Society 2009; 131:17490-17499.

Llewellyn P, Bourrelly S, Serre C, et al. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. AngewandteChemie International Edition 2006; 45:7751-7754.

Serre C, Mellot C, Surblé S, et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007; 315:1828-1831.

Choi H, Suh M. Highly selective CO2 capture in flexible 3d coordination polymer networks. Angewandte Chemie International Edition 2009; 48:6865-6869.

Schneemann A, Bon V, Schwedler T, et al. Flexible metal-organic frameworks. Chemical Society Reviews 2014; 43: 6062-6096.

Liang Z, Marshall M, Chaffee AL. CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy and Fuels 2009; 23:2785-2789.

Millward A, Yaghi OM. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society 2005; 127:17998-17999.

Demessence A, D'Alessandro D, Foo M, et al. Strong CO2 binding in a waterstable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. Journal of the American Chemical Society 2009; 131:8784-8786.

Serre C, Bourrelly S, Vimont A, et al. An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. AdvancedMaterials 2007; 19:2246-2251.

Sumida K, Rogow DL, Mason JA, et al. Carbon Dioxide capture in Metal-organic frameworks. Chemical Reviews 2012; 112: 724-781.

Wang C, Ying JY. Sol-gel synthesis and hydrothermal processing of anatase and rutile titaniananocrystals. Chemistry of Materials 1999; 11:3113–3120. Doi: 10.1021/cm990180f.

Huang L, Wang H, Chen J, et al. Synthesis, morphology control and properties of porous metal-organic coordination polymers. Microporous Mesoporous Materials 2003; 58: 105-114.

Tranchemontagne DJ, Hunt JR, Yaghi OM. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199 and IRMOF-0.2008; Tetrahedron 64: 8553-8557.

Cravillion J, Munzer S, Lohmeier SJ, et al. Rapid room temperature synthesis and characterization of nanocrystals of a prototypical zeoliticimidazolate framework. Chemistry of Materials 2009; 21(8): 1410-1412.

Biemmi E, Christan S, Stock N, et al. High through screening of synthesis parameters in the formation of metal-organic frameworks MOF-5 and HKUST-1. MicroporousMesoporous Materials 2009; 117:111-117.

Nouar F, Eckert J, Eubank JF, et al. Zeolite like metal-organic framework (ZMOFs) as hydrogen storage platform: Lithium and magnesium ion exchange and H2-(rho-ZMOF) interaction studies. Journal of the American Chemical Society 2009; 131(8): 2864-2870.

Braga D, Giaffreda SL, Grepioni F, et al. Solvent effect in a “solvent free” reaction. CrystEnggComm 2007; 9: 879-881.

Pichon A, James SL. An array based study of reactivity under solvent free mechanochemical conditions - insights and trends. CrystEnggComm 2008; 10: 1839-1847.

Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOFs topologies, morphologies and composites. Chemical Reviews 2012; 112: 933-969. Doi: 10.1021/cr200304e.

Pichon A, Lazuen-Garay A, James SL. Solvent free synthesis of a microporous metal-organic framework. CrystEngComm 2006; 8: 211-214.

Shinde DB, Aiyappa HB, Bhadra M, et al. A mechanochemically synthesized covalentorganic framework as a proton-conducting solidelectrolyte. Journal of Materials Chemistry 2016. ADOI: 10.1039/c5ta10521h.

FriscicT, Fabian L. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid assisted grinding. CrystEngComm 2009; 11:743-745.

Jhung SH, Chang JS, Hwang JS, et al. Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. MicroporMesopor Materials 2003; 64:33-39. Doi: 10.1016/S1387-1811(03)00501-8.

Jhung SH, Lee JH, Yoon JW, et al. Selective crystallization of CoAPO-34 and VAPO-5 molecular sieves under microwave irradiation in an alkaline or neutral condition. MicroporMesopor Materials 2005; 80:147-152. Doi: 10.1016/j.micromeso.2004.11.013.

Kang KK, Park CH, Ahn WS. Microwave preparation of titanium-substituted mesoporous molecular sieve. Catalysis Letters 1999; 59(1): 45-49.

Jhung SH, Chang JS, Hwang YK, et al. Crystal morphology control of AFI type molecular sieves with microwave irradiation. Journal of Materials Chemistry 2004; 14: 280-285.

Hwang YK, Chang JS, Park SE, et al. Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications. Angewandte Chemie International Edition 2005; 44: 556-560.

