Boron and tungsten carbides based and related nanodispersed composites—A review
Vol 7, Issue 2, 2024
VIEWS - 144 (Abstract) 94 (PDF)
Abstract
Boron and tungsten carbides, B4C and WC, are hard materials widely used in modern technologies. Further improvement of their performance characteristics involves the development of new B4C and WC-based and/or related composites in a nanodispersed state. This article provides a review of available literature research on B-C-W systems, which would be useful in future studies in this direction.
Keywords
Full Text:
PDFReferences
1. Chkhartishvili L, Mikeladze A, Chedia R, et al. Synthesizing fine-grained powders of complex compositions B4C-TiB2-WC-Co. Solid State Sciences. 2020; 108: 106439. doi: 10.1016/j.solidstatesciences.2020.106439
2. Chkhartishvili L, Mikeladze A, Tsagareishvili O, et al. Advanced boron carbide matrix nanocomposites obtained from liquid-charge: Focused review. Condensed Matter. 2023; 8(2): 37. doi: 10.3390/condmat8020037
3. Shabalin IL. Refractory Carbides III (W Carbides). In: Ultra-High Temperature Materials IV. Cham, Springer Nature; 2022. doi: 10.1007/978-3-031-07175-1
4. Manzar R, Saeed M, Shahzad U, et al. Recent advancements in boron carbon nitride (BNC) nanoscale materials for efficient supercapacitor performances. Progress in Materials Science. 2024; 144: 101286. doi: 10.1016/j.pmatsci.2024.101286
5. Singh M, Singh H, Sharma Y, et al. Review on various techniques for the development of thin film boron nitride coating on metal surfaces. AIP Conference Proceedings. 2024; 2986: 020024. doi: 10.1063/5.0192656
6. Mallia B, Dearnley PA. Exploring new W-B coating materials for the aqueous corrosion-wear protection of austenitic stainless steel. Thin Solid Films. 2013; 549: 204-215. doi: 10.1016/j.tsf.2013.09.035
7. Gromilov SA, Kinelovskii SA, Alekseev AV, et al. Investigation of W2B and β-WB high-temperature phases in coatings produced by a shaped charge explosion. Journal of Structural Chemistry. 2010; 51(6): 1126-1131. doi: 10.1007/s10947-010-0171-3
8. Gonzalez Szwacki N. The structure and hardness of the highest boride of tungsten, a borophene-based compound. Scientific Reports. 2017; 7(1). doi: 10.1038/s41598-017-04394-1
9. Sorokin OY, Kuznetsov BY, Lunegova YU, et al. High-temperature composites with a multi-layered structure (Review) (Russian). Proceedings of VIAM. 2020; 88(4-5): 42-53. doi: 10.18577/2307-6046-2020-0-45-42-53
10. Mohammadi R, Xie M, Lech AT, et al. Toward inexpensive superhard materials: Tungsten tetraboride-based solid solutions. Journal of the American Chemical Society. 2012; 134(51): 20660-20668. doi: 10.1021/ja308219r
11. Ma K, Cao X, Yang H, et al. Formation of metastable tungsten tetraboride by reactive hot-pressing. Ceramics International. 2017; 43(12): 8551-8555. doi: 10.1016/j.ceramint.2017.03.059
12. Sharapova VA. Special Composite Materials (Russian). Available online: http://elar.urfu.ru/handle/10995/93470 (accessed on 19 March 2024).
13. Syrovatko YV. Calculation of the entropy of the eutectic phases WC and W2C in alloy W-C by the method of statistical processing of photo-images (Russian). Ukrainian Applied Physics. 2020; 4: 79-84.
14. Pankratz LB. Thermodynamic Properties of Carbides, Nitrides, and Other Selected Substances. Available online: https://digital.library.unt.edu/ark:/67531/metadc12836/ (accessed on 19 March 2024).
15. Mazo I, Molinari A, Sglavo VM. Electrical resistance flash sintering of tungsten carbide. Materials & Design. 2022; 213: 110330. doi: 10.1016/j.matdes.2021.110330
16. Yang Y, Zhang C, Wang D, et al. Additive manufacturing of WC-Co hardmetals: A review. The International Journal of Advanced Manufacturing Technology. 2020; 108(5-6): 1653-1673. doi: 10.1007/s00170-020-05389-5
17. Gachechiladze A, Kandelaki A, Mikadze O, et al. Method for Reception of Nanocrystalline Solid Materials on the Basis of Tungsten Carbide. Available online: https://www.sakpatenti.gov.ge/en/publications/?subject=OfficialBulletinsofIndustrialProperty (accessed on 19 March 2024).
18. Goncharuk VA. Influence of Structural Factors on the Mechanical Properties of High-Strength Composite Materials Based on Refractory Compounds (Ukrainian). Available online: http://www.materials.kiev.ua/abstract/67/Autoref_Goncharuka.pdf (accessed on 19 March 2024).
