Carbon and graphene based nanocomposites for gas sensors—Current state and advances

Ayesha Kausar, Ishaq Ahmad

Article ID: 4681
Vol 7, Issue 1, 2024

VIEWS - 107 (Abstract) 30 (PDF)

Abstract


After the discovery of carbon nanoforms, carbon nanotube (one dimensional) and tube like nanostructure and graphene (two dimensional) nanosheets have gained immense research curiosity. Further nanotechnological developments have moved towards the formation of carbon nanotube nanocomposites and graphene nanocomposites. For the purpose, various matrices including thermoplastic polymers and conjugated polymers have been used. Methodology is the systematic gathering of the literature and development of a novel review outline, theme, and discussions regarding the discussed topics. Hence, varying conjugated polymers such as polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and nonconjugated nylon, poly(ethylene glycol), etc. have been processed using techniques like in situ, solution, electropolymerization, spin coating, etc. In sensors, the nanocomposites need to develop fine nanoparticle dispersion, network formation, and interfacial interactions ultimately supporting the electron or charge transfer in these nanomaterials desirable for the recognition of the gaseous species. Moreover, interactions of the nanocomposite with the analyte molecules define the sensing capabilities of the nanomaterials. Consequently, nanocarbon nanocomposite based gas sensors have been analyzed for conductivity, change in resistance, sensitivity, selectivity, response time, detection limit, and other desirable properties. For future designs, it is recommended to develop high-tech combinations of conjugated polymers like polythiophene derivatives using functional forms of graphene and carbon nanotube. In addition, use of advanced manufacturing techniques like 3D/4D printing and spin coating must be applied to form efficient sensors. In conclusions, this manuscript presents not only comprehensive but also comparative analysis on different gas analysis parameters such as detection limit, concentration, response time, etc. for various nanocomposite sensors. Lastly, the encounters in preparing and applying graphene/carbon nanotube sensors, associated utilizations, and possible future prospects have been discussed.


Keywords


carbon nanotube; graphene; polymer; nanocomposite; conductivity; gas sensing

Full Text:

PDF


References


1. Yang F. Study on the absorption characteristics and refractive index sensitivity characteristics of the periodic structure of double nanorods. Characterization and Application of Nanomaterials. 2022; 5(2): 77. doi: 10.24294/can.v5i2.1699

2. Soni S, Bajpai PK, Arora C. A review on metal-organic framework: Synthesis, properties and ap-plication. Characterization and Application of Nanomaterials. 2020; 3(2): 87. doi: 10.24294/can.v3i2.551

3. Elizabeth I, Athira C, Paul SJ, et al. CNT–PDMS film-based flexion sensor for examining physical activity in humans. Carbon Letters. 2024. doi: 10.1007/s42823-023-00678-x

4. Pezzuoli D, Angeli E, Repetto D, et al. Nanofluidic-Based Accumulation of Antigens for Miniaturized Immunoassay. Sensors. 2020; 20(6): 1615. doi: 10.3390/s20061615

5. Prosa M, Bolognesi M, Fornasari L, et al. Nanostructured Organic/Hybrid Materials and Components in Miniaturized Optical and Chemical Sensors. Nanomaterials. 2020; 10(3): 480. doi: 10.3390/nano10030480

6. Faridbod F, Norouzi P, Dinarvand R, et al. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade. Sensors. 2008; 8(4): 2331-2412. doi: 10.3390/s8042331

7. Long H, Turner S, Yan A, et al. Plasma assisted formation of 3D highly porous nanostructured metal oxide network on microheater platform for Low power gas sensing. Sensors and Actuators B: Chemical. 2019; 301: 127067. doi: 10.1016/j.snb.2019.127067

8. Seyedin S, Razal JM, Innis PC, et al. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Materials and Structures. 2016; 25(3): 035015. doi: 10.1088/0964-1726/25/3/035015

9. Zhang F, Wu S, Peng S, et al. Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Composites Science and Technology. 2019; 172: 7-16. doi: 10.1016/j.compscitech.2018.12.031

10. Parameswaranpillai J, Ganguly S. Introduction to polymer composite-based sensors. Polymeric Nanocomposite Materials for Sensor Applications. 2023; 1-21. doi: 10.1016/b978-0-323-98830-8.00006-0

