Enhancing the thermal properties of paraffin wax as latent heat storage material using hybrid nanomaterials

A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, N. Samy, A. R. El-Sayed, S. M. Shalaby

Article ID: 4912
Vol 7, Issue 1, 2024

VIEWS - 1340 (Abstract)

Abstract


Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion and low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use, and ability to be stored at room temperature for extended periods of time, Nevertheless, improving its low thermal conductivity is still a big, noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at a wight concentration of 3% when nano-Cu2O and nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O and nano-Al2O3 as they achieve the highest values of thermal conductivity and diffusivity at a weight concentration of 5.0 wt%.


Keywords


thermal characteristics; phase change materials; paraffin wax; hybrid nanocomposites

Full Text:

PDF


References


1. He B, Setterwall F. Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation. Energy Conversion and Management. 2002; 43(13): 1709-1723.

2. Wang J, Xie H, Xin Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Solar Energy. 2010; 84(2): 339-344. doi: 10.1016/j.solener.2009.12.004

3. Shi S, Niu J, Wu Z, et al. Experimental and numerical investigation on heat transfer enhancement of vertical triplex tube heat exchanger with fractal fins for latent thermal energy storage. International Journal of Heat and Mass Transfer. 2022; 198: 123386. doi: 10.1016/j.ijheatmasstransfer.2022.123386

4. Fukai J, Hamada Y, Morozumi Y, Miyatake O. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: Experiments and modeling. International Journal of Heat and Mass Transfer. 2003; 46(23): 4513-4525.

5. Ahmed F, Mahmood M, Waqas A, et al. Thermal analysis of macro-encapsulated phase change material coupled with domestic gas heater for building heating. Sustainable Energy Technologies and Assessments. 2021; 47: 101533. doi: 10.1016/j.seta.2021.101533

6. Rehman OA, Palomba V, Verez D, et al. Experimental evaluation of different macro-encapsulation designs for PCM storages for cooling applications. Journal of Energy Storage. 2023; 74: 109359. doi: 10.1016/j.est.2023.109359

7. Wang Z, Zhang H, Dou B, et al. Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials. Applied Thermal Engineering. 2022; 201: 117778. doi: 10.1016/j.applthermaleng.2021.117778

8. Leong KY, Hasbi S, Ku Ahmad KZ, et al. Thermal properties evaluation of paraffin wax enhanced with carbon nanotubes as latent heat thermal energy storage. Journal of Energy Storage. 2022; 52: 105027. doi: 10.1016/j.est.2022.105027

9. Summers EK, Lienhard JH. Experimental study of thermal performance in air gap membrane distillation systems, including the direct solar heating of membranes. Desalination. 2013; 330: 100-111. doi: 10.1016/j.desal.2013.09.023

10. Yang Y, Luo J, Song G, et al. The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials. Thermochimica Acta. 2014; 597: 101-106. doi: 10.1016/j.tca.2014.10.014

11. Wang J, Li Y, Wang Y, et al. Experimental investigation of heat transfer performance of a heat pipe combined with thermal energy storage materials of CuO-paraffin nanocomposites. Solar Energy. 2020; 211: 928-937. doi: 10.1016/j.solener.2020.10.033

12. Pise AT, Waghmare AV, Talandage VG. Heat Transfer Enhancement by Using Nanomaterial in Phase Change Material for Latent Heat Thermal Energy Storage System. Asian Journal of Engineering and Applied Technology. 2013; 2(2): 52-57. doi: 10.51983/ajeat-2013.2.2.667

13. Ho CJ, Gao JY. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. International Communications in Heat and Mass Transfer. 2009; 36(5): 467-470. doi: 10.1016/j.icheatmasstransfer.2009.01.015

14. Zhao Y, Jin L, Zou B, et al. Expanded graphite – Paraffin composite phase change materials: Effect of particle size on the composite structure and properties. Applied Thermal Engineering. 2020; 171: 115015. doi: 10.1016/j.applthermaleng.2020.115015

15. Sarı A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering. 2007; 27(8-9): 1271-1277. doi: 10.1016/j.applthermaleng.2006.11.004

16. Huang YR, Chuang PH, Chen CL. Molecular-dynamics calculation of the thermal conduction in phase change materials of graphene paraffin nanocomposites. International Journal of Heat and Mass Transfer. 2015; 91: 45-51. doi: 10.1016/j.ijheatmasstransfer.2015.07.110