19. Mannesson K, Borgh I, Borgenstam A, et al. Abnormal grain growth in cemented carbides—Experiments and simulations. International Journal of Refractory Metals and Hard Materials. 2011; 29(4): 488-494. doi: 10.1016/j.ijrmhm.2011.02.008
20. Pereira P, Vilhena LM, Sacramento J, et al. Abrasive wear resistance of WC-based composites, produced with Co or Ni-rich binders. Wear. 2021; 482-483: 203924. doi: 10.1016/j.wear.2021.203924
21. Soria-Biurrun T, Lozada-Cabezas L, Navarrete-Cuadrado J, et al. Densification of WC-Fe-Ni-Co-Cr cemented carbides processed by HIP after sintering: Effect of WC powder particle size. International Journal of Refractory Metals and Hard Materials. 2023; 110: 105994. doi: 10.1016/j.ijrmhm.2022.105994
22. Ha GH, Li GG, Yan MC, et al. Synthesis of WC-TiC-Co nanopowder by mechano-chemical process. In: Euro PM Conference Proceedings. Shrewsbury; 2006. pp. 97-102.
23. Dutkiewicz J, Rogal L, Bobrowski P, et al. The effect of substitution of WC by TiC in WC-Co composite tool materials on microstructure and mechanical properties. Chiang Mai Journal of Science. 2017; 44(4): 1714-1721.
24. Bogodukhov SI, Kozik ES, Svidenko EV. Thermal hardening of hard alloy T15K6. Industrial Laboratory Diagnostics of Materials. 2017; 83(12): 38-42. doi: 10.26896/1028-6861-2017-83-12-38-42
25. Falkovsky VA, Klyachko LI, Glushkov VN, et al. Multi-carbide hardmetals. In: Kneringer G, Rodhammer P, Wildner H (editors). Powder Metallurgical High Performance Materials, Proceedings of the 15th International Plansee Seminar 2001; Reutte, Austria; Plansee Holding AG; 2011. pp. 29-34.
26. Falkovsky V, Ebiagoveschenski Y, Glushkov V, et al. Nanocrystalline WC-Co hardmetals produced by plasmochemical method. In: Kneringer G, Rodhammer P, Wildner H (editors). Powder Metallurgical High Performance Materials, Proceedings of the 15th International Plansee Seminar 2001; Reutte, Austria; Plansee Holding AG; 2011. pp. 91-96.
27. Ruziev UN, Guro VP, Safarov YT, et al. Doping of hard alloy VK-6 with vanadium carbide (Russian). Universum: Chemistry and Biology. 2019; 8(62).
28. Li X, Zhang J, Zhang Q, et al. Microstructure Evolution and Hardness Improvement of WC-Co Composites sintered with Fe substituting part of Co binder. Coatings. 2023; 13(1): 116. doi: 10.3390/coatings13010116
29. Yang J, Yue Y, Lv H, et al. Effect of adding intermediate layers on the interface bonding performance of WC-Co diamond-coated cemented carbide tool materials. Molecules. 2023; 28(16): 5958. doi: 10.3390/molecules28165958
30. Tanaka Y, Sato H, Eryu O. Structural modification of WC-Co cutting tools by laser doping treatment. Heliyon. 2023; 9(9): e19930. doi: 10.1016/j.heliyon.2023.e19930
31. Zhang C, Song J, Jiang L, et al. Fabrication and tribological properties of WC-TiB2 composite cutting tool materials under dry sliding condition. Tribology International. 2017; 109: 97-103. doi: 10.1016/j.triboint.2016.12.029
32. Song J, Huang C, Zou B, et al. Effects of sintering additives on microstructure and mechanical properties of TiB2-WC ceramic-metal composite tool materials. International Journal of Refractory Metals and Hard Materials. 2012; 30(1): 91-95. doi: 10.1016/j.ijrmhm.2011.07.008
33. Chkhartishvili L, Mikeladze A, Chedia R, et al. Combustion synthesis of boron carbide matrix for superhard nanocomposites production. In: Advances in Combustion Synthesis and Technology. Bentham Science Publishers; 2022. pp. 66-95. doi: 10.2174/9789815050448122010007
34. Barbakadze N, Chkhartishvili L, Mikeladze A, et al. Method of obtaining multicomponent fine-grained powders for boron carbide matrix ceramics production. Materials Today: Proceedings. 2022; 51: 1863-1871. doi: 10.1016/j.matpr.2021.08.013
35. Chkhartishvili L, Mikeladze A, Jalabadze N, et al. New low-temperature method of synthesis of boron carbide matrix ceramics ultra-dispersive powders and their spark plasma sintering. Solid State Phenomena. 2022; 331: 173-184. doi: 10.4028/p-8n6hzy
36. Ozer SC, Buyuk B, Tugrul AB, et al. Gamma and neutron shielding behavior of spark plasma sintered boron carbide-tungsten based composites. In: TMS 145th Annual Meeting & Exhibition. Cham, Springer International Publishing; 2016. pp. 449-456. doi: 10.1007/978-3-319-48254-5