11. Su S, Wu W, Gao J, et al. Nanomaterials-based sensors for applications in environmental monitoring. Journal of Materials Chemistry. 2012; 22(35): 18101. doi: 10.1039/c2jm33284a

12. Rane AV, Kanny K, Abitha VK, et al. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. Synthesis of Inorganic Nanomaterials. 2018; 121-139. doi: 10.1016/b978-0-08-101975-7.00005-1

13. Albar MMJ, Jamion NA, Baharin SNA, et al. Preparation of Novel Commercial Polyaniline Composites for Ammonia Detection. Solid State Phenomena. 2020; 301: 124-131. doi: 10.4028/www.scientific.net/ssp.301.124

14. Santra S, Bose A, Mitra K, et al. Exploring two decades of graphene: The jack of all trades. Applied Materials Today. 2024; 36: 102066. doi: 10.1016/j.apmt.2024.102066

15. Khan W, Sharma R, Saini P. Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications. Carbon Nanotubes - Current Progress of their Polymer Composites. 2016. doi: 10.5772/62497

16. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354(6348): 56-58. doi: 10.1038/354056a0

17. Guo H, Zhang Q, Liu Y, et al. Properties and Defence Applications of Carbon Nanotubes. Journal of Physics: Conference Series. 2023; 2478(4): 042010. doi: 10.1088/1742-6596/2478/4/042010

18. Dong X, Hu M, He J, et al. A new phase from compression of carbon nanotubes with anisotropic Dirac fermions. Scientific Reports. 2015; 5(1). doi: 10.1038/srep10713

19. Eletskii AV. Carbon nanotubes. Physics-Uspekhi. 1997; 40(9): 899-924. doi: 10.1070/pu1997v040n09abeh000282

20. Dinadayalane TC, Leszczynski J. Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene. Structural Chemistry. 2010; 21(6): 1155-1169. doi: 10.1007/s11224-010-9670-2

21. Tahhan ABA, Alkhedher M, Mourad AHI, et al. Effect of induced vacancy defects on the mechanical behavior of wavy single-walled carbon nanotubes. Nano Trends. 2023; 3: 100016. doi: 10.1016/j.nwnano.2023.100016

22. Lin Y, Cao Y, Ding S, et al. Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nature Electronics. 2023; 6(7): 506-515. doi: 10.1038/s41928-023-00983-3

23. Tyagi S, Negi S. Calculation of Density of States of Pristine and Functionalized Carbon Nanotubes: A DFT Approach. Indian Journal Of Science And Technology. 2023; 16(40): 3567-3574. doi: 10.17485/ijst/v16i40.1019

24. Rathinavel S, Priyadharshini K, Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering: B. 2021; 268: 115095. doi: 10.1016/j.mseb.2021.115095

25. Darıcık F, Topcu A, Aydın K, et al. Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application. International Journal of Hydrogen Energy. 2023; 48(3): 1090-1106. doi: 10.1016/j.ijhydene.2022.09.297

26. Mishra S, Sundaram B. Efficacy and challenges of carbon nanotube in wastewater and water treatment. Environmental Nanotechnology, Monitoring & Management. 2023; 19: 100764. doi: 10.1016/j.enmm.2022.100764

27. Xavier JR, Sadagopan Pandian V. Carbon nanotube‐based polymer nanocomposites: Evaluation of barrier, hydrophobic, and mechanical properties for aerospace applications. Polymer Engineering & Science. 2023; 63(9): 2806-2827. doi: 10.1002/pen.26407

28. Hu Z, Hong H. Review on Material Performance of Carbon Nanotube-Modified Polymeric Nanocomposites. Recent Progress in Materials. 2023; 5(3): 1-20. doi: 10.21926/rpm.2303031

29. Kim SG, Heo SJ, Kim S, et al. Ultrahigh strength and modulus of polyimide-carbon nanotube based carbon and graphitic fibers with superior electrical and thermal conductivities for advanced composite applications. Composites Part B: Engineering. 2022; 247: 110342. doi: 10.1016/j.compositesb.2022.110342

