Modernizations of graphene nanocomposites using synthesis strategies—State-of-the-art

Ayesha Kausar, Ishaq Ahmad

Article ID: 4946
Vol 7, Issue 2, 2024

VIEWS - 247 (Abstract) 59 (PDF)

Abstract


Graphene has been ranked among one of the most remarkable nanostructures in the carbon world. Graphene modification and nanocomposite formation have been used to expand the practical potential of graphene nanostructure. The overview is an effort to highlight the indispensable synthesis strategies towards the formation of graphene nanocomposites. Consequently, graphene has been combined with useful matrices (thermoplastic, conducting, or others) to attain the desired end material. Common fabrication approaches like the in-situ method, solution processing, and melt extrusion have been widely involved to form the graphene nanocomposites. Moreover, advanced, sophisticated methods such as three- or four-dimensional printing, electrospinning, and others have been used to synthesize the graphene nanocomposites. The focus of all synthesis strategies has remained on the standardized graphene dispersion, physical properties, and applications. However, continuous future efforts are required to resolve the challenges in synthesis strategies and optimization of the parameters behind each technique. As the graphene nanocomposite design and properties directly depend upon the fabrication techniques used, there is an obvious need for the development of advanced methods having better control over process parameters. Here, the main challenging factors may involve the precise parameter control of the advanced techniques used for graphene nanocomposite manufacturing. Hence, there is not only a need for current and future research to resolve the field challenges related to material fabrication, but also reporting compiled review articles can be useful for interested field researchers towards challenge solving and future developments in graphene manufacturing.


Keywords


graphene; nanocomposite; synthesis; technique; in situ; melt extrusion

Full Text:

PDF


References


1. Kausar A, Ahmad I, Lam TD. High-tech graphene oxide reinforced conducting matrix nanocomposites—Current status and progress. Characterization and Application of Nanomaterials. 2023; 6(1). doi: 10.24294/can.v6i1.2637

2. Kausar A, Ahmad I. Graphene and nanocomposites—Imprints on environmentally sustainable production and applications based on ecological aspects. Characterization and Application of Nanomaterials. 2024; 7(1): 4226. doi: 10.24294/can.v7i1.4226

3. Kausar A, Ahmad I. Cutting-edge conjugated nanocomposites—Fundamentals and anti-corrosion significance. Characterization and Application of Nanomaterials. 2023; 6(2): 3361. doi: 10.24294/can.v6i2.3361

4. Idumah CI. Phosphorene polymeric nanocomposites for biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2022; 73(4): 292-309. doi: 10.1080/00914037.2022.2158333

5. Cai C, Liu L, Fu Y. Processable conductive and mechanically reinforced polylactide/graphene bionanocomposites through interfacial compatibilizer. Polymer Composites. 2017; 40(1): 389-400. doi: 10.1002/pc.24663

6. Potts JR, Dreyer DR, Bielawski CW, et al. Graphene-based polymer nanocomposites. Polymer. 2011; 52(1): 5-25. doi: 10.1016/j.polymer.2010.11.042

7. Tripathy DB, Gupta A. Nanocomposites as sustainable smart materials: A review. Journal of Reinforced Plastics and Composites. 2024. doi: 10.1177/07316844241233162

8. Yousefi N, Gudarzi MM, Zheng Q, et al. Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. Journal of Materials Chemistry. 2012; 22(25): 12709. doi: 10.1039/c2jm30590a

9. Goyal M, Singh K, Bhatnagar N. Conductive polymers: A multipurpose material for protecting coating. Progress in Organic Coatings. 2024; 187: 108083. doi: 10.1016/j.porgcoat.2023.108083

10. Yan Y, Han M, Jiang Y, et al. Electrically Conductive Polymers for Additive Manufacturing. ACS Applied Materials & Interfaces. 2024; 16(5): 5337-5354. doi: 10.1021/acsami.3c13258

11. Balaji KV, Shirvanimoghaddam K, Naebe M. Multifunctional basalt fiber polymer composites enabled by carbon nanotubes and graphene. Composites Part B: Engineering. 2024; 268: 111070. doi: 10.1016/j.compositesb.2023.111070