37. Zhang W, Yamashita S, Kita H. Progress in pressureless sintering of boron carbide ceramics—A review. Advances in Applied Ceramics. 2019; 118(4): 222-239. doi: 10.1080/17436753.2019.1574285
38. Sugiyama S, Taimatsu H. Preparation of WC-WB-W2B composites from B4C-W-WC powders and their mechanical properties. Materials Transactions, 2002; 43(5): 1197-1201. doi: 10.1016/S0955-2219(03)00253-X
39. Tamizifar H, Hadian AM, Tamizifar M. The comparison between boron carbide (B4C) with other common inhibitors on physical and mechanical properties of WC/Co. International Journal of Modern Physics: Conference Series. 2012; 05: 102-110. doi: 10.1142/s2010194512001900
40. Taran AV, Garkusha IE, Taran VS, et al. Structure and properties of B4C coatings obtained by RF sputtering with external magnetic field. In: Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications. Cham, Springer Nature; 2021. pp. 51-57. doi: 10.1007/978-3-030-51905-6_5
41. Chkhartishvili L, Chedia R, Tsagareishvili O, et al. Preparation of neutron-capturing boron-containing nanosystems. In: Proceedings of the 9th International Conference & Exhibition on Advanced and Nanomaterials; 24-26 October 2022; Victoria, Canada. pp. 1-15.
42. Chkhartishvili L, Makatsaria S, Gogolidze N. Boron-containing fine-dispersive composites for neutron-therapy and neutron-shielding. In: Proceedings of the International Scientific-Practical Conference “Innovations and Modern Challenges 2022”; 18-19 November 2022; Tbilisi, Georgia. pp. 221-226.
43. Nabakhtiani G, Chkhartishvili L, Gigineishvili A, et al. Attenuation of gamma-radiation concomitant neutron-absorption in boron-tungsten composite shields. Nano Studies. 2013; 8: 259-266.
44. Evans BR, Lian J, Ji W. Evaluation of shielding performance for newly developed composite materials. Annals of Nuclear Energy. 2018; 116: 1-9. doi: 10.1016/j.anucene.2018.01.022
45. Chkhartishvili L. Boron-contained nanostructured materials for neutron-shields. In: Nanostructured Materials for the Detection of CBRN. Dordrecht, Springer Science; 2018. pp. 133-154. doi: 10.1007/978-94-024-1304-5_11
46. Martin PM. Active thin films: Applications for graphene and related materials. Vacuum Technology & Coating. 2018; 19(11): 6-14.
47. Dai M, Zhang Z, Zhu J, et al. Influence of interface roughness on reflectivity of tungsten/boron-carbide multilayers with variable bi-layer number by X-ray reflection and diffuse scattering. Chinese Optics Letters. 2009; 7(8): 738-740. doi: 10.3788/col20090708.0738
48. Ma K, Shi X, Cao X, et al. Mechanical, electrical properties and microstructures of hot-pressed B4C-WB2 composites. Ceramics International. 2022; 48(14): 20211-20219. doi: 10.1016/j.ceramint.2022.03.300
49. Silvestroni L, Failla S, Gilli N, et al. Disclosing small scale length properties in core-shell structured B4C-TiB2 composites. Materials & Design. 2021; 197: 109204. doi: 10.1016/j.matdes.2020.109204
50. Hofmann H, Petzow G. Structure and properties of reaction hot-pressed B4C-TiB2-W2B5 materials. Journal of the Less-Common Metals. 1986; 117(1-2): 121-127. doi: 10.1016/0022-5088(86)90020-2
51. Cai KF, Nan CW. The influence of W2B5 addition on microstructure and thermoelectric properties of B4C ceramic. Ceramic International. 2000; 26: 523-527. doi: 10.1016/S0272-8842(99)00089-9
52. Yeh CL, Wang HJ. Preparation of tungsten borides by combustion synthesis involving borothermic reduction of WO3. Ceramic International. 2011; 37: 2597-2601. doi: 10.1016/j.ceramint.2011.04.006
53. Yin J, Huang Z, Liu X, et al. Microstructure, mechanical and thermal properties of in situ toughened boron carbide-based ceramic composites co-doped with tungsten carbide and pyrolytic carbon. Journal of the European Ceramic Society. 2013; 33(10): 1647-1654. doi: 10.1016/j.jeurceramsoc.2013.01.009
54. Ozer SC, Turan S, Sahin FC. Mechanical and microstructural properties of spark plasma sintered B4C-W2B5 composites. In: Proceedings of the 18th International Metallurgy and Materials Congress - IMMC 2016; 29 September-1 October 2016; Istanbul, Turkey. pp. 62-66.