30. Raimondo M, Donati G, Milano G, et al. Hybrid composites based on carbon nanotubes and graphene nanosheets outperforming their single-nanofiller counterparts. FlatChem. 2022; 36: 100431. doi: 10.1016/j.flatc.2022.100431

31. Barzic AI. Thermal and Electrical Transport in Carbon Nanotubes Composites. Carbon Nanotubes for a Green Environment. 2022; 209-232. doi: 10.1201/9781003277200-9

32. Idumah CI, Obele CM. Understanding interfacial influence on properties of polymer nanocomposites. Surfaces and Interfaces. 2021; 22: 100879. doi: 10.1016/j.surfin.2020.100879

33. Su X, Wang R, Li X, et al. A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Materials Science. 2022; 4(3): 185-204. doi: 10.1016/j.nanoms.2021.08.003

34. Idumah CI, Ezeani EO, Nwuzor IC. A review: advancements in conductive polymers nanocomposites. Polymer-Plastics Technology and Materials. 2020; 60(7): 756-783. doi: 10.1080/25740881.2020.1850783

35. Krishna Kumar M, Leela Mohana Reddy A, Ramaprabhu S. Exfoliated single-walled carbon nanotube-based hydrogen sensor. Sensors and Actuators B: Chemical. 2008; 130(2): 653-660. doi: 10.1016/j.snb.2007.10.033

36. Cheng G, Xu H, Gao N, et al. Carbon Nanotubes Field-Effect Transistor (Cnts-Fet) Pressure Sensor Based on Three-Dimensional Conformal Force-Sensitive Gate Modulation. SSRN Electronic Journal. 2022. doi: 10.2139/ssrn.4250830

37. Paul R, Zhai Q, Roy AK, et al. Charge transfer of carbon nanomaterials for efficient metal‐free electrocatalysis. Interdisciplinary Materials. 2022; 1(1): 28-50. doi: 10.1002/idm2.12010

38. Vadalkar S, Chodvadiya D, Som NN, et al. An Ab‐initio Study of the C18 nanocluster for Hazardous Gas Sensor Application. ChemistrySelect. 2022; 7(3). doi: 10.1002/slct.202103874

39. Chen D, Li Y, Xiao S, et al. Single Ni atom doped WS2 monolayer as sensing substrate for dissolved gases in transformer oil: A first-principles study. Applied Surface Science. 2022; 579: 152141. doi: 10.1016/j.apsusc.2021.152141

40. Hao Y, Qu S, Xiao Y, et al. Study on the ozonation-modified multi-walled carbon nanotubes in polymer composites. Polymer Bulletin. 2022; 80(6): 6527-6543. doi: 10.1007/s00289-022-04367-z

41. Ji D, Yoon SY, Kim G, et al. Tailoring the density of carbon nanotube networks through chemical self-assembly by click reaction for reliable transistors. Chemical Engineering Journal. 2023; 452: 139500. doi: 10.1016/j.cej.2022.139500

42. Spitalsky Z, Tasis D, Papagelis K, et al. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science. 2010; 35(3): 357-401. doi: 10.1016/j.progpolymsci.2009.09.003

43. Choudhary M, Sharma A, Aravind Raj S, et al. Contemporary review on carbon nanotube (CNT) composites and their impact on multifarious applications. Nanotechnology Reviews. 2022; 11(1): 2632-2660. doi: 10.1515/ntrev-2022-0146

44. Augustyn P, Rytlewski P, Moraczewski K, et al. A review on the direct electroplating of polymeric materials. Journal of Materials Science. 2021; 56(27): 14881-14899. doi: 10.1007/s10853-021-06246-w

45. Ahmed S, Sinha SK. Studies on nanomaterial-based p-type semiconductor gas sensors. Environmental Science and Pollution Research. 2022; 30(10): 24975-24986. doi: 10.1007/s11356-022-21218-6

46. Ehsani M, Rahimi P, Joseph Y. Structure–Function Relationships of Nanocarbon/Polymer Composites for Chemiresistive Sensing: A Review. Sensors. 2021; 21(9): 3291. doi: 10.3390/s21093291