12. Lee SH, Luvnish A, Su X, et al. Advancements in polymer (Nano)composites for phase change material-based thermal storage: A focus on thermoplastic matrices and ceramic/carbon fillers. Smart Materials in Manufacturing. 2024; 2: 100044. doi: 10.1016/j.smmf.2024.100044

13. Abbasi H, Antunes M, Velasco JI. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science. 2019; 103: 319-373. doi: 10.1016/j.pmatsci.2019.02.003

14. Gao Y, Zhang Y, Chen P, et al. Toward Single-Layer Uniform Hexagonal Boron Nitride–Graphene Patchworks with Zigzag Linking Edges. Nano Letters. 2013; 13(7): 3439-3443. doi: 10.1021/nl4021123

15. Berger C, Song Z, Li X, et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science. 2006; 312(5777): 1191-1196. doi: 10.1126/science.1125925

16. Wei C, Negishi R, Ogawa Y, et al. Turbostratic multilayer graphene synthesis on CVD graphene template toward improving electrical performance. Japanese Journal of Applied Physics. 2019; 58(SI): SIIB04. doi: 10.7567/1347-4065/ab0c7b

17. Narayanam PK, Botcha VD, Ghosh M, et al. Growth and photocatalytic behavior of transparent reduced GO–ZnO nanocomposite sheets. Nanotechnology. 2019; 30(48): 485601. doi: 10.1088/1361-6528/ab3ced

18. Zandiatashbar A, Lee GH, An SJ, et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications. 2014; 5(1). doi: 10.1038/ncomms4186

19. Shen X, Zeng X, Dang C. Graphene Composites. In: Celasco E, Chaika AN, Stauber T, et al.(editors). Handbook of Graphene Set. Scrivener Publishing; 2019. pp. 1-25. doi: 10.1002/9781119468455.ch53

20. Zhou Q, Xia G, Du M, et al. Scotch-tape-like exfoliation effect of graphene quantum dots for efficient preparation of graphene nanosheets in water. Applied Surface Science. 2019; 483: 52-59. doi: 10.1016/j.apsusc.2019.03.290

21. Pei S, Cheng HM. The reduction of graphene oxide. Carbon. 2012; 50(9): 3210-3228. doi: 10.1016/j.carbon.2011.11.010

22. Lee H, Lee KS. Interlayer Distance Controlled Graphene, Supercapacitor and Method of Producing the Same. US20150103469A1, 26 February 2019.

23. Tang C, Titirici MM, Zhang Q. A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. Journal of Energy Chemistry. 2017; 26(6): 1077-1093. doi: 10.1016/j.jechem.2017.08.008

24. Panwar N, Soehartono AM, Chan KK, et al. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chemical Reviews. 2019; 119(16): 9559-9656. doi: 10.1021/acs.chemrev.9b00099

25. Sen Gupta R, Mandal S, Malakar A, et al. Graphene oxide offers precise molecular sieving, structural integrity, microplastic removal, and closed-loop circularity in water-remediating membranes through a covalent adaptable network. Journal of Materials Chemistry A. 2024; 12(1): 321-334. doi: 10.1039/d3ta04539k

26. Owji E, Ostovari F, Keshavarz A. Influence of the chemical structure of diisocyanate on the electrical and thermal properties of in situ polymerized polyurethane–graphene composite films. Physical Chemistry Chemical Physics. 2022; 24(46): 28564-28576. doi: 10.1039/d2cp03826a

27. Ajaj Y, AL-Salman HNK, Hussein AM, et al. Effect and investigating of graphene nanoparticles on mechanical, physical properties of polylactic acid polymer. Case Studies in Chemical and Environmental Engineering. 2024; 9: 100612. doi: 10.1016/j.cscee.2024.100612

28. Yang C, Gede M, Abdulhamid MA, et al. Solvent and material selection for greener membrane manufacturing. In: Basile A, Favvas EP (editors). Current Trends and Future Developments on (Bio-) Membranes: Modern Approaches in Membrane Technology for Gas Separation and Water Treatment. Elsevier; 2024. pp. 249-293. doi: 10.1016/b978-0-323-99311-1.00016-7

