Carbon and graphene based nanocomposites for gas sensors—Current state and advances

Ayesha Kausar, Ishaq Ahmad

2498 (Abstract)

Keywords


carbon nanotube; graphene; polymer; nanocomposite; conductivity; gas sensing

Full Text:

PDF


References


Yang F. Study on the absorption characteristics and refractive index sensitivity characteristics of the periodic structure of double nanorods. Characterization and Application of Nanomaterials. 2022; 5(2): 77. doi: 10.24294/can.v5i2.1699 Soni S, Bajpai PK, Arora C. A review on metal-organic framework: Synthesis, properties and ap-plication. Characterization and Application of Nanomaterials. 2020; 3(2): 87. doi: 10.24294/can.v3i2.551 Elizabeth I, Athira C, Paul SJ, et al. CNT–PDMS film-based flexion sensor for examining physical activity in humans. Carbon Letters. 2024. doi: 10.1007/s42823-023-00678-x Pezzuoli D, Angeli E, Repetto D, et al. Nanofluidic-Based Accumulation of Antigens for Miniaturized Immunoassay. Sensors. 2020; 20(6): 1615. doi: 10.3390/s20061615 Prosa M, Bolognesi M, Fornasari L, et al. Nanostructured Organic/Hybrid Materials and Components in Miniaturized Optical and Chemical Sensors. Nanomaterials. 2020; 10(3): 480. doi: 10.3390/nano10030480 Faridbod F, Norouzi P, Dinarvand R, et al. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade. Sensors. 2008; 8(4): 2331-2412. doi: 10.3390/s8042331 Long H, Turner S, Yan A, et al. Plasma assisted formation of 3D highly porous nanostructured metal oxide network on microheater platform for Low power gas sensing. Sensors and Actuators B: Chemical. 2019; 301: 127067. doi: 10.1016/j.snb.2019.127067 Seyedin S, Razal JM, Innis PC, et al. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Materials and Structures. 2016; 25(3): 035015. doi: 10.1088/0964-1726/25/3/035015 Zhang F, Wu S, Peng S, et al. Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Composites Science and Technology. 2019; 172: 7-16. doi: 10.1016/j.compscitech.2018.12.031 Parameswaranpillai J, Ganguly S. Introduction to polymer composite-based sensors. Polymeric Nanocomposite Materials for Sensor Applications. 2023; 1-21. doi: 10.1016/b978-0-323-98830-8.00006-0 Su S, Wu W, Gao J, et al. Nanomaterials-based sensors for applications in environmental monitoring. Journal of Materials Chemistry. 2012; 22(35): 18101. doi: 10.1039/c2jm33284a Rane AV, Kanny K, Abitha VK, et al. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. Synthesis of Inorganic Nanomaterials. 2018; 121-139. doi: 10.1016/b978-0-08-101975-7.00005-1 Albar MMJ, Jamion NA, Baharin SNA, et al. Preparation of Novel Commercial Polyaniline Composites for Ammonia Detection. Solid State Phenomena. 2020; 301: 124-131. doi: 10.4028/www.scientific.net/ssp.301.124 Santra S, Bose A, Mitra K, et al. Exploring two decades of graphene: The jack of all trades. Applied Materials Today. 2024; 36: 102066. doi: 10.1016/j.apmt.2024.102066 Khan W, Sharma R, Saini P. Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications. Carbon Nanotubes - Current Progress of their Polymer Composites. 2016. doi: 10.5772/62497 Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354(6348): 56-58. doi: 10.1038/354056a0 Guo H, Zhang Q, Liu Y, et al. Properties and Defence Applications of Carbon Nanotubes. Journal of Physics: Conference Series. 2023; 2478(4): 042010. doi: 10.1088/1742-6596/2478/4/042010 Dong X, Hu M, He J, et al. A new phase from compression of carbon nanotubes with anisotropic Dirac fermions. Scientific Reports. 2015; 5(1). doi: 10.1038/srep10713 Eletskii AV. Carbon nanotubes. Physics-Uspekhi. 1997; 40(9): 899-924. doi: 10.1070/pu1997v040n09abeh000282 Dinadayalane TC, Leszczynski J. Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene. Structural Chemistry. 2010; 21(6): 1155-1169. doi: 10.1007/s11224-010-9670-2 Tahhan ABA, Alkhedher M, Mourad AHI, et al. Effect of induced vacancy defects on the mechanical behavior of wavy single-walled carbon nanotubes. Nano Trends. 