Jhung SH, Lee JH, Chang JS. Microwave synthesis of nanoporous hybrid material, Chromium trimesate. Bulletin of the Korean Chemical Society 2005; 26:880-881.

Lu CM, Liu J, Xiao K, et al. Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chemical Engineering Journal 2010; 156: 465-470.

Schlesinger M, Schulze S, Hiestchold M, et al. Evolution of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. MicroporousMesoporous Materials 2010; 132: 121-127.

Mueller U, Puetter H, Hesse M. Wessel M Method for electrochemical production of a crystalline porous metal organic skeleton material. Patent - WO2005/049892.

Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks – Prospective industrial applications. Journal of Materials Chemistry 2006; 16: 626-636.

Richer I, Schubert M, Müller U. Porous metal organic framework based on pyrroles and pyridinones. Patent WO2007/131955.

Suslick KS, Choe SB, Cichowlas AA, et al. Sonochemical synthesis of amorphous iron. Nature 1991; 353: 414-416.

Gedanken A. Sonochemical synthesis of amorphous iron. UltrasonSonochem 2004; 11: 47-55.

Sono T, Mingos DMP, Baghurst DR, et al. Novel energy source for reactions. In the new chemistry: Hall N Ed, The press Syndicate of the university of Cambridge. Cambridge, Chapter 4, 2004.

Qiu LG, Li ZQ, Xu T, et al. Fecile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and slecting sensing of orgnoamines. ChemCommun 2008; 3642-3644.

Li ZQ, Qiu LG, Su T, et al. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters 2009; 63: 78-80.

Zacher D, Yusenko K, Bétard A, et al. Liquid – phase epitaxy of multicomponent layer based porous coordination polymer of thin films of [M(L)(P)0.5] type: importance of deposition sequence on the oriented growth. Chemistry: A European Journal 2011; 17: 1448-1455.

Mei BaiM, Zhang JB, Cao LH, et al. Zinc(II) and cadmium(II) metal complexes with bis(tetrazole) ligands: synthesis and crystal structure. Journal of the Chinese Chemical Society 2011; 58: 69-74.

Shekhah O. Layer by layer method for the synthesis and growth of surface mounted metal-organic frameworks (SURMOFs). Materials 2010; 3:1302-1315.

Shekhah O, Wang H, Zacher D, et al. Growth mechanism of metal-organic framework: insights into the nucleation by employing a step by step route. Angewandte Chemie International Edition 2009; 48: 5038-5041.

Horcajada P, Serre C, Grosso D, et al. Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks. Advanced Materials 2009; 21: 1931-1935.

Demessence A, Horcajada P, Serre C, et al. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). ChemCommun 2009; 7149-7151.

Demessence A, Boissiѐre C, Grosso D, et al. Adsorption properties in high optical quality nanoZIF-8 thin folms with tunable thickness. Journal of Materials Chemistry 2010; 20: 7676-7681.

Cooper ER, Andrews CD, Wheatley PS, et al. Ionic liquids as eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004; 430: 1012-1016.

Parnham ER, Morris RE. Ionothermal synthesis of zeolites, metal-organic frameworks and inorganic-organic hybrids. Accounts of Chemical Research 2007; 40: 1005-1013.

Aiyappa HB, Saha S, Garai B, et al. A Distinctive PdCl2-Mediated Transformation of Fe-BasedMetallogels into Metal−Organic Frameworks. Crystal Growth & Design 2014; 14: 3434−3437.

Yakovenko AA, Wei Z, Wriedt M, et al. Study of guest molecules in metal-organic frameworks by powder X-ray diffraction: Analysis of difference envelopedensity. Crystal Growth & Design 2014; 14(11): 5397–5407.

Akhbari K, Morsali A. Effect of the guest solvent molecules on preparation of different morphologies of ZnOnanomaterials from the [Zn2(1,4-bdc)2(dabco)] metal-organic framework. Journal of Coordination Chemistry 2011; 64(20): 3521–3530.

Banerjee D, Finkelstein J, Smirnov A, et al. Synthesis and structural characterization of magnesium based coordination networks in different solvents. Crystal Growth & Design 2011; 11: 2572-2579.

Huang WH, Yang GP, Chen J, et al. Solvent influence on sizes of channels in three new Co(II) complexes, exhibiting an active replaceable coordinated site. Crystal Growth & Design 2013; 13(1): 66-73.

