Carbon and graphene based nanocomposites for gas sensors—Current state and advances
2804 (Abstract)
Keywords
carbon nanotube; graphene; polymer; nanocomposite; conductivity; gas sensing
Full Text:
PDFReferences
- Yang F. Study on the absorption characteristics and refractive index sensitivity characteristics of the periodic structure of double nanorods. Characterization and Application of Nanomaterials. 2022; 5(2): 77. doi: 10.24294/can.v5i2.1699
- Soni S, Bajpai PK, Arora C. A review on metal-organic framework: Synthesis, properties and ap-plication. Characterization and Application of Nanomaterials. 2020; 3(2): 87. doi: 10.24294/can.v3i2.551
- Elizabeth I, Athira C, Paul SJ, et al. CNT–PDMS film-based flexion sensor for examining physical activity in humans. Carbon Letters. 2024. doi: 10.1007/s42823-023-00678-x
- Pezzuoli D, Angeli E, Repetto D, et al. Nanofluidic-Based Accumulation of Antigens for Miniaturized Immunoassay. Sensors. 2020; 20(6): 1615. doi: 10.3390/s20061615
- Prosa M, Bolognesi M, Fornasari L, et al. Nanostructured Organic/Hybrid Materials and Components in Miniaturized Optical and Chemical Sensors. Nanomaterials. 2020; 10(3): 480. doi: 10.3390/nano10030480
- Faridbod F, Norouzi P, Dinarvand R, et al. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade. Sensors. 2008; 8(4): 2331-2412. doi: 10.3390/s8042331
- Long H, Turner S, Yan A, et al. Plasma assisted formation of 3D highly porous nanostructured metal oxide network on microheater platform for Low power gas sensing. Sensors and Actuators B: Chemical. 2019; 301: 127067. doi: 10.1016/j.snb.2019.127067
- Seyedin S, Razal JM, Innis PC, et al. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Materials and Structures. 2016; 25(3): 035015. doi: 10.1088/0964-1726/25/3/035015
- Zhang F, Wu S, Peng S, et al. Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Composites Science and Technology. 2019; 172: 7-16. doi: 10.1016/j.compscitech.2018.12.031
- Parameswaranpillai J, Ganguly S. Introduction to polymer composite-based sensors. Polymeric Nanocomposite Materials for Sensor Applications. 2023; 1-21. doi: 10.1016/b978-0-323-98830-8.00006-0
- Su S, Wu W, Gao J, et al. Nanomaterials-based sensors for applications in environmental monitoring. Journal of Materials Chemistry. 2012; 22(35): 18101. doi: 10.1039/c2jm33284a
- Rane AV, Kanny K, Abitha VK, et al. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. Synthesis of Inorganic Nanomaterials. 2018; 121-139. doi: 10.1016/b978-0-08-101975-7.00005-1
- Albar MMJ, Jamion NA, Baharin SNA, et al. Preparation of Novel Commercial Polyaniline Composites for Ammonia Detection. Solid State Phenomena. 2020; 301: 124-131. doi: 10.4028/www.scientific.net/ssp.301.124
- Santra S, Bose A, Mitra K, et al. Exploring two decades of graphene: The jack of all trades. Applied Materials Today. 2024; 36: 102066. doi: 10.1016/j.apmt.2024.102066
- Khan W, Sharma R, Saini P. Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications. Carbon Nanotubes - Current Progress of their Polymer Composites. 2016. doi: 10.5772/62497
- Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354(6348): 56-58. doi: 10.1038/354056a0
- Guo H, Zhang Q, Liu Y, et al. Properties and Defence Applications of Carbon Nanotubes. Journal of Physics: Conference Series. 2023; 2478(4): 042010. doi: 10.1088/1742-6596/2478/4/042010
- Dong X, Hu M, He J, et al. A new phase from compression of carbon nanotubes with anisotropic Dirac fermions. Scientific Reports. 2015; 5(1). doi: 10.1038/srep10713
- Eletskii AV. Carbon nanotubes. Physics-Uspekhi. 1997; 40(9): 899-924. doi: 10.1070/pu1997v040n09abeh000282
- Dinadayalane TC, Leszczynski J. Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene. Structural Chemistry. 2010; 21(6): 1155-1169. doi: 10.1007/s11224-010-9670-2
- Tahhan ABA, Alkhedher M, Mourad AHI, et al. Effect of induced vacancy defects on the mechanical behavior of wavy single-walled carbon nanotubes. Nano Trends. 2023; 3: 100016. doi: 10.1016/j.nwnano.2023.100016