47. Luo SXL, Swager TM. Chemiresistive sensing with functionalized carbon nanotubes. Nature Reviews Methods Primers. 2023; 3(1). doi: 10.1038/s43586-023-00255-6

48. Chandrapalan S, Arasaradnam RP, Kvasnik F, et al. Cross-reactive Sensors (or e-Noses). Volatile Biomarkers for Human Health. 2022; 364-378. doi: 10.1039/9781839166990-00364

49. Vidakis N, Petousis M, Velidakis E, et al. Multi-functional polyamide 12 (PA12)/multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties. Advanced Composite Materials. 2022; 31(6): 630-654. doi: 10.1080/09243046.2022.2076019

50. Akbari E, Buntat Z, Ahmad M, et al. Analytical Calculation of Sensing Parameters on Carbon Nanotube Based Gas Sensors. Sensors. 2014; 14(3): 5502-5515. doi: 10.3390/s140305502

51. Chiou JC, Wu CC, Lin TM. Sensitivity Enhancement of Acetone Gas Sensor using Polyethylene Glycol/Multi-Walled Carbon Nanotubes Composite Sensing Film with Thermal Treatment. Polymers. 2019; 11(3): 423. doi: 10.3390/polym11030423

52. Lapointe F, Ding J, Lefebvre J. Carbon Nanotube Transistors as Gas Sensors: Response Differentiation Using Polymer Gate Dielectrics. ACS Applied Polymer Materials. 2019; 1(12): 3269-3278. doi: 10.1021/acsapm.9b00707

53. Hulimane Shivaswamy R, Kanive bagilu Ananthapadmanabha V, Kusanur R. Highly sensitive acetone sensor based on conjugated polymer nanocomposites. Polymers for Advanced Technologies. 2022; 34(4): 1118-1132. doi: 10.1002/pat.5956

54. Sonker RK, Singh K, Sonkawade R, et al. Advanced Functional Materials for Optical and Hazardous Sensing. Springer Nature Singapore; 2023. doi: 10.1007/978-981-99-6014-9

55. Mirzaei A, Kumar V, Bonyani M, et al. Conducting Polymer Nanofibers based Sensors for Organic and Inorganic Gaseous Compounds. Asian Journal of Atmospheric Environment. 2020; 14(2): 85-104. doi: 10.5572/ajae.2020.14.2.85

56. Shahabuddin S, Pandey AK, Khalid M, et al. Advances in Hybrid Conducting Polymer Technology. Springer International Publishing; 2021. doi: 10.1007/978-3-030-62090-5

57. Srivastava S, Sharma SS, Agrawal S, et al. Study of chemiresistor type CNT doped polyaniline gas sensor. Synthetic Metals. 2010; 160(5-6): 529-534. doi: 10.1016/j.synthmet.2009.11.022

58. Karmakar N, Jain S, Fernandes R, et al. Enhanced Sensing Performance of an Ammonia Gas Sensor Based on Ag‐Decorated ZnO Nanorods/Polyaniline Nanocomposite. ChemistrySelect. 2023; 8(18). doi: 10.1002/slct.202204284

59. Miah MR, Yang M, Khandaker S, et al. Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review. Sensors and Actuators A: Physical. 2022; 347: 113933. doi: 10.1016/j.sna.2022.113933

60. H V, S P A, Yesappa L, et al. Camphor sulfonic acid surfactant assisted polythiophene nanocomposite for efficient electrochemical hydrazine sensor. Materials Research Express. 2020; 6(12): 125375. doi: 10.1088/2053-1591/ab5ef5

61. Badhulika S, Myung NV, Mulchandani A. Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds. Talanta. 2014; 123: 109-114. doi: 10.1016/j.talanta.2014.02.005

62. Sharma S, Hussain S, Singh S, et al. MWCNT-conducting polymer composite based ammonia gas sensors: A new approach for complete recovery process. Sensors and Actuators B: Chemical. 2014; 194: 213-219. doi: 10.1016/j.snb.2013.12.050

63. Eising M, Cava CE, Salvatierra RV, et al. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sensors and Actuators B: Chemical. 2017; 245: 25-33. doi: 10.1016/j.snb.2017.01.132