17. Maher H, Rocky KA, Bassiouny R, et al. Synthesis and thermal characterization of paraffin-based nanocomposites for thermal energy storage applications. Thermal Science and Engineering Progress. 2021; 22: 100797. doi: 10.1016/j.tsep.2020.100797

18. Jawad QA, Mahdy AMJ, Khuder AH, et al. Improve the performance of a solar air heater by adding aluminum chip, paraffin wax, and nano-SiC. Case Studies in Thermal Engineering. 2020; 19: 100622. doi: 10.1016/j.csite.2020.100622

19. Pradeep N, Paramasivam K, Rajesh T, et al. Silver nanoparticles for enhanced thermal energy storage of phase change materials. Materials Today: Proceedings. 2021; 45: 607-611. doi: 10.1016/j.matpr.2020.02.671

20. Şahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites. Solar Energy Materials and Solar Cells. 2015; 137: 61-67. doi: 10.1016/j.solmat.2015.01.027

21. Mhedheb T, Hassen W, Mhimid A, et al. Parametric analysis of a solar parabolic trough collector integrated with hybrid-nano PCM storage tank. Case Studies in Thermal Engineering. 2023; 51: 103652. doi: 10.1016/j.csite.2023.103652

22. Hayat MA, Yang Y, Li L, et al. Preparation and thermophysical characterisation analysis of potential nano-phase transition materials for thermal energy storage applications. Journal of Molecular Liquids. 2023; 376: 121464. doi: 10.1016/j.molliq.2023.121464

23. Manoj Kumar P, Mylsamy K, Alagar K, et al. Investigations on an evacuated tube solar water heater using hybrid-nano based organic phase change material. International Journal of Green Energy. 2020; 17(13): 872-883. doi: 10.1080/15435075.2020.1809426

24. Pasupathi MK, Alagar K, P MJS, et al. Characterization of Hybrid-nano/Paraffin Organic Phase Change Material for Thermal Energy Storage Applications in Solar Thermal Systems. Energies. 2020; 13(19): 5079. doi: 10.3390/en13195079

25. Kalbande VP, Fating G, Mohan M, et al. Experimental and theoretical study for suitability of hybrid nano enhanced phase change material for thermal energy storage applications. Journal of Energy Storage. 2022; 51: 104431. doi: 10.1016/j.est.2022.104431

26. Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. Journal of Thermal Analysis and Calorimetry. 2013; 115(2): 1563-1571. doi: 10.1007/s10973-013-3472-x

27. Ibrahim SI, Ali AH, Hafidh SA, et al. Stability and thermal conductivity of different nano-composite material prepared for thermal energy storage applications. South African Journal of Chemical Engineering. 2022; 39: 72-89. doi: 10.1016/j.sajce.2021.11.010

28. Abosheiasha HF, Mansour DEA, Darwish MA, et al. Synthesis and investigation of structural, thermal, magnetic, and dielectric properties of multifunctional epoxy/Li0.5Al0.35Fe2.15O4/Al2O3 nanocomposites. Journal of Materials Research and Technology. 2022; 16: 1526-1546. doi: 10.1016/j.jmrt.2021.11.149

29. Mahian O, Kolsi L, Amani M, et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics Reports. 2019; 790: 1-48. doi: 10.1016/j.physrep.2018.11.004

30. Lin SC, Al-Kayiem HH. Evaluation of copper nanoparticles – Paraffin wax compositions for solar thermal energy storage. Solar Energy. 2016; 132: 267-278. doi: 10.1016/j.solener.2016.03.004

31. Arshad A, Jabbal M, Yan Y. Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems. Applied Thermal Engineering. 2020; 181: 115999. doi: 10.1016/j.applthermaleng.2020.115999

32. Kok B. Examining effects of special heat transfer fins designed for the melting process of PCM and Nano-PCM. Applied Thermal Engineering. 2020; 170: 114989. doi: 10.1016/j.applthermaleng.2020.114989

33. Sushobhan BR, Kar SP. Thermal Modeling of Melting of Nano based Phase Change Material for Improvement of Thermal Energy Storage. Energy Procedia. 2017; 109: 385-392. doi: 10.1016/j.egypro.2017.03.035




DOI: https://doi.org/10.24294/can.v7i1.4912

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, N. Samy, A. R. El-Sayed, S. M. Shalaby

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.