29. Itapu B, Jayatissa A. A Review in Graphene/Polymer Composites. Chemical Science International Journal. 2018; 23(3): 1-16. doi: 10.9734/csji/2018/41031

30. Zheng D, Tang G, Zhang HB, et al. In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Composites Science and Technology. 2012; 72(2): 284-289. doi: 10.1016/j.compscitech.2011.11.014

31. Chen J, Chen X, Meng F, et al. Super-high thermal conductivity of polyamide-6/graphene-graphene oxide composites through in situ polymerization. High Performance Polymers. 2016; 29(5): 585-594. doi: 10.1177/0954008316655861

32. Ding P, Su S, Song N, et al. Influence on thermal conductivity of polyamide-6 covalently-grafted graphene nanocomposites: varied grafting-structures by controllable macromolecular length. RSC Advances. 2014; 4(36): 18782. doi: 10.1039/c4ra00500g

33. Xu Z, Gao C. In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules. 2010; 43(16): 6716-6723. doi: 10.1021/ma1009337

34. Wang S, Zhang L, Zeng Q, et al. Designing Polymer Electrolytes via Ring‐Opening Polymerization for Advanced Lithium Batteries. Advanced Energy Materials. 2023; 14(3). doi: 10.1002/aenm.202302876

35. Lu Y, Wang X, Chen D, et al. Polystyrene/graphene composite electrode fabricated by in situ polymerization for capillary electrophoretic determination of bioactive constituents in Herba Houttuyniae. Electrophoresis. 2011; 32(14): 1906-1912. doi: 10.1002/elps.201100162

36. Muthukumar J, Kandukuri VA, Chidambaram R. A critical review on various treatment, conversion, and disposal approaches of commonly used polystyrene. Polymer Bulletin. 2023; 81(4): 2819-2845. doi: 10.1007/s00289-023-04851-0

37. Babaie B, Najafi M, Ataeefard M. Designing an optimised formulation for in situ emulsion polymerization: printing ink production by response surface methodology. Pigment & Resin Technology. 2024. doi: 10.1108/prt-10-2023-0091

38. Wang Y, Lu Q, Xie H, et al. In-situ formation of nitrogen doped microporous carbon nanospheres derived from polystyrene as lubricant additives for anti-wear and friction reduction. Friction. 2023; 12(3): 439-451. doi: 10.1007/s40544-023-0766-2

39. Wang X, Hu Y, Song L, et al. In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. Journal of Materials Chemistry. 2011; 21(12): 4222. doi: 10.1039/c0jm03710a

40. Milani MA, González D, Quijada R, et al. Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: Synthesis, characterization and fundamental properties. Composites Science and Technology. 2013; 84: 1-7. doi: 10.1016/j.compscitech.2013.05.001

41. Patole AS, Patole SP, Kang H, et al. A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. Journal of Colloid and Interface Science. 2010; 350(2): 530-537. doi: 10.1016/j.jcis.2010.01.035

42. Hu H, Wang X, Wang J, et al. Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters. 2010; 484(4-6): 247-253. doi: 10.1016/j.cplett.2009.11.024

43. Wang J, Hu H, Wang X, et al. Preparation and mechanical and electrical properties of graphene nanosheets–poly(methyl methacrylate) nanocomposites via in situ suspension polymerization. Journal of Applied Polymer Science. 2011; 122(3): 1866-1871. doi: 10.1002/app.34284

44. Ahmed MAM, Jurczak KM, Lynn NS, et al. Rapid prototyping of PMMA-based microfluidic spheroid-on-a-chip models using micromilling and vapour-assisted thermal bonding. Scientific Reports. 2024; 14(1). doi: 10.1038/s41598-024-53266-y

45. Salam MA, Alsultany FH, Al-Bermany E, et al. Impact of graphene oxide nanosheets and polymethyl methacrylate on nano/hybrid-based restoration dental filler composites: ultrasound behavior and antibacterial activity. Journal of Ultrasound. 2024. doi: 10.1007/s40477-023-00855-8