He YC, Guo J, Zhang HM, et al. Tuning the void volume in a series of isomorphic porous metal-organic frameworks by varying the solvent size and length of organic ligands. CrystEngComm 2014; 16(24): 5450-5457.

Seetharaj R, Vandana PV, Arya P, et al. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic frameworks. Arabian Journal of Chemistry 2016. doi: 10.1016/j.arabjc.2016.01.003.

Volkringer C, Loiseau T, Guillou N, et al. High thoughput aided synthesis of the porous metal-organic framework-type aluminium pyromillitate MIL-121 with extra carboxylic acid functionalization. Inorganic Chemistry 2010; 49: 9852-9862.

Yuan F, Xie J, Hu HM, et al. Effect of pH/metal ion on the structure of metal-organic frameworks based on novel bifunctionalized ligand 4’-carboxy-4,2’:6’, 4’’-terpyridine. CrystEngComm 2013; 15(7):1460–1467.

Luo L, Lv GC, Wang P, et al. pH-Dependent cobalt(ii) frameworks with mixed 3,3’,5,5’-tetra(1H-imidazol-1-yl)-1,1’-biphenyl and 1,3,5-benzenetricarboxylate ligands: synthesis, structure and sorption property. CrystEngComm 2013; 15(45): 9537–9543.

Chu Q, Liu GX, Okamura T, et al. Structure modulation of metal–organic frameworks via reaction pH: Self-assembly of a new carboxylate containing ligand N-(3-carboxyphenyl)iminodiacetic acid with cadmium(II) and cobalt(II) salts. Polyhedron 2008; 27(2): 812–820.

Wang CC, Jing HP, Wang P, et al. Series metal-organic frameworks constructed from 1,10-phenanthroline and 3,3’,4,4’-biphenyltetracarboxylic acid: Hydrothermal synthesis, luminescence and photocatalytic properties. Journal of Molecular Structure 2015; 1080: 44-51.

Zang CY, Wang MY, Li QT, et al. Hydrothermal synthesis, crystal structure and luminescent properties of two zin(II) and cadmium(II) 3D metal-organic frameworks. Zeitschriftfüranorganisch and allgemeineChemie 2013; 639(5): 826-831.

Yang LT, Qiu LG, Hu SM, et al. Rapid hydrothermal synthesis of MIL-101(Cr) metal–organic framework nanocrystals using expanded graphite as a structure-directing template. Inorganic Chemistry Communications 2013; 35: 265–267.

De Oliveira CAF, da Silva FF, Malvestiti I, et al. Effect of temperature on formation of two new lanthanide metal-organic frameworks: synthesis, characterization and theoretical studies of Tm(III)-succinate. Journal of Solid State Chemistry 2013; 197: 7–13.

Bernini MC, Brusau EV, Narda GE, et al. The effect of hydrothermal and non-hydrothermal synthesis on the formation of holmium(III) succinate hydrate frameworks. European Journal of Inorganic Chemistry 2007; 5: 684–693.

Zhang KL, Hou CT, Song JJ, et al. Temperature and auxiliary ligand-controlled supramolecular assembly in a series of Zn(ii)-organic frameworks: syntheses, structures and properties. CrystEngComm 2012; 14(2): 590–600.

Mcguire CV, Forgan RS. The surface chemistry of metal-organic frameworks. ChemCommun 2015; 51: 5199-5217.

Jin LN, Liu Q, Sun WY. Size-controlled indium(III)-benzendicarboxylate hexagonal rods and their transformation to In2O3hollow structure. Cryst EngComm 2013; 15: 4779–4784.

Goesten M, Stavitski E, Pidko EA, et al. The molecular pathway to ZIF-7 microrods revealed by in situ time resolved small- and wide- angle x-ray scattering, quick scanning X-ray absorption spectroscopy and DFT calculation. Chemistry: A European Journal 2013;19: 7809–7816.

Zhao J, GuoY, Guo H, et al. Solvothermal synthesis of mono- and bi- metallic flower-like infinite coordination polymer and formation mechanism. Inorganic Chemistry Communications 2012; 18: 21–24.

(a) Guo H, Zhu Y, Qiu S, et al. Coordination modulation induced synthesis of nanoscale Eu1-xTbx_metal organic frameworks for luminescent thin films. Advanced Materials2010; 22: 4190– 4192; (b) Guo G, Zhu Y, Wang S, et al. Combining coordination modulation with acid base adjustment for the control over size of metal-organic frameworks. Chemistry of Materials 2012;24: 444–450.