- Lin Y, Cao Y, Ding S, et al. Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nature Electronics. 2023; 6(7): 506-515. doi: 10.1038/s41928-023-00983-3
- Tyagi S, Negi S. Calculation of Density of States of Pristine and Functionalized Carbon Nanotubes: A DFT Approach. Indian Journal Of Science And Technology. 2023; 16(40): 3567-3574. doi: 10.17485/ijst/v16i40.1019
- Rathinavel S, Priyadharshini K, Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering: B. 2021; 268: 115095. doi: 10.1016/j.mseb.2021.115095
- Darıcık F, Topcu A, Aydın K, et al. Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application. International Journal of Hydrogen Energy. 2023; 48(3): 1090-1106. doi: 10.1016/j.ijhydene.2022.09.297
- Mishra S, Sundaram B. Efficacy and challenges of carbon nanotube in wastewater and water treatment. Environmental Nanotechnology, Monitoring & Management. 2023; 19: 100764. doi: 10.1016/j.enmm.2022.100764
- Xavier JR, Sadagopan Pandian V. Carbon nanotube‐based polymer nanocomposites: Evaluation of barrier, hydrophobic, and mechanical properties for aerospace applications. Polymer Engineering & Science. 2023; 63(9): 2806-2827. doi: 10.1002/pen.26407
- Hu Z, Hong H. Review on Material Performance of Carbon Nanotube-Modified Polymeric Nanocomposites. Recent Progress in Materials. 2023; 5(3): 1-20. doi: 10.21926/rpm.2303031
- Kim SG, Heo SJ, Kim S, et al. Ultrahigh strength and modulus of polyimide-carbon nanotube based carbon and graphitic fibers with superior electrical and thermal conductivities for advanced composite applications. Composites Part B: Engineering. 2022; 247: 110342. doi: 10.1016/j.compositesb.2022.110342
- Raimondo M, Donati G, Milano G, et al. Hybrid composites based on carbon nanotubes and graphene nanosheets outperforming their single-nanofiller counterparts. FlatChem. 2022; 36: 100431. doi: 10.1016/j.flatc.2022.100431
- Barzic AI. Thermal and Electrical Transport in Carbon Nanotubes Composites. Carbon Nanotubes for a Green Environment. 2022; 209-232. doi: 10.1201/9781003277200-9
- Idumah CI, Obele CM. Understanding interfacial influence on properties of polymer nanocomposites. Surfaces and Interfaces. 2021; 22: 100879. doi: 10.1016/j.surfin.2020.100879
- Su X, Wang R, Li X, et al. A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Materials Science. 2022; 4(3): 185-204. doi: 10.1016/j.nanoms.2021.08.003
- Idumah CI, Ezeani EO, Nwuzor IC. A review: advancements in conductive polymers nanocomposites. Polymer-Plastics Technology and Materials. 2020; 60(7): 756-783. doi: 10.1080/25740881.2020.1850783
- Krishna Kumar M, Leela Mohana Reddy A, Ramaprabhu S. Exfoliated single-walled carbon nanotube-based hydrogen sensor. Sensors and Actuators B: Chemical. 2008; 130(2): 653-660. doi: 10.1016/j.snb.2007.10.033
- Cheng G, Xu H, Gao N, et al. Carbon Nanotubes Field-Effect Transistor (Cnts-Fet) Pressure Sensor Based on Three-Dimensional Conformal Force-Sensitive Gate Modulation. SSRN Electronic Journal. 2022. doi: 10.2139/ssrn.4250830
- Paul R, Zhai Q, Roy AK, et al. Charge transfer of carbon nanomaterials for efficient metal‐free electrocatalysis. Interdisciplinary Materials. 2022; 1(1): 28-50. doi: 10.1002/idm2.12010
- Vadalkar S, Chodvadiya D, Som NN, et al. An Ab‐initio Study of the C18 nanocluster for Hazardous Gas Sensor Application. ChemistrySelect. 2022; 7(3). doi: 10.1002/slct.202103874
- Chen D, Li Y, Xiao S, et al. Single Ni atom doped WS2 monolayer as sensing substrate for dissolved gases in transformer oil: A first-principles study. Applied Surface Science. 2022; 579: 152141. doi: 10.1016/j.apsusc.2021.152141
- Hao Y, Qu S, Xiao Y, et al. Study on the ozonation-modified multi-walled carbon nanotubes in polymer composites. Polymer Bulletin. 2022; 80(6): 6527-6543. doi: 10.1007/s00289-022-04367-z
- Ji D, Yoon SY, Kim G, et al. Tailoring the density of carbon nanotube networks through chemical self-assembly by click reaction for reliable transistors. Chemical Engineering Journal. 2023; 452: 139500. doi: 10.1016/j.cej.2022.139500