64. Jang J, Bae J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sensors and Actuators B: Chemical. 2007; 122(1): 7-13. doi: 10.1016/j.snb.2006.05.002

65. Van Hieu N, Dung NQ, Tam PD, et al. Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature. Sensors and Actuators B: Chemical. 2009; 140(2): 500-507. doi: 10.1016/j.snb.2009.04.061

66. Geim AK. Graphene: Status and Prospects. Science. 2009; 324(5934): 1530-1534. doi: 10.1126/science.1158877

67. Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007; 6(3): 183-191. doi: 10.1038/nmat1849

68. Narayanam PK, Botcha VD, Ghosh M, et al. Growth and photocatalytic behavior of transparent reduced GO–ZnO nanocomposite sheets. Nanotechnology. 2019; 30(48): 485601. doi: 10.1088/1361-6528/ab3ced

69. Wei C, Negishi R, Ogawa Y, et al. Turbostratic multilayer graphene synthesis on CVD graphene template toward improving electrical performance. Japanese Journal of Applied Physics. 2019; 58(SI): SIIB04. doi: 10.7567/1347-4065/ab0c7b

70. Wang M, Jang SK, Jang W, et al. A Platform for Large‐Scale Graphene Electronics – CVD Growth of Single‐Layer Graphene on CVD‐Grown Hexagonal Boron Nitride. Advanced Materials. 2013; 25(19): 2746-2752. doi: 10.1002/adma.201204904

71. Jiříčková A, Jankovský O, Sofer Z, et al. Synthesis and Applications of Graphene Oxide. Materials. 2022; 15(3): 920. doi: 10.3390/ma15030920

72. Lee H, Lee KS. Interlayer distance controlled graphene, supercapacitor and method of producing the same. 2019.

73. Mohan VB, Lau K tak, Hui D, et al. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering. 2018; 142: 200-220. doi: 10.1016/j.compositesb.2018.01.013

74. Mane AT, Navale ST, Sen S, et al. Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Organic Electronics. 2015; 16: 195-204. doi: 10.1016/j.orgel.2014.10.045

75. Kausar A, Ahmad I. Highpoints of carbon nanotube nanocomposite sensors—A review. e-Prime - Advances in Electrical Engineering, Electronics and Energy. 2024; 7: 100419. doi: 10.1016/j.prime.2024.100419

76. Husain A, Shariq MU. Polypyrrole nanocomposites as promising gas/vapour sensing materials: Past, present and future prospects. Sensors and Actuators A: Physical. 2023; 359: 114504. doi: 10.1016/j.sna.2023.114504

77. Kausar A, Ahmad I, Zhu T, et al. Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials. Pollutants. 2023; 3(1): 123-149. doi: 10.3390/pollutants3010011

78. Zegebreal LT, Tegegne NA, Hone FG. Recent progress in hybrid conducting polymers and metal oxide nanocomposite for room-temperature gas sensor applications: A review. Sensors and Actuators A: Physical. 2023; 359: 114472. doi: 10.1016/j.sna.2023.114472

79. Della Pelle F, Angelini C, Sergi M, et al. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: application to grain samples. Talanta. 2018; 186: 389-396. doi: 10.1016/j.talanta.2018.04.082

80. Pang J, Peng S, Hou C, et al. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors. 2023; 8(2): 482-514. doi: 10.1021/acssensors.2c02790

81. Xiao Z, Kong LB, Ruan S, et al. Recent development in nanocarbon materials for gas sensor applications. Sensors and Actuators B: Chemical. 2018; 274: 235-267. doi: 10.1016/j.snb.2018.07.040

82. Liu X, Zheng W, Kumar R, et al. Conducting polymer-based nanostructures for gas sensors. Coordination Chemistry Reviews. 2022; 462: 214517. doi: 10.1016/j.ccr.2022.214517

83. Kushwaha CS, Singh P, Shukla SK, et al. Advances in conducting polymer nanocomposite based chemical sensors: An overview. Materials Science and Engineering: B. 2022; 284: 115856. doi: 10.1016/j.mseb.2022.115856

84. D’Amico A, Di Natale C. A contribution on some basic definitions of sensors properties. IEEE Sensors Journal. 2001; 1(3): 183-190. doi: 10.1109/jsen.2001.954831

85. Pilan L, Raicopol M. Highly selective and stable glucose biosensors based on polyaniline/carbon nanotubes composites. UPB Sci. Bull., Ser. B. 2014; 76: 155-166.

