Polymeric Nanoparticles (PNPs) as drug delivery systems for SARS-CoV-2
Vol 7, Issue 1, 2024
VIEWS - 476 (Abstract) 49 (PDF)
Abstract
Researchers from all over the world have been working tirelessly to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic since the World Health Organization (WHO) proclaimed it to be a pandemic in 2019. Expanding testing capacities, creating efficient medications, and creating safe and efficient COVID-19 (SARS CoV-2) vaccinations that provide the human body with long-lasting protection are a few tactics that need to be investigated. In clinical studies, drug delivery techniques, including nanoparticles, have been used since the early 1990s. Since then, as technology has advanced and the need for improved medication delivery has increased, the field of nanomedicine has recently seen significant development. PNPs, or polymeric nanoparticles, are solid particles or particulate dispersions that range in size from 10 to 1000 nm, and their ability to efficiently deliver therapeutics to specific targets makes them ideal drug carriers. This review article discusses the many polymeric nanoparticle (PNP) platforms developed to counteract the recent COVID-19 pandemic-related severe acute respiratory syndrome coronavirus (SARS-CoV-2). The primary subjects of this article are the size, shape, cytotoxicity, and release mechanism of each nanoparticle. The two kinds of preparation methods in the synthesis of polymeric nanoparticles have been discussed: the first group uses premade polymers, while the other group depends on the direct polymerization of monomers. A few of the PNPs that have been utilized to combat previous viral outbreaks against SARS-CoV-2 are also covered.
Keywords
Full Text:
PDFReferences
1. Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Convergence. 2016; 3(1). doi: 10.1186/s40580-016-0061-2
2. Ftouh M, Kalboussi N, Abid N, et al. Contribution of Nanotechnologies to Vaccine Development and Drug Delivery against Respiratory Viruses. PPAR Research. 2021; 2021: 1-28. doi: 10.1155/2021/6741290
3. Liu S, Hu M, Liu X, et al. Nanoparticles and Antiviral Vaccines. Vaccines. 2023; 12(1): 30. doi: 10.3390/vaccines12010030
4. Ahmad MZ, Ahmad J, Aslam M, et al. Repurposed drug against COVID-19: nanomedicine as an approach for finding new hope in old medicines. Nano Express. 2021; 2(2): 022007. doi: 10.1088/2632-959x/abffed
5. Rastogi A, Singh A, Naik K, et al. A systemic review on liquid crystals, nanoformulations and its application for detection and treatment of SARS-CoV-2 (COVID-19). Journal of Molecular Liquids. 2022; 362: 119795. doi: 10.1016/j.molliq.2022.119795
6. Li M, Li Y, Li S, et al. The nano delivery systems and applications of mRNA. European Journal of Medicinal Chemistry. 2022; 227: 113910. doi: 10.1016/j.ejmech.2021.113910
7. Chan Y, Ng SW, Singh SK, et al. Revolutionizing polymer-based nanoparticle-linked vaccines for targeting respiratory viruses: A perspective. Life Sciences. 2021; 280: 119744. doi: 10.1016/j.lfs.2021.119744
8. Medhi R, Srinoi P, Ngo N, et al. Nanoparticle-Based Strategies to Combat COVID-19. ACS Applied Nano Materials. 2020; 3(9): 8557-8580. doi: 10.1021/acsanm.0c01978
9. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260-1263. doi: 10.1126/science.abb2507
10. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; 395: 514-523. doi: 10.1016/S0140-6736(20)30154-9
11. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497-506. doi: 10.1016/S0140-6736(20)30183-5
12. Piret J, Boivin G. Pandemics Throughout History. Frontiers in Microbiology. 2021; 11. doi: 10.3389/fmicb.2020.631736
13. Mostafavi E, Iravani S, Varma RS. Nanosponges: An overlooked promising strategy to combat SARS-CoV-2. Drug Discovery Today. 2022; 27(10): 103330. doi: 10.1016/j.drudis.2022.07.015
14. Li W, Meng J, Ma X, et al. Advanced materials for the delivery of vaccines for infectious diseases. Biosafety and Health. 2022; 4(2): 95-104. doi: 10.1016/j.bsheal.2022.03.002
15. Chintagunta AD, M SK, Nalluru S, et al. Nanotechnology: an emerging approach to combat COVID-19. Emergent Materials. 2021; 4(1): 119-130. doi: 10.1007/s42247-021-00178-6
16. Duan Y, Wang S, Zhang Q, et al. Nanoparticle approaches against SARS-CoV-2 infection. Current Opinion in Solid State and Materials Science. 2021; 25(6): 100964. doi: 10.1016/j.cossms.2021.100964
17. Bourguignon T, Godinez-Leon JA, Gref R. Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics. 2023; 15(2): 393. doi: 10.3390/pharmaceutics15020393
18. Tosi G, Costantino L, Ruozi B, et al. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opinion on Drug Delivery. 2008; 5(2): 155-174. doi: 10.1517/17425247.5.2.155
19. Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020; 25(16): 3731. doi: 10.3390/molecules25163731
20. Crucho CIC, Barros MT. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C. 2017; 80: 771-784. doi: 10.1016/j.msec.2017.06.004
21. Abd Elkodous M, Olojede SO, Morsi M, et al. Nanomaterial-based drug delivery systems as promising carriers for patients with COVID-19. RSC Advances. 2021; 11(43): 26463-26480. doi: 10.1039/d1ra04835j
22. Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020; 14(4): 3822-3835. doi: 10.1021/acsnano.0c02624
23. Bai X, Smith Z, Wang Y, et al. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. Micromachines. 2022; 13(10): 1623. doi: 10.3390/mi13101623
24. Mukherjee B, Bhattacharya A, Mukhopadhyay R, et al. Pathobiology of Parasitic Protozoa: Dynamics and Dimensions. Springer Nature Singapore; 2023. doi: 10.1007/978-981-19-8225-5
25. Patnaik A, Jena GK, Patra ChN. Recent Advancements and Patent Search on Polymeric Nanoparticles. BioNanoScience. 2023; 13(4): 1463-1469. doi: 10.1007/s12668-023-01220-z
26. Al-Nemrawi NK, Darweesh RS, Al-shriem LA, et al. Polymeric Nanoparticles for Inhaled Vaccines. Polymers. 2022; 14(20): 4450. doi: 10.3390/polym14204450
27. Sachan I. Investigating Current Delivery Vehicles for Efficient and Targeted Delivery of Therapeutic RNA and Future Perspectives. University of Nottingham; 2023.
28. Kempe H, Kempe M. Ouzo polymerization: A bottom-up green synthesis of polymer nanoparticles by free-radical polymerization of monomers spontaneously nucleated by the Ouzo effect; Application to molecular imprinting. Journal of Colloid and Interface Science. 2022; 616: 560-570. doi: 10.1016/j.jcis.2022.02.035
29. Wibowo D, Jorritsma SHT, Gonzaga ZJ, et al. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials. 2021; 268: 120597. doi: 10.1016/j.biomaterials.2020.120597
30. S. Pragati, S. Kuldeep, S. Ashok, M. Satheesh. Solid Lipid Nanoparticles: A Promising Drug Delivery Technology. International Journal of Pharmaceutical Sciences and Nanotechnology. 2009; 2(2): 509-516. doi: 10.37285/ijpsn.2009.2.2.3
31. Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods and Findings in Experimental and Clinical Pharmacology. 2005; 27(2): 127. doi: 10.1358/mf.2005.27.2.876286
32. Mohammadi-Samani S, Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Research in Pharmaceutical Sciences. 2018; 13(4): 288. doi: 10.4103/1735-5362.235156
33. Gong J, Chen M, Zheng Y, et al. Polymeric micelles drug delivery system in oncology. Journal of Controlled Release. 2012; 159(3): 312-323. doi: 10.1016/j.jconrel.2011.12.012
34. Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers. 2011; 71(3): 227-234. doi: 10.1016/j.reactfunctpolym.2010.10.009
35. Ahmad Z, Shah A, Siddiq M, et al. Polymeric micelles as drug delivery vehicles. RSC Advances. 2014; 4(33): 17028-17038. doi: 10.1039/c3ra47370h
36. Kousalová J, Etrych T. Polymeric Nanogels as Drug Delivery Systems. Physiological Research. 2018; 67(Suppl.2): S305-S317. doi: 10.33549/physiolres.933979
37. Sultana F, Manirujjaman M, Haque MdIU, et al. An Overview of Nanogel Drug Delivery System. Journal of Applied Pharmaceutical Science. 2013; 3 (8 Suppl 1): S95-S105. doi: 10.7324/japs.2013.38.s15
38. Manimaran V, Nivetha RP, Tamilanban T, et al. Nanogels as novel drug nanocarriers for CNS drug delivery. Frontiers in Molecular Biosciences. 2023; 10. doi: 10.3389/fmolb.2023.1232109
39. Lee JS, Feijen J. Polymersomes for drug delivery: Design, formation and characterization. Journal of Controlled Release. 2012; 161(2): 473-483. doi: 10.1016/j.jconrel.2011.10.005
40. Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Molecular Pharmaceutics. 2022; 19(6): 1687-1703. doi: 10.1021/acs.molpharmaceut.1c00928
41. Oh KS, Lee KE, Han SS, et al. Formation of Core/Shell Nanoparticles with a Lipid Core and Their Application as a Drug Delivery System. Biomacromolecules. 2005; 6(2): 1062-1067. doi: 10.1021/bm049234r
42. Kumar R, Mondal K, Panda PK, et al. Core-shell nanostructures: perspectives towards drug delivery applications. Journal of Materials Chemistry B. 2020; 8(39): 8992-9027. doi: 10.1039/d0tb01559h
43. Deshpande S, Sharma S, Koul V, et al. Core-Shell Nanoparticles as an Efficient, Sustained, and Triggered Drug-Delivery System. ACS Omega. 2017; 2(10): 6455-6463. doi: 10.1021/acsomega.7b01016
44. Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, et al. Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants. 2021; 10(5): 685. doi: 10.3390/antiox10050685
45. Niwa T, Takeuchi H, Hino T, et al. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. Journal of Controlled Release. 1993; 25: 89-98. doi: 10.1016/0168-3659(93)90097-O
46. Pinto Reis C, Neufeld RJ, Ribeiro, et al. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2006; 2(1): 8-21. doi: 10.1016/j.nano.2005.12.003
47. Vargas A, Pegaz B, Debefve E, et al. Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. International Journal of Pharmaceutics. 2004; 286(1-2): 131-145. doi: 10.1016/j.ijpharm.2004.07.029
48. Konan YN, Gurney R, Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy. Journal of Photochemistry andPhotobiology B: Biology. 2002; 66: 89-106. doi: 10.1016/S1011-1344(01)00267-6
49. Perez C, Sanchez A, Putnam D, et al. Poly (lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Journal of Control. 2001; 75: 211-224. doi: 10.1016/S0168-3659(01)00397-2
50. Nagavarma BVN, Yadav HKS, Ayaz A, et al. Different techniques for preparation of polymeric nanoparticles—A review. Asian J. Pharm. Asian Journal of Pharmaceutical and Clinical Research. 2012; 5(3): 16-23.
51. Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science. 2011; 36(7): 887-913. doi: 10.1016/j.progpolymsci.2011.01.001
52. Mallakpour S, Behranvand V. Polymeric nanoparticles: Recent development in synthesis and application. Express Polymer Letters. 2016; 10(11): 895-913. doi: 10.3144/expresspolymlett.2016.84
53. Sundar S, Kundu J, Kundu SC. Biopolymeric nanoparticles. Science and Technology of Advanced Materials. 2010; 11(1): 014104. doi: 10.1088/1468-6996/11/1/014104
54. Zhang G, Niu A, Peng S, et al. Formation of Novel Polymeric Nanoparticles. Accounts of Chemical Research. 2001; 34(3): 249-256. doi: 10.1021/ar000011x
55. Nakabayashi K, Kojima M, Inagi S, et al. Size-Controlled Synthesis of Polymer Nanoparticles with Tandem Acoustic Emulsification Followed by Soap-Free Emulsion Polymerization. ACS Macro Letters. 2013; 2(6): 482-484. doi: 10.1021/mz4001817
56. Chowdhury NK, Deepika, Choudhury R, et al. Nanoparticles as an effective drug delivery system in COVID-19. Biomedicine & Pharmacotherapy. 2021; 143: 112162. doi: 10.1016/j.biopha.2021.112162
57. Fornaguera C, Solans C. Analytical Methods to Characterize and Purify Polymeric Nanoparticles. International Journal of Polymer Science. 2018; 2018: 1-10. doi: 10.1155/2018/6387826
58. Tulbah AS, Lee WH. Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs). Pharmaceuticals. 2021; 14(10): 1059. doi: 10.3390/ph14101059
59. Khaledi S, Jafari S, Hamidi S, et al. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. Journal of Biomaterials Science, Polymer Edition. 2020; 31(9): 1107-1126. doi: 10.1080/09205063.2020.1743946
60. Wang X, Hall JE, Warren S, et al. Synthesis, Characterization, and Application of Novel Polymeric Nanoparticles. Macromolecules. 2007; 40(3): 499-508. doi: 10.1021/ma0613739
61. Bhatia S. Natural Polymer Drug Delivery Systems—Nanoparticles, Plants, and Algae. Springer International Publishing; 2016.
62. Alipour A, Zarinabadi S, Azimi A, et al. Adsorptive removal of Pb(II) ions from aqueous solutions by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response surface methodology (RSM). International Journal of Biological Macromolecules. 2020; 151: 124-135. doi: 10.1016/j.ijbiomac.2020.02.109
63. Labouta HI, Langer R, Cullis PR, et al. Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective. Drug Delivery and Translational Research. 2022; 12(11): 2581-2588. doi: 10.1007/s13346-022-01146-1
64. Cordeiro AS, Patil-Sen Y, Shivkumar M, et al. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics. 2021; 13(12): 2091. doi: 10.3390/pharmaceutics13122091
65. Mittal G, Sahana DK, Bhardwaj V, et al. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. Journal of Controlled Release. 2007; 119(1): 77-85. doi: 10.1016/j.jconrel.2007.01.016
66. Hrib J, Sirc J, Hobzova R, et al. Nanofibers for drug delivery - incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein Journal of Nanotechnology. 2015; 6: 1939-1945. doi: 10.3762/bjnano.6.198
67. Lee CC, Gillies ER, Fox ME, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proceedings of the National Academy of Sciences. 2006; 103(45): 16649-16654. doi: 10.1073/pnas.0607705103
68. Löbenberg R, Maas J, Kreuter J. Improved Body Distribution of14C-labelled AZT bound to Nanoparticles in Rats determined by Radioluminography. Journal of Drug Targeting. 1998; 5(3): 171-179. doi: 10.3109/10611869808995872
69. Goldberg DS, Vijayalakshmi N, Swaan PW, et al. G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. Journal of Controlled Release. 2011; 150(3): 318-325. doi: 10.1016/j.jconrel.2010.11.022