Wang F, Guo H, Chai Y, et al. The controlled regulation of morphology and size of HKUST-1 by “coordination modulation method”. Microporous Mesoporous Mater 2013; 173: 181–188.

Cravillon J, Nayuk R, Springer S, et al. Controlloingzeoliticimizolate framework nano and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials 2011; 23: 2130–2141.

Chin JM, Chen EY, Menon AG, et al. Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation. Cryst Eng Comm 2013; 15: 654–657.

Schaate A, Roy P, Godt A, et al. Modulated synthesis of Zr-based metal-organic framework: from nano to single crystal. Chemistry: A European Journal2011; 17:6643–6651.

Pham MH, Vuong GT, Fontaine FG, et al. Rational synthesis of metal-organic frameworks nanocubes and nanosheets using selective modulators and their morphology dependent gas-adsorption properties. Crystal Growth & Design 2012; 12:3091–3095.

Umemura A, Diring S, Furukawa S, et al. Morphology design of porous coordination polymer crystals by coordination modulation. Journal of the American Chemical Society 2011; 133: 15506–15513.

Vermoortele F, Bueken B, Le Bars G, et al. (2013) Synthesis modulation as a tool to increase catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). Journal of the American Chemical Society 2013; 135: 11465–11468.

Rieter WJ, Taylor KML, Lin W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlling release and luminescent sensing. Journal of the American Chemical Society 2007; 129:9852–9853.

Horcajada P, Chalati T, Serre C, et al. Porous metal-organic framework nanoscale carriers as a potential plateform for drug delivery and imaging. Nature Materials 2010; 9: 172–178.

Diring S, Furukawa S, Takashima Y, et al. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chemistry of Materials 2010; 22: 4531-4538.

Taylor KLM, Rieter WJ, Lin W. Manganese based nanoscale metal-organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society 2008; 130:14358–14359.

Huxford RC, deKrafft KE, Boyle WS, et al. Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cell. Chemical Science 2012; 3:198–204.

Kondo M, Furukawa S, Hirai K, et al. Coordinatively immobilized monolayers on porous coordination polymer crystals. AngewandteChemie International Edition 2010; 49:5327–5330.

Liu X, Li Y, Ban Y, et al. Improvement of hydrothermal stability zeoliticimidazolate frameworks. ChemCommun 2013; 49: 9140–9142.

Hirai K, Chen K, Fukushima T, et al. Programmed crystallization via epitaxial growth and ligand replacement towards hybridising porous coordination polymer crystals. Dalton Trans 2013; 42:15868–15872.

Furukawa S, Hirai K, Nakagawa K, et al. Heterogeneously hybridizes porous coordination polymer crystal: fabrication of heterometallic core-shell single crystal with an in-plane rotational epitaxial relationship. AngewandteChemie 2009; 121: 1798–1802.

Corma A, Garcia H, Llabres FX. Engineering metal organic framework in heterogeneous catalysis. Chemical Reviews 2010; 110:4606-4655.

Wong-Foy AG, Matzger AJ, Yaghi OM. Exceptional H2 saturation in microporous metal-organic frameworks. Journal of the American Chemical Society 2006; 128:3494-3495. Doi: 10.1021/ja058213h.

Wang XS, Ma S, Forster PM, et al. Enhancing H2 uptake by “Close-packing” Alignment of open copper sites in metal-organic frameworks. Angewandte Chemie International Edition 2008; 47: 7263–7266.

Lin X, Telepeni I, Blake AJ, et al. High capacity H2 adsorption in Cu(II) tetracarboxylate frameworks materials. The role of pore size, ligand functionalization and exposed metal sites. Journal of the American Chemical Society 2009; 131: 2159–2171.

Farha OK, Yazaydin AO, Eryazici I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry 2010; 2: 944–948.

Furukawa H, Ko N, Go YB, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010; 329: 424–428.

Dincă M, Long JR. High-enthalpy hydrogen adsorption in cation-exchanged variants of microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. Journal of the American Chemical Society 2007; 129:11172-11176.

Suh MP, Park HJ, Prasad TK, et al. Hydrogen storage in metal-organic frameworks. Chemical Reviews 2012; 112: 782-835.

An J, Geib SJ, Rosi NL. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine and amino decorated pores. Journal of the American Chemical Society 2009;132:38–39.