- Spitalsky Z, Tasis D, Papagelis K, et al. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science. 2010; 35(3): 357-401. doi: 10.1016/j.progpolymsci.2009.09.003
- Choudhary M, Sharma A, Aravind Raj S, et al. Contemporary review on carbon nanotube (CNT) composites and their impact on multifarious applications. Nanotechnology Reviews. 2022; 11(1): 2632-2660. doi: 10.1515/ntrev-2022-0146
- Augustyn P, Rytlewski P, Moraczewski K, et al. A review on the direct electroplating of polymeric materials. Journal of Materials Science. 2021; 56(27): 14881-14899. doi: 10.1007/s10853-021-06246-w
- Ahmed S, Sinha SK. Studies on nanomaterial-based p-type semiconductor gas sensors. Environmental Science and Pollution Research. 2022; 30(10): 24975-24986. doi: 10.1007/s11356-022-21218-6
- Ehsani M, Rahimi P, Joseph Y. Structure–Function Relationships of Nanocarbon/Polymer Composites for Chemiresistive Sensing: A Review. Sensors. 2021; 21(9): 3291. doi: 10.3390/s21093291
- Luo SXL, Swager TM. Chemiresistive sensing with functionalized carbon nanotubes. Nature Reviews Methods Primers. 2023; 3(1). doi: 10.1038/s43586-023-00255-6
- Chandrapalan S, Arasaradnam RP, Kvasnik F, et al. Cross-reactive Sensors (or e-Noses). Volatile Biomarkers for Human Health. 2022; 364-378. doi: 10.1039/9781839166990-00364
- Vidakis N, Petousis M, Velidakis E, et al. Multi-functional polyamide 12 (PA12)/multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties. Advanced Composite Materials. 2022; 31(6): 630-654. doi: 10.1080/09243046.2022.2076019
- Akbari E, Buntat Z, Ahmad M, et al. Analytical Calculation of Sensing Parameters on Carbon Nanotube Based Gas Sensors. Sensors. 2014; 14(3): 5502-5515. doi: 10.3390/s140305502
- Chiou JC, Wu CC, Lin TM. Sensitivity Enhancement of Acetone Gas Sensor using Polyethylene Glycol/Multi-Walled Carbon Nanotubes Composite Sensing Film with Thermal Treatment. Polymers. 2019; 11(3): 423. doi: 10.3390/polym11030423
- Lapointe F, Ding J, Lefebvre J. Carbon Nanotube Transistors as Gas Sensors: Response Differentiation Using Polymer Gate Dielectrics. ACS Applied Polymer Materials. 2019; 1(12): 3269-3278. doi: 10.1021/acsapm.9b00707
- Hulimane Shivaswamy R, Kanive bagilu Ananthapadmanabha V, Kusanur R. Highly sensitive acetone sensor based on conjugated polymer nanocomposites. Polymers for Advanced Technologies. 2022; 34(4): 1118-1132. doi: 10.1002/pat.5956
- Sonker RK, Singh K, Sonkawade R, et al. Advanced Functional Materials for Optical and Hazardous Sensing. Springer Nature Singapore; 2023. doi: 10.1007/978-981-99-6014-9
- Mirzaei A, Kumar V, Bonyani M, et al. Conducting Polymer Nanofibers based Sensors for Organic and Inorganic Gaseous Compounds. Asian Journal of Atmospheric Environment. 2020; 14(2): 85-104. doi: 10.5572/ajae.2020.14.2.85
- Shahabuddin S, Pandey AK, Khalid M, et al. Advances in Hybrid Conducting Polymer Technology. Springer International Publishing; 2021. doi: 10.1007/978-3-030-62090-5
- Srivastava S, Sharma SS, Agrawal S, et al. Study of chemiresistor type CNT doped polyaniline gas sensor. Synthetic Metals. 2010; 160(5-6): 529-534. doi: 10.1016/j.synthmet.2009.11.022
- Karmakar N, Jain S, Fernandes R, et al. Enhanced Sensing Performance of an Ammonia Gas Sensor Based on Ag‐Decorated ZnO Nanorods/Polyaniline Nanocomposite. ChemistrySelect. 2023; 8(18). doi: 10.1002/slct.202204284
- Miah MR, Yang M, Khandaker S, et al. Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review. Sensors and Actuators A: Physical. 2022; 347: 113933. doi: 10.1016/j.sna.2022.113933
- H V, S P A, Yesappa L, et al. Camphor sulfonic acid surfactant assisted polythiophene nanocomposite for efficient electrochemical hydrazine sensor. Materials Research Express. 2020; 6(12): 125375. doi: 10.1088/2053-1591/ab5ef5
- Badhulika S, Myung NV, Mulchandani A. Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds. Talanta. 2014; 123: 109-114. doi: 10.1016/j.talanta.2014.02.005
- Sharma S, Hussain S, Singh S, et al. MWCNT-conducting polymer composite based ammonia gas sensors: A new approach for complete recovery process. Sensors and Actuators B: Chemical. 2014; 194: 213-219. doi: 10.1016/j.snb.2013.12.050