46. Lee YR, Raghu AV, Jeong HM, et al. Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites Prepared by an in situ Method. Macromolecular Chemistry and Physics. 2009; 210(15): 1247-1254. doi: 10.1002/macp.200900157

47. Yang L, Huang R, Yuan J, et al. High thermal conductive polyurethane composite films with a three-dimensional boron nitride network in-situ constructed by multi-folding and multi-laminating. Composites Science and Technology. 2024; 245: 110326. doi: 10.1016/j.compscitech.2023.110326

48. Mishra SK, Tripathi SN, Choudhary V, et al. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sensors and Actuators B: Chemical. 2014; 199: 190-200. doi: 10.1016/j.snb.2014.03.109

49. Ganguly S. Preparation/processing of polymer-graphene composites by different techniques. In: Rahaman M, Nayak L, Hussein IA, Das NC (editors). Polymer Nanocomposites Containing Graphene: Preparation, Properties, and Applications. Elsevier; 2022. pp. 45-74. doi: 10.1016/b978-0-12-821639-2.00015-x

50. Ali Z, Yaqoob S, Yu J, et al. Advancements in Graphene-Based Hybrid Filler Polymer Composites: A Comprehensive Survey of Processing, Properties, and Influential Factors. Available online: https://www.preprints.org/manuscript/202402.1412/v1 (accessed on 1 March 2024).

51. Wu K, Tan J, Liu Z, et al. Incombustible solid polymer electrolytes: A critical review and perspective. Journal of Energy Chemistry. 2024; 93: 264-281. doi: 10.1016/j.jechem.2024.01.013

52. Zhang J, Liang B, Long J. Preparation and characteristics of composite films with functionalized graphene/polyimide. Journal of Applied Polymer Science. 2023; 141(10). doi: 10.1002/app.55045

53. Hu K, Kulkarni DD, Choi I, et al. Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science. 2014; 39(11): 1934-1972. doi: 10.1016/j.progpolymsci.2014.03.001

54. Panzer F, Dyson MJ, Bakr H, et al. A Unified Picture of Aggregate Formation in a Model Polymer Semiconductor during Solution Processing. Advanced Functional Materials. 2024. doi: 10.1002/adfm.202314729

55. He F, Lam KH, Fan J, et al. Improved dielectric properties for chemically functionalized exfoliated graphite nanoplates/syndiotactic polystyrene composites prepared by a solution-blending method. Carbon. 2014; 80: 496-503. doi: 10.1016/j.carbon.2014.08.089

56. Yu YH, Lin YY, Lin CH, et al. High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym Chem. 2014; 5(2): 535-550. doi: 10.1039/c3py00825h

57. Zhao F, Zhang G, Zhao S, et al. Fabrication of pristine graphene-based conductive polystyrene composites towards high performance and light-weight. Composites Science and Technology. 2018; 159: 232-239. doi: 10.1016/j.compscitech.2018.02.013

58. Qi XY, Yan D, Jiang Z, et al. Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content. ACS Applied Materials & Interfaces. 2011; 3(8): 3130-3133. doi: 10.1021/am200628c

59. Kausar A, Bocchetta P. Poly(methyl methacrylate) Nanocomposite Foams Reinforced with Carbon and Inorganic Nanoparticles—State-of-the-Art. Journal of Composites Science. 2022; 6(5): 129. doi: 10.3390/jcs6050129

60. Zeng X, Yang J, Yuan W. Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. European Polymer Journal. 2012; 48(10): 1674-1682. doi: 10.1016/j.eurpolymj.2012.07.011

61. Balasubramaniyan R, Pham VH, Jang J, et al. A one pot solution blending method for highly conductive poly (methyl methacrylate)-highly reduced graphene nanocomposites. Electronic Materials Letters. 2013; 9(6): 837-839. doi: 10.1007/s13391-013-6025-3

62. Kuila T, Bose S, Hong CE, et al. Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon. 2011; 49(3): 1033-1037. doi: 10.1016/j.carbon.2010.10.031