86. Yang D, Wang J, Cao Y, et al. Polyaniline-Based Biological and Chemical Sensors: Sensing Mechanism, Configuration Design, and Perspective. ACS Applied Electronic Materials. 2023; 5(2): 593-611. doi: 10.1021/acsaelm.2c01405

87. Aycan D, Karaca F, Alemdar N. Development of hyaluronic acid-based electroconductive hydrogel as a sensitive non-enzymatic glucose sensor. Materials Today Communications. 2023; 35: 105745. doi: 10.1016/j.mtcomm.2023.105745

88. Wei W, Nong J, Zhang G, et al. Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing. Sensors. 2016; 17(12): 2. doi: 10.3390/s17010002

89. Wu G, Du H, Lee D, et al. Polyaniline/Graphene-Functionalized Flexible Waste Mask Sensors for Ammonia and Volatile Sulfur Compound Monitoring. ACS Applied Materials & Interfaces. 2022; 14(50): 56056-56064. doi: 10.1021/acsami.2c15443

90. Krishna KG, Parne S, Pothukanuri N, et al. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sensors and Actuators A: Physical. 2022; 341: 113578. doi: 10.1016/j.sna.2022.113578

91. Ruecha N, Rodthongkum N, Cate DM, et al. Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Analytica Chimica Acta. 2015; 874: 40-48. doi: 10.1016/j.aca.2015.02.064

92. Tang Y, Hu X, Liu D, et al. Effect of Microwave Treatment of Graphite on the Electrical Conductivity and Electrochemical Properties of Polyaniline/Graphene Oxide Composites. Polymers. 2016; 8(11): 399. doi: 10.3390/polym8110399

93. Kooti M, Keshtkar S, Askarieh M, et al. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sensors and Actuators B: Chemical. 2019; 281: 96-106. doi: 10.1016/j.snb.2018.10.032

94. Biswas MRUD, Oh WC. Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semiconductor–polymer nanocomposites. RSC Advances. 2019; 9(20): 11484-11492. doi: 10.1039/c9ra00007k

95. Bonyani M, Zebarjad SM, Janghorban K, et al. Au-Decorated Polyaniline-ZnO Electrospun Composite Nanofiber Gas Sensors with Enhanced Response to NO2 Gas. Chemosensors. 2022; 10(10): 388. doi: 10.3390/chemosensors10100388

96. Bairi V, Bourdo S, Sacre N, et al. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite. Sensors. 2015; 15(10): 26415-26429. doi: 10.3390/s151026415

97. Huang X, Hu N, Gao R, et al. Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. Journal of Materials Chemistry. 2012; 22(42): 22488. doi: 10.1039/c2jm34340a

98. Zhang G, Liu M. Effect of particle size and dopant on properties of SnO2-based gas sensors. Sensors and Actuators B: Chemical. 2000; 69(1-2): 144-152. doi: 10.1016/S0925-4005(00)00528-1

99. Qiu J, Shi L, Liang R, et al. Controllable Deposition of a Platinum Nanoparticle Ensemble on a Polyaniline/Graphene Hybrid as a Novel Electrode Material for Electrochemical Sensing. Chemistry – A European Journal. 2012; 18(25): 7950-7959. doi: 10.1002/chem.201200258

100. Konwer S, Guha AK, Dolui SK. Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. Journal of Materials Science. 2012; 48(4): 1729-1739. doi: 10.1007/s10853-012-6931-z

101. Wu Z, Chen X, Zhu S, et al. Room Temperature Methane Sensor Based on Graphene Nanosheets/Polyaniline Nanocomposite Thin Film. IEEE Sensors Journal. 2013; 13(2): 777-782. doi: 10.1109/jsen.2012.2227597

102. Zhu H, Li Y, Qiu R, et al. Responsive fluorescent Bi2O3@PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery. Biomaterials. 2012; 33(10): 3058-3069. doi: 10.1016/j.biomaterials.2012.01.003