2023; 3: 100016. doi: 10.1016/j.nwnano.2023.100016 Lin Y, Cao Y, Ding S, et al. Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nature Electronics. 2023; 6(7): 506-515. doi: 10.1038/s41928-023-00983-3 Tyagi S, Negi S. Calculation of Density of States of Pristine and Functionalized Carbon Nanotubes: A DFT Approach. Indian Journal Of Science And Technology. 2023; 16(40): 3567-3574. doi: 10.17485/ijst/v16i40.1019 Rathinavel S, Priyadharshini K, Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering: B. 2021; 268: 115095. doi: 10.1016/j.mseb.2021.115095 Darıcık F, Topcu A, Aydın K, et al. Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application. International Journal of Hydrogen Energy. 2023; 48(3): 1090-1106. doi: 10.1016/j.ijhydene.2022.09.297 Mishra S, Sundaram B. Efficacy and challenges of carbon nanotube in wastewater and water treatment. Environmental Nanotechnology, Monitoring & Management. 2023; 19: 100764. doi: 10.1016/j.enmm.2022.100764 Xavier JR, Sadagopan Pandian V. Carbon nanotube‐based polymer nanocomposites: Evaluation of barrier, hydrophobic, and mechanical properties for aerospace applications. Polymer Engineering & Science. 2023; 63(9): 2806-2827. doi: 10.1002/pen.26407 Hu Z, Hong H. Review on Material Performance of Carbon Nanotube-Modified Polymeric Nanocomposites. Recent Progress in Materials. 2023; 5(3): 1-20. doi: 10.21926/rpm.2303031 Kim SG, Heo SJ, Kim S, et al. Ultrahigh strength and modulus of polyimide-carbon nanotube based carbon and graphitic fibers with superior electrical and thermal conductivities for advanced composite applications. Composites Part B: Engineering. 2022; 247: 110342. doi: 10.1016/j.compositesb.2022.110342 Raimondo M, Donati G, Milano G, et al. Hybrid composites based on carbon nanotubes and graphene nanosheets outperforming their single-nanofiller counterparts. FlatChem. 2022; 36: 100431. doi: 10.1016/j.flatc.2022.100431 Barzic AI. Thermal and Electrical Transport in Carbon Nanotubes Composites. Carbon Nanotubes for a Green Environment. 2022; 209-232. doi: 10.1201/9781003277200-9 Idumah CI, Obele CM. Understanding interfacial influence on properties of polymer nanocomposites. Surfaces and Interfaces. 2021; 22: 100879. doi: 10.1016/j.surfin.2020.100879 Su X, Wang R, Li X, et al. A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Materials Science. 2022; 4(3): 185-204. doi: 10.1016/j.nanoms.2021.08.003 Idumah CI, Ezeani EO, Nwuzor IC. A review: advancements in conductive polymers nanocomposites. Polymer-Plastics Technology and Materials. 2020; 60(7): 756-783. doi: 10.1080/25740881.2020.1850783 Krishna Kumar M, Leela Mohana Reddy A, Ramaprabhu S. Exfoliated single-walled carbon nanotube-based hydrogen sensor. Sensors and Actuators B: Chemical. 2008; 130(2): 653-660. doi: 10.1016/j.snb.2007.10.033 Cheng G, Xu H, Gao N, et al. Carbon Nanotubes Field-Effect Transistor (Cnts-Fet) Pressure Sensor Based on Three-Dimensional Conformal Force-Sensitive Gate Modulation. SSRN Electronic Journal. 2022. doi: 10.2139/ssrn.4250830 Paul R, Zhai Q, Roy AK, et al. Charge transfer of carbon nanomaterials for efficient metal‐free electrocatalysis. Interdisciplinary Materials. 2022; 1(1): 28-50. doi: 10.1002/idm2.12010 Vadalkar S, Chodvadiya D, Som NN, et al. An Ab‐initio Study of the C18 nanocluster for Hazardous Gas Sensor Application. ChemistrySelect. 2022; 7(3). doi: 10.1002/slct.202103874 Chen D, Li Y, Xiao S, et al. Single Ni atom doped WS2 monolayer as sensing substrate for dissolved gases in transformer oil: A first-principles study. Applied Surface Science. 2022; 579: 152141. doi: 10.1016/j.apsusc.2021.152141 Hao Y, Qu S, Xiao Y, et al. Study on the ozonation-modified multi-walled carbon nanotubes in polymer composites. Polymer Bulletin. 