- Eising M, Cava CE, Salvatierra RV, et al. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sensors and Actuators B: Chemical. 2017; 245: 25-33. doi: 10.1016/j.snb.2017.01.132
- Jang J, Bae J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sensors and Actuators B: Chemical. 2007; 122(1): 7-13. doi: 10.1016/j.snb.2006.05.002
- Van Hieu N, Dung NQ, Tam PD, et al. Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature. Sensors and Actuators B: Chemical. 2009; 140(2): 500-507. doi: 10.1016/j.snb.2009.04.061
- Geim AK. Graphene: Status and Prospects. Science. 2009; 324(5934): 1530-1534. doi: 10.1126/science.1158877
- Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007; 6(3): 183-191. doi: 10.1038/nmat1849
- Narayanam PK, Botcha VD, Ghosh M, et al. Growth and photocatalytic behavior of transparent reduced GO–ZnO nanocomposite sheets. Nanotechnology. 2019; 30(48): 485601. doi: 10.1088/1361-6528/ab3ced
- Wei C, Negishi R, Ogawa Y, et al. Turbostratic multilayer graphene synthesis on CVD graphene template toward improving electrical performance. Japanese Journal of Applied Physics. 2019; 58(SI): SIIB04. doi: 10.7567/1347-4065/ab0c7b
- Wang M, Jang SK, Jang W, et al. A Platform for Large‐Scale Graphene Electronics – CVD Growth of Single‐Layer Graphene on CVD‐Grown Hexagonal Boron Nitride. Advanced Materials. 2013; 25(19): 2746-2752. doi: 10.1002/adma.201204904
- Jiříčková A, Jankovský O, Sofer Z, et al. Synthesis and Applications of Graphene Oxide. Materials. 2022; 15(3): 920. doi: 10.3390/ma15030920
- Lee H, Lee KS. Interlayer distance controlled graphene, supercapacitor and method of producing the same. 2019.
- Mohan VB, Lau K tak, Hui D, et al. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering. 2018; 142: 200-220. doi: 10.1016/j.compositesb.2018.01.013
- Mane AT, Navale ST, Sen S, et al. Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Organic Electronics. 2015; 16: 195-204. doi: 10.1016/j.orgel.2014.10.045
- Kausar A, Ahmad I. Highpoints of carbon nanotube nanocomposite sensors—A review. e-Prime - Advances in Electrical Engineering, Electronics and Energy. 2024; 7: 100419. doi: 10.1016/j.prime.2024.100419
- Husain A, Shariq MU. Polypyrrole nanocomposites as promising gas/vapour sensing materials: Past, present and future prospects. Sensors and Actuators A: Physical. 2023; 359: 114504. doi: 10.1016/j.sna.2023.114504
- Kausar A, Ahmad I, Zhu T, et al. Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials. Pollutants. 2023; 3(1): 123-149. doi: 10.3390/pollutants3010011
- Zegebreal LT, Tegegne NA, Hone FG. Recent progress in hybrid conducting polymers and metal oxide nanocomposite for room-temperature gas sensor applications: A review. Sensors and Actuators A: Physical. 2023; 359: 114472. doi: 10.1016/j.sna.2023.114472
- Della Pelle F, Angelini C, Sergi M, et al. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: application to grain samples. Talanta. 2018; 186: 389-396. doi: 10.1016/j.talanta.2018.04.082
- Pang J, Peng S, Hou C, et al. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors. 2023; 8(2): 482-514. doi: 10.1021/acssensors.2c02790
- Xiao Z, Kong LB, Ruan S, et al. Recent development in nanocarbon materials for gas sensor applications. Sensors and Actuators B: Chemical. 2018; 274: 235-267. doi: 10.1016/j.snb.2018.07.040
- Liu X, Zheng W, Kumar R, et al. Conducting polymer-based nanostructures for gas sensors. Coordination Chemistry Reviews. 2022; 462: 214517. doi: 10.1016/j.ccr.2022.214517
- Kushwaha CS, Singh P, Shukla SK, et al. Advances in conducting polymer nanocomposite based chemical sensors: An overview. Materials Science and Engineering: B. 2022; 284: 115856. doi: 10.1016/j.mseb.2022.115856
- D’Amico A, Di Natale C. A contribution on some basic definitions of sensors properties. IEEE Sensors Journal. 2001; 1(3): 183-190. doi: 10.1109/jsen.2001.954831
- Pilan L, Raicopol M. Highly selective and stable glucose biosensors based on polyaniline/carbon nanotubes composites. UPB Sci. Bull., Ser. B. 2014; 76: 155-166.