63. Chen M, Peng B, Guo X, et al. Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters. 2024; 35(4): 109051. doi: 10.1016/j.cclet.2023.109051

64. Vadukumpully S, Paul J, Mahanta N, et al. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon. 2011; 49(1): 198-205. doi: 10.1016/j.carbon.2010.09.004

65. Kausar A, Rafique I, Anwar Z, et al. Perspectives of Epoxy/Graphene Oxide Composite: Significant Features and Technical Applications. Polymer-Plastics Technology and Engineering. 2015; 55(7): 704-722. doi: 10.1080/03602559.2015.1098700

66. Chen W, Weimin H, Li D, et al. A critical review on the development and performance of polymer/graphene nanocomposites. Science and Engineering of Composite Materials. 2018; 25(6): 1059-1073. doi: 10.1515/secm-2017-0199

67. Hu T, Ye H, Luo Z, et al. Efficient exfoliation of UV-curable, high-quality graphene from graphite in common low-boiling-point organic solvents with a designer hyperbranched polyethylene copolymer and their applications in electrothermal heaters. Journal of Colloid and Interface Science. 2020; 569: 114-127. doi: 10.1016/j.jcis.2020.02.068

68. Gill YQ, Ehsan H, Mehmood U, et al. A novel two-step melt blending method to prepare nano-silanized-silica reinforced crosslinked polyethylene (XLPE) nanocomposites. Polymer Bulletin. 2022; 79(11): 10077-10093. doi: 10.1007/s00289-021-03989-z

69. Kaczor DP, Bajer K, Raszkowska-Kaczor A, et al. Screw Extrusion as a Scalable Technology for Manufacturing Polylactide Composite with Graphene Filler. Advances in Science and Technology Research Journal. 2024; 18(2): 226-237. doi: 10.12913/22998624/184152

70. Tan B, Thomas NL. A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. Journal of Membrane Science. 2016; 514: 595-612. doi: 10.1016/j.memsci.2016.05.026

71. Liu Y, Davies R, McCutchion P, et al. Fabrication of functionalised graphene-PAEK nanocomposites for different manufacturing processes. Virtual and Physical Prototyping. 2023; 19(1). doi: 10.1080/17452759.2023.2283884

72. Scaffaro R, Maio A. A green method to prepare nanosilica modified graphene oxide to inhibit nanoparticles re-aggregation during melt processing. Chemical Engineering Journal. 2017; 308: 1034-1047. doi: 10.1016/j.cej.2016.09.131

73. Yan D, Zhang HB, Jia Y, et al. Improved Electrical Conductivity of Polyamide 12/Graphene Nanocomposites with Maleated Polyethylene-Octene Rubber Prepared by Melt Compounding. ACS Applied Materials & Interfaces. 2012; 4(9): 4740-4745. doi: 10.1021/am301119b

74. Kausar A. In-situ modified graphene reinforced polyamide 1010/poly(ether amide): mechanical, thermal, and barrier properties. Materials Research Innovations. 2017; 23(4): 191-199. doi: 10.1080/14328917.2017.1409392

75. Mittal V, Chaudhry AU. Polymer – graphene nanocomposites: effect of polymer matrix and filler amount on properties. Macromolecular Materials and Engineering. 2015; 300(5): 510-521. doi: 10.1002/mame.201400392

76. Shen B, Zhai W, Tao M, et al. Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending. Composites Science and Technology. 2013; 86: 109-116. doi: 10.1016/j.compscitech.2013.07.007

77. Mohammadsalih ZG, Uddin Siddiqui V, Sapuan SM. The role of organic solvent and nano-additives loading in preparing and characterizing graphene oxide based polystyrene nanocomposites. Polymer-Plastics Technology and Materials. 2024; 63(9): 1175-1186. doi: 10.1080/25740881.2024.2325431

78. Shen B, Zhai W, Chen C, et al. Melt Blending In situ Enhances the Interaction between Polystyrene and Graphene through π–π Stacking. ACS Applied Materials & Interfaces. 2011; 3(8): 3103-3109. doi: 10.1021/am200612z