2022; 80(6): 6527-6543. doi: 10.1007/s00289-022-04367-z Ji D, Yoon SY, Kim G, et al. Tailoring the density of carbon nanotube networks through chemical self-assembly by click reaction for reliable transistors. Chemical Engineering Journal. 2023; 452: 139500. doi: 10.1016/j.cej.2022.139500 Spitalsky Z, Tasis D, Papagelis K, et al. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science. 2010; 35(3): 357-401. doi: 10.1016/j.progpolymsci.2009.09.003 Choudhary M, Sharma A, Aravind Raj S, et al. Contemporary review on carbon nanotube (CNT) composites and their impact on multifarious applications. Nanotechnology Reviews. 2022; 11(1): 2632-2660. doi: 10.1515/ntrev-2022-0146 Augustyn P, Rytlewski P, Moraczewski K, et al. A review on the direct electroplating of polymeric materials. Journal of Materials Science. 2021; 56(27): 14881-14899. doi: 10.1007/s10853-021-06246-w Ahmed S, Sinha SK. Studies on nanomaterial-based p-type semiconductor gas sensors. Environmental Science and Pollution Research. 2022; 30(10): 24975-24986. doi: 10.1007/s11356-022-21218-6 Ehsani M, Rahimi P, Joseph Y. Structure–Function Relationships of Nanocarbon/Polymer Composites for Chemiresistive Sensing: A Review. Sensors. 2021; 21(9): 3291. doi: 10.3390/s21093291 Luo SXL, Swager TM. Chemiresistive sensing with functionalized carbon nanotubes. Nature Reviews Methods Primers. 2023; 3(1). doi: 10.1038/s43586-023-00255-6 Chandrapalan S, Arasaradnam RP, Kvasnik F, et al. Cross-reactive Sensors (or e-Noses). Volatile Biomarkers for Human Health. 2022; 364-378. doi: 10.1039/9781839166990-00364 Vidakis N, Petousis M, Velidakis E, et al. Multi-functional polyamide 12 (PA12)/multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties. Advanced Composite Materials. 2022; 31(6): 630-654. doi: 10.1080/09243046.2022.2076019 Akbari E, Buntat Z, Ahmad M, et al. Analytical Calculation of Sensing Parameters on Carbon Nanotube Based Gas Sensors. Sensors. 2014; 14(3): 5502-5515. doi: 10.3390/s140305502 Chiou JC, Wu CC, Lin TM. Sensitivity Enhancement of Acetone Gas Sensor using Polyethylene Glycol/Multi-Walled Carbon Nanotubes Composite Sensing Film with Thermal Treatment. Polymers. 2019; 11(3): 423. doi: 10.3390/polym11030423 Lapointe F, Ding J, Lefebvre J. Carbon Nanotube Transistors as Gas Sensors: Response Differentiation Using Polymer Gate Dielectrics. ACS Applied Polymer Materials. 2019; 1(12): 3269-3278. doi: 10.1021/acsapm.9b00707 Hulimane Shivaswamy R, Kanive bagilu Ananthapadmanabha V, Kusanur R. Highly sensitive acetone sensor based on conjugated polymer nanocomposites. Polymers for Advanced Technologies. 2022; 34(4): 1118-1132. doi: 10.1002/pat.5956 Sonker RK, Singh K, Sonkawade R, et al. Advanced Functional Materials for Optical and Hazardous Sensing. Springer Nature Singapore; 2023. doi: 10.1007/978-981-99-6014-9 Mirzaei A, Kumar V, Bonyani M, et al. Conducting Polymer Nanofibers based Sensors for Organic and Inorganic Gaseous Compounds. Asian Journal of Atmospheric Environment. 2020; 14(2): 85-104. doi: 10.5572/ajae.2020.14.2.85 Shahabuddin S, Pandey AK, Khalid M, et al. Advances in Hybrid Conducting Polymer Technology. Springer International Publishing; 2021. doi: 10.1007/978-3-030-62090-5 Srivastava S, Sharma SS, Agrawal S, et al. Study of chemiresistor type CNT doped polyaniline gas sensor. Synthetic Metals. 2010; 160(5-6): 529-534. doi: 10.1016/j.synthmet.2009.11.022 Karmakar N, Jain S, Fernandes R, et al. Enhanced Sensing Performance of an Ammonia Gas Sensor Based on Ag‐Decorated ZnO Nanorods/Polyaniline Nanocomposite. ChemistrySelect. 2023; 8(18). doi: 10.1002/slct.202204284 Miah MR, Yang M, Khandaker S, et al. Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review. Sensors and Actuators A: Physical. 2022; 347: 113933. doi: 10.1016/j.sna.2022.113933 H V, S P A, Yesappa L, et al. Camphor sulfonic acid surfactant assisted polythiophene nanocomposite for efficient electrochemical hydrazine sensor. Materials Research Express. 