- Yang D, Wang J, Cao Y, et al. Polyaniline-Based Biological and Chemical Sensors: Sensing Mechanism, Configuration Design, and Perspective. ACS Applied Electronic Materials. 2023; 5(2): 593-611. doi: 10.1021/acsaelm.2c01405
- Aycan D, Karaca F, Alemdar N. Development of hyaluronic acid-based electroconductive hydrogel as a sensitive non-enzymatic glucose sensor. Materials Today Communications. 2023; 35: 105745. doi: 10.1016/j.mtcomm.2023.105745
- Wei W, Nong J, Zhang G, et al. Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing. Sensors. 2016; 17(12): 2. doi: 10.3390/s17010002
- Wu G, Du H, Lee D, et al. Polyaniline/Graphene-Functionalized Flexible Waste Mask Sensors for Ammonia and Volatile Sulfur Compound Monitoring. ACS Applied Materials & Interfaces. 2022; 14(50): 56056-56064. doi: 10.1021/acsami.2c15443
- Krishna KG, Parne S, Pothukanuri N, et al. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sensors and Actuators A: Physical. 2022; 341: 113578. doi: 10.1016/j.sna.2022.113578
- Ruecha N, Rodthongkum N, Cate DM, et al. Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Analytica Chimica Acta. 2015; 874: 40-48. doi: 10.1016/j.aca.2015.02.064
- Tang Y, Hu X, Liu D, et al. Effect of Microwave Treatment of Graphite on the Electrical Conductivity and Electrochemical Properties of Polyaniline/Graphene Oxide Composites. Polymers. 2016; 8(11): 399. doi: 10.3390/polym8110399
- Kooti M, Keshtkar S, Askarieh M, et al. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sensors and Actuators B: Chemical. 2019; 281: 96-106. doi: 10.1016/j.snb.2018.10.032
- Biswas MRUD, Oh WC. Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semiconductor–polymer nanocomposites. RSC Advances. 2019; 9(20): 11484-11492. doi: 10.1039/c9ra00007k
- Bonyani M, Zebarjad SM, Janghorban K, et al. Au-Decorated Polyaniline-ZnO Electrospun Composite Nanofiber Gas Sensors with Enhanced Response to NO2 Gas. Chemosensors. 2022; 10(10): 388. doi: 10.3390/chemosensors10100388
- Bairi V, Bourdo S, Sacre N, et al. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite. Sensors. 2015; 15(10): 26415-26429. doi: 10.3390/s151026415
- Huang X, Hu N, Gao R, et al. Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. Journal of Materials Chemistry. 2012; 22(42): 22488. doi: 10.1039/c2jm34340a
- Zhang G, Liu M. Effect of particle size and dopant on properties of SnO2-based gas sensors. Sensors and Actuators B: Chemical. 2000; 69(1-2): 144-152. doi: 10.1016/S0925-4005(00)00528-1
- Qiu J, Shi L, Liang R, et al. Controllable Deposition of a Platinum Nanoparticle Ensemble on a Polyaniline/Graphene Hybrid as a Novel Electrode Material for Electrochemical Sensing. Chemistry – A European Journal. 2012; 18(25): 7950-7959. doi: 10.1002/chem.201200258
- Konwer S, Guha AK, Dolui SK. Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. Journal of Materials Science. 2012; 48(4): 1729-1739. doi: 10.1007/s10853-012-6931-z
- Wu Z, Chen X, Zhu S, et al. Room Temperature Methane Sensor Based on Graphene Nanosheets/Polyaniline Nanocomposite Thin Film. IEEE Sensors Journal. 2013; 13(2): 777-782. doi: 10.1109/jsen.2012.2227597
- Zhu H, Li Y, Qiu R, et al. Responsive fluorescent Bi2O3@PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery. Biomaterials. 2012; 33(10): 3058-3069. doi: 10.1016/j.biomaterials.2012.01.003
- Zou Y, Wang Q, Xiang C, et al. Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing. International Journal of Hydrogen Energy. 2016; 41(11): 5396-5404. doi: 10.1016/j.ijhydene.2016.02.023