70. Brewer E, Coleman J, Lowman A. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery. Journal of Nanomaterials. 2011; 2011: 1-10. doi: 10.1155/2011/408675
71. Liu Z, Fan AC, Rakhra K, et al. Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy. Angewandte Chemie International Edition. 2009; 48(41): 7668-7672. doi: 10.1002/anie.200902612
72. Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials. 2020; 10(7): 1403. doi: 10.3390/nano10071403
73. Pandya M, Saran R. Application of Nanoparticles in Medicine. Journal of ISAS. 2022; 1(2): 1-21. doi: 10.59143/isas.jisas.1.2/mvsb9110
74. Ucar B, Acar T, Arayici PP, et al. A nanotechnological approach in the current therapy of COVID-19: model drug oseltamivir-phosphate loaded PLGA nanoparticles targeted with spike protein binder peptide of SARS-CoV-2. Nanotechnology. 2021; 32(48): 485601. doi: 10.1088/1361-6528/ac1c22
75. Miranda RR, Ferreira NN, Souza EE de, et al. Modulating Fingolimod (FTY720) Anti-SARS-CoV-2 Activity Using a PLGA-Based Drug Delivery System. ACS Applied Bio Materials. 2022; 5(7): 3371-3383. doi: 10.1021/acsabm.2c00349
76. Struzek AM, Scherließ R. Quality by Design as a Tool in the Optimisation of Nanoparticle Preparation—A Case Study of PLGA Nanoparticles. Pharmaceutics. 2023; 15(2): 617. doi: 10.3390/pharmaceutics15020617
77. Thomas C, Rawat A, Hope-Weeks L, et al. Aerosolized PLA and PLGA Nanoparticles Enhance Humoral, Mucosal and Cytokine Responses to Hepatitis B Vaccine. Molecular Pharmaceutics. 2011; 8(2): 405-415. doi: 10.1021/mp100255c
78. Oliveira CL, Veiga F, Varela C, et al. Characterization of polymeric nanoparticles for intravenous delivery: Focus on stability. Colloids and Surfaces B: Biointerfaces. 2017; 150: 326-333. doi: 10.1016/j.colsurfb.2016.10.046
79. Xu L, Zhang X, Chu Z, et al. Temperature-Responsive Multilayer Films Based on Block Copolymer-Coated Silica Nanoparticles for Long-Term Release of Favipiravir. ACS Applied Nano Materials. 2021; 4(12): 14014-14025. doi: 10.1021/acsanm.1c03334
80. Tan RSL, Hassandarvish P, Chee CF, et al. Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydrate Polymers. 2022; 290: 119500. doi: 10.1016/j.carbpol.2022.119500
81. Xu L, Chu Z, Zhang J, et al. Steric Effects in the Deposition Mode and Drug-Delivering Efficiency of Nanocapsule-Based Multilayer Films. ACS Omega. 2022; 7(34): 30321-30332. doi: 10.1021/acsomega.2c03591
82. Surnar B, Kamran MZ, Shah AS, et al. Clinically Approved Antiviral Drug in an Orally Administrable Nanoparticle for COVID-19. ACS Pharmacology & Translational Science. 2020; 3(6): 1371-1380. doi: 10.1021/acsptsci.0c00179
83. Surnar B, Kamran MZ, Shah AS, et al. Orally Administrable Therapeutic Synthetic Nanoparticle for Zika Virus. ACS Nano. 2019; 13(10): 11034-11048. doi: 10.1021/acsnano.9b02807
84. Puiggalí-Jou A, Cejudo A, del Valle LJ, et al. Smart Drug Delivery from Electrospun Fibers through Electroresponsive Polymeric Nanoparticles. ACS Applied Bio Materials. 2018; 1(5): 1594-1605. doi: 10.1021/acsabm.8b00459
85. Tabatabaei Mirakabad FS, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-Based Nanoparticles as Cancer Drug Delivery Systems. Asian Pacific Journal of Cancer Prevention. 2014; 15(2): 517-535. doi: 10.7314/apjcp.2014.15.2.517
86. Food and Drug Administration. Inactive ingredient search for approved drug products. Available online: https://catalog.data.gov/dataset/inactive-ingredient-search-for-approved-drug-products (accessed on 1 April 2024).