Noro S, Kitagawa S, Kondo M, et al. A new methane adsorbent porous coordination polymer [{CuSiF6(4,4’-bipyridine)2}n]. Angewandte Chemie International Edition 2000; 39: 2081–2084.

Ma S, Sun D, Simmons JM, et al. Metal organic framework from an anthracene derivative containing nanoscopic cage exhibiting high methane uptake. Journal of the American Chemical Society 2008; 130: 1012-1016.

Allan PK, Xiao B, Teat SJ, et al. In situ single crystal diffraction studies of structural transition of metal-organic framework copper 5-sulphoisophthalate, Cu-SIP-3. Journal of the American Chemical Society 2010;132:3605–3611.

Shimomura S, Higuchi M, Matsuda R, et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chemistry 2010; 2: 633–637.

McKinlay AC, Xiao B, Wragg DS, et al. Exceptional behaviour over the whole adsorption-storage-delivery cycle for NO in porous metal-organic frameworks. Journal of the American Chemical Society 2008; 130:10440–10444.

Yan D, Chen B, Duan Q. A copper based metal-organic framework constructed from a new tetracarboxylic acid for selective gas separation. Inorganic Chemistry Communication 2014; 49: 34-36.

Biswal BP, Kandambeth S, Chandra S, et al. Pore surface engineering in porous, chemicallystable covalent organic frameworks for wateradsorption. Journal of Materials Chemistry A 2015; 3: 23664-23669.

Kurmoo M. Magnetic metal-organic frameworks. Chemical Society Reviews 2009; 38: 1353-1379. Doi: 10.1039/b804757j.

Cheetham AK, Rao CN. There’s room in the middle. Science 2007; 318: 58–59.

Cheetham AK, Rao CNR, Feller RK. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. ChemCommun 2006; 46: 4780–4795.

Coronado E, MínguezEspallargas G. Dynamic magnetic MOFs. Chemical Society Reviews 2013; 42:1525–1539.

Okawa H, Shigematsu A, Sadakiyo M, et al. Oxalate–bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = MnII, FeII, CoII, NH(prol)3+ = Tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. Journal of the American Chemical Society 2009; 131: 13516–13522.

Rao CNR, Natarajan S, Vaidhyanathan R. Metal carboxylates with open architectures. Angewandte Chemie International Edition 2004; 43: 1466–1496.

Mohideen MIH. Novel metal organic frameworks: synthesis, characterization and functions. Ph. D. thesis, University of St. Andrews. http://hdl.handle.net/10023/1892.2011

Maspoch D, Ruiz-Molina D, Wurst K, et al. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nature Materials 2003; 2: 190–195.

Roques N, Maspoch D, Imaz I, et al. A three dimensional lanthanide-organic radical open-framework. Chem Commun 2008; 3160–3162.

Roques N, Maspoch D, Luis F, et al. A hexacarboxylic open shell building block: synthesis structure and magnetism of a three dimensional metal-radical framework. Journal of Materials Chemistry 2008; 18: 98–108.

Guillou N, Livage C, Drillon M, et al.The chirality porosity and ferromagnetism of a 3D Nickel glutarate with intersecting 20 membered ring channels. Angewandte Chemie International Edition 2003; 42: 5314-5317.

Zhang XX, Chui SSY, Williams ID. Cooperative magnetic behaviour in the coordination polymers [Cu3(TMA)2L3], (L = H2O, pyridine). Journal of Applied Physics 2000; 87:6007-6009.

Livage C, Egger C, Nogues M, et al. Hybrid open frameworks (MIL-n) part 5 synthesis and crystal structure of MIL-9: a new three dimensional ferromagnetic cobalt (II) carboxylates with a two dimensional array of edge sharing Co octahedral with 12-membered rings. Journal of Materials Chemistry 1998; 8: 2743-2747.

Jain P, Ramachandran V, Clark RJ, et al. Multiferroic behaviour associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3architacture. Journal of the American Chemical Society 2009; 131: 13625-13627.

Chen M, Zhao H, Wang ZW, et al. Two magnetic lanthanide-organic frameworks based on semi-rigid tripodalmulticarboxylate ligand and different rod-shaped SBUs. Inorganic Chemistry Communications 2015; 56:48-52.

Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced grapheme oxide composite for arsenic removal. ACSNano 2010; 7(4): 3979-3986.

Tu YJ, You CF, Chang CK, et al. XANES evidence arsenate removal from water with magnetic ferrite. J Environ Manag 2013; 120:114-119.