2020; 6(12): 125375. doi: 10.1088/2053-1591/ab5ef5 Badhulika S, Myung NV, Mulchandani A. Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds. Talanta. 2014; 123: 109-114. doi: 10.1016/j.talanta.2014.02.005 Sharma S, Hussain S, Singh S, et al. MWCNT-conducting polymer composite based ammonia gas sensors: A new approach for complete recovery process. Sensors and Actuators B: Chemical. 2014; 194: 213-219. doi: 10.1016/j.snb.2013.12.050 Eising M, Cava CE, Salvatierra RV, et al. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sensors and Actuators B: Chemical. 2017; 245: 25-33. doi: 10.1016/j.snb.2017.01.132 Jang J, Bae J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sensors and Actuators B: Chemical. 2007; 122(1): 7-13. doi: 10.1016/j.snb.2006.05.002 Van Hieu N, Dung NQ, Tam PD, et al. Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature. Sensors and Actuators B: Chemical. 2009; 140(2): 500-507. doi: 10.1016/j.snb.2009.04.061 Geim AK. Graphene: Status and Prospects. Science. 2009; 324(5934): 1530-1534. doi: 10.1126/science.1158877 Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007; 6(3): 183-191. doi: 10.1038/nmat1849 Narayanam PK, Botcha VD, Ghosh M, et al. Growth and photocatalytic behavior of transparent reduced GO–ZnO nanocomposite sheets. Nanotechnology. 2019; 30(48): 485601. doi: 10.1088/1361-6528/ab3ced Wei C, Negishi R, Ogawa Y, et al. Turbostratic multilayer graphene synthesis on CVD graphene template toward improving electrical performance. Japanese Journal of Applied Physics. 2019; 58(SI): SIIB04. doi: 10.7567/1347-4065/ab0c7b Wang M, Jang SK, Jang W, et al. A Platform for Large‐Scale Graphene Electronics – CVD Growth of Single‐Layer Graphene on CVD‐Grown Hexagonal Boron Nitride. Advanced Materials. 2013; 25(19): 2746-2752. doi: 10.1002/adma.201204904 Jiříčková A, Jankovský O, Sofer Z, et al. Synthesis and Applications of Graphene Oxide. Materials. 2022; 15(3): 920. doi: 10.3390/ma15030920 Lee H, Lee KS. Interlayer distance controlled graphene, supercapacitor and method of producing the same. 2019. Mohan VB, Lau K tak, Hui D, et al. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering. 2018; 142: 200-220. doi: 10.1016/j.compositesb.2018.01.013 Mane AT, Navale ST, Sen S, et al. Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Organic Electronics. 2015; 16: 195-204. doi: 10.1016/j.orgel.2014.10.045 Kausar A, Ahmad I. Highpoints of carbon nanotube nanocomposite sensors—A review. e-Prime - Advances in Electrical Engineering, Electronics and Energy. 2024; 7: 100419. doi: 10.1016/j.prime.2024.100419 Husain A, Shariq MU. Polypyrrole nanocomposites as promising gas/vapour sensing materials: Past, present and future prospects. Sensors and Actuators A: Physical. 2023; 359: 114504. doi: 10.1016/j.sna.2023.114504 Kausar A, Ahmad I, Zhu T, et al. Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials. Pollutants. 2023; 3(1): 123-149. doi: 10.3390/pollutants3010011 Zegebreal LT, Tegegne NA, Hone FG. Recent progress in hybrid conducting polymers and metal oxide nanocomposite for room-temperature gas sensor applications: A review. Sensors and Actuators A: Physical. 2023; 359: 114472. doi: 10.1016/j.sna.2023.114472 Della Pelle F, Angelini C, Sergi M, et al. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: application to grain samples. Talanta. 2018; 186: 389-396. doi: 10.1016/j.talanta.2018.04.082 Pang J, Peng S, Hou C, et al. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors. 2023; 8(2): 482-514. doi: 10.1021/acssensors.2c02790 Xiao Z, Kong LB, Ruan S, et al. Recent development in nanocarbon materials for gas sensor applications. Sensors and Actuators B: Chemical. 