87. Qiu F, Meng T, Chen Q, et al. Fenofibrate-Loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration. Molecular Pharmaceutics. 2019; 16(5): 1958-1970. doi: 10.1021/acs.molpharmaceut.8b01319
88. Groenendaal L, Jonas F, Freitag D, et al. Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Advances Materials. 2000; 12: 481-494. doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.3.CO;2-3
89. Shi H, Liu C, Jiang Q, et al. Effective Approaches to Improve the Electrical Conductivity of PEDOT: PSS: A Review. Advanced Electronic Materials. 2015; 1(4). doi: 10.1002/aelm.201500017
90. Aradilla D, Estrany F, Alemán C. Symmetric Supercapacitors Based on Multilayers of Conducting Polymers. The Journal of Physical Chemistry C. 2011; 115(16): 8430-8438. doi: 10.1021/jp201108c
91. Fan X, Cheng H, Wang X, et al. Thermoresponsive Supramolecular Chemotherapy by “V”‐Shaped Armed β‐Cyclodextrin Star Polymer to Overcome Drug Resistance. Advanced Healthcare Materials. 2017; 7(7). doi: 10.1002/adhm.201701143
92. Pu XQ, Ju XJ, Zhang L, et al. Novel Multifunctional Stimuli-Responsive Nanoparticles for Synergetic Chemo-Photothermal Therapy of Tumors. ACS Applied Materials & Interfaces. 2021; 13(24): 28802-28817. doi: 10.1021/acsami.1c05330
93. Douglas D. Pharmaceutical Nanotechnology: A Therapeutic Revolution. International Journal of Pharmaceutical Sciences and Developmental Research. 2020; 6(1): 009-011. doi: 10.17352/ijpsdr.000027
94. Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized Delivery Systems for Therapeutic Proteins: Clinically Validated Technologies and Advanced Development Strategies. Frontiers in Bioengineering and Biotechnology. 2020; 8. doi: 10.3389/fbioe.2020.00089
95. De Clercq E. Remdesivir: Quo vadis? Biochemical Pharmacology. 2021; 193: 114800. doi: 10.1016/j.bcp.2021.114800
96. Shah LK, Amiji MM. Intracellular Delivery of Saquinavir in Biodegradable Polymeric Nanoparticles for HIV/AIDS. Pharmaceutical Research. 2006; 23(11): 2638-2645. doi: 10.1007/s11095-006-9101-7
97. Alshabanah LA, Hagar M, Al-Mutabagani LA, et al. Hybrid Nanofibrous Membranes as a Promising Functional Layer for Personal Protection Equipment: Manufacturing and Antiviral/Antibacterial Assessments. Polymers. 2021; 13(11): 1776. doi: 10.3390/polym13111776
98. Demchenko V, Mamunya Y, Kobylinskyi S, et al. Structure-Morphology-Antimicrobial and Antiviral Activity Relationship in Silver-Containing Nanocomposites Based on Polylactide. Molecules. 2022; 27(12): 3769. doi: 10.3390/molecules27123769
99. Macchione MA, Guerrero-Beltrán C, Rosso AP, et al. Poly(N-vinylcaprolactam) Nanogels with Antiviral Behavior against HIV-1 Infection. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-42150-9
100. Milane L, Amiji M. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Delivery and Translational Research. 2021; 11(4): 1309-1315. doi: 10.1007/s13346-021-00911-y
101. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioengineering & Translational Medicine. 2019; 4(3). doi: 10.1002/btm2.10143
102. Zhang D, Liu L, Wang J, et al. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Frontiers in Pharmacology. 2022; 13. doi: 10.3389/fphar.2022.990505
103. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update post COVID‐19 vaccines. Bioengineering & Translational Medicine. 2021; 6(3). doi: 10.1002/btm2.10246
DOI: https://doi.org/10.24294/can.v7i1.4959
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Elizabeth Adu, Siddharth A. Patel, Arthur J. Catino, Riddhiman Medhi
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.