79. El Achaby M, Arrakhiz F, Vaudreuil S, et al. Mechanical, thermal, and rheological properties of graphene‐based polypropylene nanocomposites prepared by melt mixing. Polymer Composites. 2012; 33(5): 733-744. doi: 10.1002/pc.22198

80. Ryu SH, Shanmugharaj AM. Influence of hexamethylene diamine functionalized graphene oxide on the melt crystallization and properties of polypropylene nanocomposites. Materials Chemistry and Physics. 2014; 146(3): 478-486. doi: 10.1016/j.matchemphys.2014.03.056

81. Istrate OM, Paton KR, Khan U, et al. Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon. 2014; 78: 243-249. doi: 10.1016/j.carbon.2014.06.077

82. Maiti S, Suin S, Shrivastava NK, et al. Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly(butylene terephthalate). Journal of Applied Polymer Science. 2013; 130(1): 543-553. doi: 10.1002/app.39168

83. Jiang S, Gui Z, Bao C, et al. Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chemical Engineering Journal. 2013; 226: 326-335. doi: 10.1016/j.cej.2013.04.068

84. Anwar Z, Kausar A, Rafique I, et al. Advances in Epoxy/Graphene Nanoplatelet Composite with Enhanced Physical Properties: A Review. Polymer-Plastics Technology and Engineering. 2015; 55(6): 643-662. doi: 10.1080/03602559.2015.1098695

85. Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science. 2017; 90: 75-127. doi: 10.1016/j.pmatsci.2017.07.004

86. Mittal V. Functional Polymer Nanocomposites with Graphene: A Review. Macromolecular Materials and Engineering. 2014; 299(8): 906-931. doi: 10.1002/mame.201300394

87. Du J, Cheng H. The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromolecular Chemistry and Physics. 2012; 213(10-11): 1060-1077. doi: 10.1002/macp.201200029

88. Diniz FLJ, Lima TBS, Araujo ES, et al. Graphene-Based Flexible and Eco-Friendly Wearable Electronics and Humidity Sensors. Materials Research. 2024; 27. doi: 10.1590/1980-5373-mr-2023-0480

89. Wu JJ, Huang LM, Zhao Q, et al. 4D Printing: History and Recent Progress. Chinese Journal of Polymer Science. 2017; 36(5): 563-575. doi: 10.1007/s10118-018-2089-8

90. Kafle A, Luis E, Silwal R, et al. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers. 2021; 13(18): 3101. doi: 10.3390/polym13183101

91. Guo Y, Patanwala HS, Bognet B, et al. Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyping Journal. 2017; 23(3): 562-576. doi: 10.1108/rpj-05-2016-0076

92. Shirazi SFS, Gharehkhani S, Mehrali M, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials. 2015; 16(3): 033502. doi: 10.1088/1468-6996/16/3/033502

93. Wan X, Luo L, Liu Y, et al. Direct Ink Writing Based 4D Printing of Materials and Their Applications. Advanced Science. 2020; 7(16). doi: 10.1002/advs.202001000

94. Ponnamma D, Yin Y, Salim N, et al. Recent progress and multifunctional applications of 3D printed graphene nanocomposites. Composites Part B: Engineering. 2021; 204: 108493. doi: 10.1016/j.compositesb.2020.108493

95. Ul Hassan R, Sharipov M, Ryu W. Electrohydrodynamic (EHD) printing of nanomaterial composite inks and their applications. Micro and Nano Systems Letters. 2024; 12(1). doi: 10.1186/s40486-023-00194-7

96. Park SS, Park Y, Repo E, et al. Three-dimensionally printed scaffold coated with graphene oxide for enhanced heavy metal adsorption: Batch and fixed-bed column studies. Journal of Water Process Engineering. 2024; 57: 104658. doi: 10.1016/j.jwpe.2023.104658

97. Che H, Yuan J. Recent advances in electrospinning supramolecular systems. Journal of Materials Chemistry B. 2022; 10(1): 8-19. doi: 10.1039/d1tb02304g