55. Deng J, Zhou J, Feng Y, Ding Z, Microstructure and mechanical properties of hot-pressed B4C/(W,Ti)C ceramic composites. Ceramic Interational. 2002; 28(4): 425-430. doi: 10.1016/S0272-8842(01)00113-4
56. Chkhartishvili L, Mikeladze A, Tsagareishvili O, et al. Effect of cobalt additive on phases formation in boron carbide matrix composites B4C-(Ti,Zr)B2-W2B5. Solid State Sciences. 2023; 145: 107339. doi: 10.1016/j.solidstatesciences.2023.107339
57. Chang M, Leung C, Wang DN, et al. Process for CVD Deposition of Tungsten Layer on Semiconductor Wafer. US Patent 5028565, 2 July 1991.
58. Kim SH. Deposition of tungsten thin film on silicon surface by low pressure chemical vapor deposition method. Journal of Korean Chemical Society. 1994; 38(7): 473-479.
59. Plyushcheva SV, Mikhailov GM, Shabel’nikov LG, et al. Tungsten thin-film deposition on a silicon wafer: The formation of silicides at W-Si interface. Inorganic Materials. 2009; 45(2): 140-144. doi: 10.1134/s002016850902006x
60. Kim HJ, Lee JH, Sohn IH, et al. Preparation of tungsten metal film by spin coating method. Korea-Australia Rheology Journal. 2002; 14(2): 71-76.
61. Singla G, Singh K, Pandey OP. Structural and thermal properties of in-situ reduced WO3 to W powder. Powder Technology. 2013; 237: 9-13. doi: 10.1016/j.powtec.2013.01.008
62. Wang Y, Long BF, Liu CY, et al. Evolution of reduction process from tungsten oxide to ultrafine tungsten powder via hydrogen. High Temperature Materials and Processes. 2021; 40(1): 171-177. doi: 10.1515/htmp-2021-0017
63. Yu ML, Ahn KY, Joshi RV. Surface reactions in the chemical vapor deposition of tungsten using WF6 and SiH4 on Al, PtSi, and TiN. Journal of Applied Physics. 1990; 67(2): 1055-1061. doi: 10.1063/1.345791
64. Gao J, Chan LH, Wongsenakhum P. Methods for Improving Uniformity and Resistivity of Thin Tungsten Films. US Patent 7655567B1, 2 February 2010.
65. Yang M, Aarnink AAI, Kovalgin AY, et al. Comparison of tungsten films grown by CVD and hot-wire assisted atomic layer deposition in a cold-wall reactor. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2015; 34(1). doi: 10.1116/1.4936387
66. Dippel AC, Schneller T, Lehmann W, et al. Tungsten coatings by chemical solution deposition for ceramic electrodes in fluorescent tubes. Journal of Materials Chemistry. 2008; 18(29): 3501. doi: 10.1039/b802686f
67. Cao P, Cao JP, Cao JH. Boron carbide ceramic metallization preparation method (Chinese). China Patent CN110981550B, 7 December 2021.
68. Guldamashvili A, Nardaya Y, Nebieridze T, et al. Mechanical properties of tungsten implanted with boron and carbon ions. Journal of Materials Science and Engineering A. 2017; 7(3/4): 82-88. doi: 10.17265/2161-6213/2017.3-4.003
69. Zinovev A, Terentyev D, Chang CC, et al. Effect of neutron irradiation on ductility of tungsten foils developed for tungsten-copper laminates. Nuclear Materials and Energy. 2022; 30: 101133. doi: 10.1016/j.nme.2022.101133
70. Panov VS, Chuvilin AM. Technology and Properties of Sintered Alloys and Products Made from Them (Russian). Available online: http://www.materialscience.ru/subjects/materialovedenie/knigi/tehnologiya_i_svoystva_spechennih_tverdih_splavov_i_izdeliy_iz_nih_uchebnoe_posobie_dlya_vuzov__panov_vs_chuvilin_am__m_misis_2001__432_s_07_02_2010/ (accessed on 19 March 2024).
71. Shapoval AA, Dragobetskii VV, Savchenko IV. Analysis of processes of shock-wave regeneration of solid alloys (Russian). Kharkiv National Technical University Bulletin. 2018; 31(1306): 100-105.
DOI: https://doi.org/10.24294/can.v7i2.5454
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Otar Tsagareishvili, Levan Chkhartishvili, Marina Matcharashvili, Shorena Dekanosidze
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.