2018; 274: 235-267. doi: 10.1016/j.snb.2018.07.040 Liu X, Zheng W, Kumar R, et al. Conducting polymer-based nanostructures for gas sensors. Coordination Chemistry Reviews. 2022; 462: 214517. doi: 10.1016/j.ccr.2022.214517 Kushwaha CS, Singh P, Shukla SK, et al. Advances in conducting polymer nanocomposite based chemical sensors: An overview. Materials Science and Engineering: B. 2022; 284: 115856. doi: 10.1016/j.mseb.2022.115856 D’Amico A, Di Natale C. A contribution on some basic definitions of sensors properties. IEEE Sensors Journal. 2001; 1(3): 183-190. doi: 10.1109/jsen.2001.954831 Pilan L, Raicopol M. Highly selective and stable glucose biosensors based on polyaniline/carbon nanotubes composites. UPB Sci. Bull., Ser. B. 2014; 76: 155-166. Yang D, Wang J, Cao Y, et al. Polyaniline-Based Biological and Chemical Sensors: Sensing Mechanism, Configuration Design, and Perspective. ACS Applied Electronic Materials. 2023; 5(2): 593-611. doi: 10.1021/acsaelm.2c01405 Aycan D, Karaca F, Alemdar N. Development of hyaluronic acid-based electroconductive hydrogel as a sensitive non-enzymatic glucose sensor. Materials Today Communications. 2023; 35: 105745. doi: 10.1016/j.mtcomm.2023.105745 Wei W, Nong J, Zhang G, et al. Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing. Sensors. 2016; 17(12): 2. doi: 10.3390/s17010002 Wu G, Du H, Lee D, et al. Polyaniline/Graphene-Functionalized Flexible Waste Mask Sensors for Ammonia and Volatile Sulfur Compound Monitoring. ACS Applied Materials & Interfaces. 2022; 14(50): 56056-56064. doi: 10.1021/acsami.2c15443 Krishna KG, Parne S, Pothukanuri N, et al. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sensors and Actuators A: Physical. 2022; 341: 113578. doi: 10.1016/j.sna.2022.113578 Ruecha N, Rodthongkum N, Cate DM, et al. Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Analytica Chimica Acta. 2015; 874: 40-48. doi: 10.1016/j.aca.2015.02.064 Tang Y, Hu X, Liu D, et al. Effect of Microwave Treatment of Graphite on the Electrical Conductivity and Electrochemical Properties of Polyaniline/Graphene Oxide Composites. Polymers. 2016; 8(11): 399. doi: 10.3390/polym8110399 Kooti M, Keshtkar S, Askarieh M, et al. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sensors and Actuators B: Chemical. 2019; 281: 96-106. doi: 10.1016/j.snb.2018.10.032 Biswas MRUD, Oh WC. Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semiconductor–polymer nanocomposites. RSC Advances. 2019; 9(20): 11484-11492. doi: 10.1039/c9ra00007k Bonyani M, Zebarjad SM, Janghorban K, et al. Au-Decorated Polyaniline-ZnO Electrospun Composite Nanofiber Gas Sensors with Enhanced Response to NO2 Gas. Chemosensors. 2022; 10(10): 388. doi: 10.3390/chemosensors10100388 Bairi V, Bourdo S, Sacre N, et al. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite. Sensors. 2015; 15(10): 26415-26429. doi: 10.3390/s151026415 Huang X, Hu N, Gao R, et al. Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. Journal of Materials Chemistry. 2012; 22(42): 22488. doi: 10.1039/c2jm34340a Zhang G, Liu M. Effect of particle size and dopant on properties of SnO2-based gas sensors. Sensors and Actuators B: Chemical. 2000; 69(1-2): 144-152. doi: 10.1016/S0925-4005(00)00528-1 Qiu J, Shi L, Liang R, et al. Controllable Deposition of a Platinum Nanoparticle Ensemble on a Polyaniline/Graphene Hybrid as a Novel Electrode Material for Electrochemical Sensing. Chemistry – A European Journal. 2012; 18(25): 7950-7959. doi: 10.1002/chem.201200258 Konwer S, Guha AK, Dolui SK. Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. Journal of Materials Science. 2012; 48(4): 1729-1739. doi: 10.1007/s10853-012-6931-z Wu Z, Chen X, Zhu S, et al. Room Temperature Methane Sensor Based on Graphene Nanosheets/Polyaniline Nanocomposite Thin Film. IEEE Sensors Journal. 2013; 13(2): 777-782. doi: 10.1109/jsen.2012.2227597 Zhu H, Li Y, Qiu R, et al. Responsive fluorescent Bi2O3@PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery. Biomaterials. 