RochaJ, Carlos LD, Paz FAA, et al. Luminescent multifunctional lanthanides-based metal–organic Frameworks. Chemical Society Reviews 2011; 40:926-940.

Lu ZZ, Zhang R, Li YZ, et al. Solvatochromic behavior of a nanotubular metal–organic framework for sensing small molecules. Journal of the American Chemical Society 2011; 133: 4172–4174.

Sun CY, Wang XL, Qin C, et al. Solvatochromic behaviour of chiral mesoporous metal-organic frameworks and their application for sensing small molecules and separating cationic dyes. Chem Eur J 2013; 19: 3639–3645.

Harbuzaru BV, Corma A, Rey F, et al. A miniaturized linear pH sensor based on a photoluminescentself assembledEuropium(III) metal-organic framework. Angewandte Chemue International Edition 2009; 48: 6476–6479.

White KA, Chengelis DA, Zeller M, et al. Near Infra-red emitting ytterbium metal-organic framework with tunable excitation properties. Chem Commun 2009; 4506–4508.

Lim YT, Noh YW, Cho JH, et al. Multiplexed imaging of a therapeutic cells with multispectrally encoded magnetofluorescentnaocomposite emulsions. Journal of the American Chemical Society 2009; 131: 17145–17154.

Desai AV, Manna B, Karmakar A, et al. A Water-Stable Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. AngewandteChemue International Edition 2016; 55: 7811-7815.

Mukherjee S, Aamod V, Desai AV, et al. Exploitation of Guest Accessible Aliphatic Amine Functionality of aMetal−Organic Framework for Selective Detection of 2,4,6-Trinitrophenol (TNP) in Water. Crystal Growth & Design 2015;15:4627−4634.

Deep A, Bhardwaj SK, Paul AK, et al. Surface assembly of nano metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosensors and Bioelectronics 2015; 65: 226-231.

Garai B, Mallick A, Banerjee R. Photochromic metal-organic frameworks for inkless and erasable print printing. ChemSci 2016. DOI: 10.1039/c5sc04450b.

Prestipino C, Regli L, Vitillo JG, et al. Local structure of framework Cu(II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbets. Chemistry of Materials 2006; 18: 1337-1346.

Hasegawa S, Horike S, Matsuda R, et al. Three dimensional porous coordination polymer functionalized with amide group based on tridentate ligand: selective sorption and caralysis. Journal of the American Chemical Society129:2607–2614.

Hwang YK, Hong DY, Chang JS, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angewandte Chemie International Edition 2008; 47: 4144–4148.

Xu J, Shimakoshi H, Hisaeda Y. Development of metal-organic framework (MOF)-B12 system as new bio-inspired heterogeneous catalysis. Journal of Organometallic Metal Chemistry 2015; 782: 89-95.

Taylor-poshow KML, Rocca JD, Xie Z, et al. Postsynthetis modification of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. Journal of the American Chemical Society 2009; 131: 14261-14263.

McKinlay AC, Morris RE, Horcajada P, et al. BioMOFs: Metal-organic frameworks for biological and medical applications. Angewandte Chemie International Edition 2010; 49: 6260 – 6266.

Ke F, Yuan YP, Qiu LG, et al. Fecile fabrication of magnetic metal-organic framework nanocomposite for potential targeted drug delivery. Journal of Materials Chemistry 2011; 21: 3843-3848.

Bernini MC, Jimenez DF, Pasinetti M, et al. Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations. Journal of Materials Chemistry 2014; B2: 766-774.

Diaz R, Orcajo MG, Botas JA, et al. Co8-MOF-5 as electrode for supercapacitors. Materials letters 2012; 68: 16-128.

Lee DY, Yoon SJ, Shrestha NK, et al. Unusual energy storage and charge retention in Co-based meal-organic frameworks. Microporous and Mesoporous Materials 2012; 153: 163-165.

Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF materials for high supercapacitive performance. Journal of Materials Chemistry 2014; A2: 19005-19010.

Choi KM, Jeong HM, Park JH, et al. Supercapacititors for nanorystalline metal-organic frameworks. ACSnano 2014; 8: 7451-7458.

Qiao QQ, Li GR, Wang YL, et al. To enhance the capacity of Li rich layered oxides by surface modification with metal-organic frameworks as cathodes for advanced Lithium-ion batteries. Journal of Materials Chemistry 2016; A4: 4440-4447.




DOI: http://dx.doi.org/10.24294/can.v2i2.551

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.