- Tian W, Liu X, Yu W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Applied Sciences. 2018; 8(7): 1118. doi: 10.3390/app8071118
- Zhang L, Li C, Liu A, et al. Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. Journal of Materials Chemistry. 2012; 22(17): 8438. doi: 10.1039/c2jm16552j
- Dan Y, Lu Y, Kybert NJ, et al. Intrinsic Response of Graphene Vapor Sensors. Nano Letters. 2009; 9(4): 1472-1475. doi: 10.1021/nl8033637
- Ganguly S. Preparation/processing of polymer-graphene composites by different techniques. Polymer Nanocomposites Containing Graphene. 2022; 45-74. doi: 10.1016/b978-0-12-821639-2.00015-x
- Hu K, Kulkarni DD, Choi I, et al. Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science. 2014; 39(11): 1934-1972. doi: 10.1016/j.progpolymsci.2014.03.001
- Jaouen K, Lebon F, Jousselme B, et al. (Invited) Backside Absorbing Layer Microscopy: A New Tool to Study the Optical, Chemical and Electrochemical Properties of 2D Materials. ECS Meeting Abstracts. 2020; MA2020-01(8): 742-742. doi: 10.1149/ma2020-018742mtgabs
- Hu T. Efficient exfoliation of UV-curable, high-quality graphene from graphite in common low-boiling-point organic solvents with a designer hyperbranched polyethylene copolymer and their applications in electrothermal heaters. Journal of Colloid and Interface Science. 2020.
- Chen W, Weimin H, Li D, et al. A critical review on the development and performance of polymer/graphene nanocomposites. Science and Engineering of Composite Materials. 2018; 25(6): 1059-1073. doi: 10.1515/secm-2017-0199
- Owji E, Ostovari F, Keshavarz A. Influence of the chemical structure of diisocyanate on the electrical and thermal properties of in situ polymerized polyurethane–graphene composite films. Physical Chemistry Chemical Physics. 2022; 24(46): 28564-28576. doi: 10.1039/d2cp03826a
- Itapu B, Jayatissa A. A Review in Graphene/Polymer Composites. Chemical Science International Journal. 2018; 23(3): 1-16. doi: 10.9734/csji/2018/41031
- Hu H, Wang X, Wang J, et al. Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters. 2010; 484(4-6): 247-253. doi: 10.1016/j.cplett.2009.11.024
- Montes S, Carrasco PM, Ruiz V, et al. Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Composites Science and Technology. 2015; 117: 26-31. doi: 10.1016/j.compscitech.2015.05.018
- Deng H, Lin L, Ji M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science. 2014; 39(4): 627-655. doi: 10.1016/j.progpolymsci.2013.07.007
- Shi G, Meng Q, Zhao Z, et al. Facile Fabrication of Graphene Membranes with Readily Tunable Structures. ACS Applied Materials & Interfaces. 2015; 7(25): 13745-13757. doi: 10.1021/am5091287
- Chen D, Chen C, Du D. Detection of Organophosphate Pesticide Using Polyaniline and Carbon Nanotubes Composite Based on Acetylcholinesterase Inhibition. Journal of Nanoscience and Nanotechnology. 2010; 10(9): 5662-5666. doi: 10.1166/jnn.2010.2477
- Parameswaranpillai J, Ganguly S. Polymeric Nanocomposite Materials for Sensor Applications. Elsevier. 2022.
- Kyeong D, Kim M, Kwak M. Thermally Triggered Multilevel Diffractive Optical Elements Tailored by Shape-Memory Polymers for Temperature History Sensors. ACS Applied Materials & Interfaces. 2023; 15(7): 9813-9819. doi: 10.1021/acsami.2c18901
- Chen S, Li J, Shi H, et al. Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications. Chemical Engineering Journal. 2023; 455: 140655. doi: 10.1016/j.cej.2022.140655
DOI: https://doi.org/10.24294/can.v7i1.4681
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ayesha Kausar, Ishaq Ahmad
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.