2012; 33(10): 3058-3069. doi: 10.1016/j.biomaterials.2012.01.003 Zou Y, Wang Q, Xiang C, et al. Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing. International Journal of Hydrogen Energy. 2016; 41(11): 5396-5404. doi: 10.1016/j.ijhydene.2016.02.023 Tian W, Liu X, Yu W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Applied Sciences. 2018; 8(7): 1118. doi: 10.3390/app8071118 Zhang L, Li C, Liu A, et al. Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. Journal of Materials Chemistry. 2012; 22(17): 8438. doi: 10.1039/c2jm16552j Dan Y, Lu Y, Kybert NJ, et al. Intrinsic Response of Graphene Vapor Sensors. Nano Letters. 2009; 9(4): 1472-1475. doi: 10.1021/nl8033637 Ganguly S. Preparation/processing of polymer-graphene composites by different techniques. Polymer Nanocomposites Containing Graphene. 2022; 45-74. doi: 10.1016/b978-0-12-821639-2.00015-x Hu K, Kulkarni DD, Choi I, et al. Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science. 2014; 39(11): 1934-1972. doi: 10.1016/j.progpolymsci.2014.03.001 Jaouen K, Lebon F, Jousselme B, et al. (Invited) Backside Absorbing Layer Microscopy: A New Tool to Study the Optical, Chemical and Electrochemical Properties of 2D Materials. ECS Meeting Abstracts. 2020; MA2020-01(8): 742-742. doi: 10.1149/ma2020-018742mtgabs Hu T. Efficient exfoliation of UV-curable, high-quality graphene from graphite in common low-boiling-point organic solvents with a designer hyperbranched polyethylene copolymer and their applications in electrothermal heaters. Journal of Colloid and Interface Science. 2020. Chen W, Weimin H, Li D, et al. A critical review on the development and performance of polymer/graphene nanocomposites. Science and Engineering of Composite Materials. 2018; 25(6): 1059-1073. doi: 10.1515/secm-2017-0199 Owji E, Ostovari F, Keshavarz A. Influence of the chemical structure of diisocyanate on the electrical and thermal properties of in situ polymerized polyurethane–graphene composite films. Physical Chemistry Chemical Physics. 2022; 24(46): 28564-28576. doi: 10.1039/d2cp03826a Itapu B, Jayatissa A. A Review in Graphene/Polymer Composites. Chemical Science International Journal. 2018; 23(3): 1-16. doi: 10.9734/csji/2018/41031 Hu H, Wang X, Wang J, et al. Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters. 2010; 484(4-6): 247-253. doi: 10.1016/j.cplett.2009.11.024 Montes S, Carrasco PM, Ruiz V, et al. Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Composites Science and Technology. 2015; 117: 26-31. doi: 10.1016/j.compscitech.2015.05.018 Deng H, Lin L, Ji M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science. 2014; 39(4): 627-655. doi: 10.1016/j.progpolymsci.2013.07.007 Shi G, Meng Q, Zhao Z, et al. Facile Fabrication of Graphene Membranes with Readily Tunable Structures. ACS Applied Materials & Interfaces. 2015; 7(25): 13745-13757. doi: 10.1021/am5091287 Chen D, Chen C, Du D. Detection of Organophosphate Pesticide Using Polyaniline and Carbon Nanotubes Composite Based on Acetylcholinesterase Inhibition. Journal of Nanoscience and Nanotechnology. 2010; 10(9): 5662-5666. doi: 10.1166/jnn.2010.2477 Parameswaranpillai J, Ganguly S. Polymeric Nanocomposite Materials for Sensor Applications. Elsevier. 2022. Kyeong D, Kim M, Kwak M. Thermally Triggered Multilevel Diffractive Optical Elements Tailored by Shape-Memory Polymers for Temperature History Sensors. ACS Applied Materials & Interfaces. 2023; 15(7): 9813-9819. doi: 10.1021/acsami.2c18901 Chen S, Li J, Shi H, et al. Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications. Chemical Engineering Journal. 2023; 455: 140655. doi: 10.1016/j.cej.2022.140655



DOI: https://doi.org/10.24294/can.v7i1.4681

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ayesha Kausar, Ishaq Ahmad

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.