98. Tiwari SK, Sahoo S, Wang N, et al. Electrospinning of Graphene. Springer International Publishing; 2021. doi: 10.1007/978-3-030-75456-3

99. Han Z, Wang J, Liu S, et al. Electrospinning of Neat Graphene Nanofibers. Advanced Fiber Materials. 2021; 4(2): 268-279. doi: 10.1007/s42765-021-00105-8

100. Li Y, Dong T, Li Z, et al. Review of advances in electrospinning-based strategies for spinal cord regeneration. Materials Today Chemistry. 2022; 24: 100944. doi: 10.1016/j.mtchem.2022.100944

101. Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008; 49(10): 2387-2425. doi: 10.1016/j.polymer.2008.02.002

102. Gopiraman M, Fujimori K, Zeeshan K, et al. Structural and mechanical properties of cellulose acetate/graphene hybrid nanofibers: Spectroscopic investigations. Express Polymer Letters. 2013; 7(6): 554-563. doi: 10.3144/expresspolymlett.2013.52

103. Lee SH, Dreyer DR, An J, et al. Polymer Brushes via Controlled, Surface‐Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. Macromolecular Rapid Communications. 2010; 31(3): 281-288. doi: 10.1002/marc.200900641

104. Zhao W, Wu F, Wu H, et al. Preparation of Colloidal Dispersions of Graphene Sheets in Organic Solvents by Using Ball Milling. Journal of Nanomaterials. 2010; 2010: 1-5. doi: 10.1155/2010/528235

105. Ganesan V, Jayaraman A. Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites. Soft Matter. 2014; 10(1): 13-38. doi: 10.1039/c3sm51864g

106. Gupta T, Ratandeep, Dutt M, et al. Graphene-based nanomaterials as potential candidates for environmental mitigation of pesticides. Talanta. 2024; 272: 125748. doi: 10.1016/j.talanta.2024.125748

107. Banglani TH, Chandio I, Khilji MUN, et al. Graphene-based nanocomposites for gas sensors: challenges and opportunities. Reviews in Inorganic Chemistry. 2024; 0(0). doi: 10.1515/revic-2023-0033

108. Saeed M, Haq RSU, Ahmed S, et al. Recent advances in carbon nanotubes, graphene and carbon fibers-based microwave absorbers. Journal of Alloys and Compounds. 2024; 970: 172625. doi: 10.1016/j.jallcom.2023.172625

109. Wypych G. Graphene: Important Results and Applications. ChemTec Publishing; 2019.

110. Seyedjamali H, Pirisedigh A. Well-dispersed polyimide/TiO2 nanocomposites: in situ sol–gel fabrication and morphological study. Colloid and Polymer Science. 2012; 290(7): 653-659. doi: 10.1007/s00396-012-2599-9

111. Wang B, Chen X, Ahmad Z, et al. 3D electrohydrodynamic printing of highly aligned dual-core graphene composite matrices. Carbon. 2019; 153: 285-297. doi: 10.1016/j.carbon.2019.07.030

112. Levchenko I, Ostrikov K, Zheng J, et al. Scalable graphene production: perspectives and challenges of plasma applications. Nanoscale. 2016; 8(20): 10511-10527. doi: 10.1039/c5nr06537b

113. Zhong YL, Tian Z, Simon GP, et al. Scalable production of graphene via wet chemistry: progress and challenges. Materials Today. 2015; 18(2): 73-78. doi: 10.1016/j.mattod.2014.08.019

114. Yan H, Tao X, Yang Z, et al. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. Journal of Hazardous Materials. 2014; 268: 191-198. doi: 10.1016/j.jhazmat.2014.01.015

115. Rissanou A, Power A, Harmandaris V. Structural and Dynamical Properties of Polyethylene/Graphene Nanocomposites through Molecular Dynamics Simulations. Polymers. 2015; 7(3): 390-417. doi: 10.3390/polym7030390




DOI: https://doi.org/10.24294/can.v7i2.4946

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ayesha Kausar, Ishaq Ahmad

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.