103. Zou Y, Wang Q, Xiang C, et al. Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing. International Journal of Hydrogen Energy. 2016; 41(11): 5396-5404. doi: 10.1016/j.ijhydene.2016.02.023

104. Tian W, Liu X, Yu W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Applied Sciences. 2018; 8(7): 1118. doi: 10.3390/app8071118

105. Zhang L, Li C, Liu A, et al. Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. Journal of Materials Chemistry. 2012; 22(17): 8438. doi: 10.1039/c2jm16552j

106. Dan Y, Lu Y, Kybert NJ, et al. Intrinsic Response of Graphene Vapor Sensors. Nano Letters. 2009; 9(4): 1472-1475. doi: 10.1021/nl8033637

107. Ganguly S. Preparation/processing of polymer-graphene composites by different techniques. Polymer Nanocomposites Containing Graphene. 2022; 45-74. doi: 10.1016/b978-0-12-821639-2.00015-x

108. Hu K, Kulkarni DD, Choi I, et al. Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science. 2014; 39(11): 1934-1972. doi: 10.1016/j.progpolymsci.2014.03.001

109. Jaouen K, Lebon F, Jousselme B, et al. (Invited) Backside Absorbing Layer Microscopy: A New Tool to Study the Optical, Chemical and Electrochemical Properties of 2D Materials. ECS Meeting Abstracts. 2020; MA2020-01(8): 742-742. doi: 10.1149/ma2020-018742mtgabs

110. Hu T. Efficient exfoliation of UV-curable, high-quality graphene from graphite in common low-boiling-point organic solvents with a designer hyperbranched polyethylene copolymer and their applications in electrothermal heaters. Journal of Colloid and Interface Science. 2020.

111. Chen W, Weimin H, Li D, et al. A critical review on the development and performance of polymer/graphene nanocomposites. Science and Engineering of Composite Materials. 2018; 25(6): 1059-1073. doi: 10.1515/secm-2017-0199

112. Owji E, Ostovari F, Keshavarz A. Influence of the chemical structure of diisocyanate on the electrical and thermal properties of in situ polymerized polyurethane–graphene composite films. Physical Chemistry Chemical Physics. 2022; 24(46): 28564-28576. doi: 10.1039/d2cp03826a

113. Itapu B, Jayatissa A. A Review in Graphene/Polymer Composites. Chemical Science International Journal. 2018; 23(3): 1-16. doi: 10.9734/csji/2018/41031

114. Hu H, Wang X, Wang J, et al. Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters. 2010; 484(4-6): 247-253. doi: 10.1016/j.cplett.2009.11.024

115. Montes S, Carrasco PM, Ruiz V, et al. Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Composites Science and Technology. 2015; 117: 26-31. doi: 10.1016/j.compscitech.2015.05.018

116. Deng H, Lin L, Ji M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science. 2014; 39(4): 627-655. doi: 10.1016/j.progpolymsci.2013.07.007

117. Shi G, Meng Q, Zhao Z, et al. Facile Fabrication of Graphene Membranes with Readily Tunable Structures. ACS Applied Materials & Interfaces. 2015; 7(25): 13745-13757. doi: 10.1021/am5091287

118. Chen D, Chen C, Du D. Detection of Organophosphate Pesticide Using Polyaniline and Carbon Nanotubes Composite Based on Acetylcholinesterase Inhibition. Journal of Nanoscience and Nanotechnology. 2010; 10(9): 5662-5666. doi: 10.1166/jnn.2010.2477

119. Parameswaranpillai J, Ganguly S. Polymeric Nanocomposite Materials for Sensor Applications. Elsevier. 2022.

120. Kyeong D, Kim M, Kwak M. Thermally Triggered Multilevel Diffractive Optical Elements Tailored by Shape-Memory Polymers for Temperature History Sensors. ACS Applied Materials & Interfaces. 2023; 15(7): 9813-9819. doi: 10.1021/acsami.2c18901

121. Chen S, Li J, Shi H, et al. Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications. Chemical Engineering Journal. 2023; 455: 140655. doi: 10.1016/j.cej.2022.140655




DOI: https://doi.org/10.24294/can.v7i1.4681

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.