Graphene in gas separation membranes—State-of-the-art and potential spoors

Ayesha Kausar, Ishaq Ahmad

Article ID: 4581
Vol 7, Issue 1, 2024

VIEWS - 2925 (Abstract) 2525 (PDF)

Abstract


Graphene and derivatives have been frequently used to form advanced nanocomposites. A very significant utilization of polymer/graphene nanocomposite was found in the membrane sector. The up-to-date overview essentially highlights the design, features, and advanced functions of graphene nanocomposite membranes towards gas separations. In this concern, pristine thin layer graphene as well as graphene nanocomposites with poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), polyimide, and other matrices have been perceived as gas separation membranes. In these membranes, the graphene dispersion and interaction with polymers through applying the appropriate processing techniques have led to optimum porosity, pore sizes, and pore distribution, i.e., suitable for selective separation of gaseous molecules. Consequently, the graphene-derived nanocomposites brought about numerous revolutions in high-performance gas separation membranes. The structural diversity of polymer/graphene nanocomposites has facilitated the membrane selective separation, permeation, and barrier processes, especially in the separation of desired gaseous molecules, ions, and contaminants. Future research on the innovative nanoporous graphene-based membrane can overcome design/performance-related challenging factors for technical utilizations.


Keywords


graphene; polymer; nanocomposite; membrane; gas separation; selectivity; permeation

Full Text:

PDF


References


1. Bellucci S. Decontamination of surface water from organic pollutants using graphene membranes. Characterization and Application of Nanomaterials. 2023; 6(1): 2033. doi: 10.24294/can.v6i1.2033

2. Kausar A. Nanoporous graphene in polymeric nanocomposite membranes for gas separation and water purification—standings and headways. Journal of Macromolecular Science, Part A. 2023; 60(2): 81-91. doi: 10.1080/10601325.2023.2177170

3. Kausar A. Poly(methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite: a review. Polymer-Plastics Technology and Materials. 2019; 58(8): 821-842. doi: 10.1080/25740881.2018.1563112

4. Kausar A. Applications of polymer/graphene nanocomposite membranes: A review. Materials Research Innovations. 2018; 23(5): 276-287. doi: 10.1080/14328917.2018.1456636

5. Kumar SR, Wang JJ, Wu YS, et al. Synergistic role of graphene oxide-magnetite nanofillers contribution on ionic conductivity and permeability for polybenzimidazole membrane electrolytes. Journal of Power Sources. 2020; 445: 227293. doi: 10.1016/j.jpowsour.2019.227293

6. Anegbe B, Ifijen IH, Maliki M, et al. Graphene oxide synthesis and applications in emerging contaminant removal: a comprehensive review. Environmental Sciences Europe. 2024; 36(1). doi: 10.1186/s12302-023-00814-4

7. Li Y, Lin Z, He X. New nonporous fillers-based hybrid membranes for gas separations and water treatment process. In: Basile A, Favvas EP (editors). Current Trends and Future Developments on (Bio-) Membranes. Elsevier; 2024. pp. 53-105. doi: 10.1016/b978-0-323-99311-1.00002-7

8. Gupta S, Singh A, Sharma T, et al. Applications of ultrafiltration, nanofiltration, and reverse osmosis in pharmaceutical wastewater treatment. In: Shah MP, Rodriguez-Couto S (editors). Development in Wastewater Treatment Research and Processes. Elsevier; 2024. pp. 33-49. doi: 10.1016/b978-0-323-99278-7.00017-1

9. Jalali SHS. Investigation of nanofiltration systems efficiency for removal of chromium and copper from groundwater resources. Environmental Quality Management. 2024. doi: 10.1002/tqem.22178

10. Ribeiro Pinela S, Larasati A, Meulepas RJW, et al. Ultrafiltration (UF) and biological oxygen-dosed activated carbon (BODAC) filtration to prevent fouling of reversed osmosis (RO) membranes: A mass balance analysis. Journal of Water Process Engineering. 2024; 57: 104648. doi: 10.1016/j.jwpe.2023.104648

11. Rana K, Kaur H, Singh N, et al. Graphene-based materials: Unravelling its impact in wastewater treatment for sustainable environments. Next Materials. 2024; 3: 100107. doi: 10.1016/j.nxmate.2024.100107

12. Nwosu CN, Iliut M, Vijayaraghavan A. Graphene and water-based elastomer nanocomposites – a review. Nanoscale. 2021; 13(21): 9505-9540. doi: 10.1039/d1nr01324f

13. Lawal AT. Recent progress in graphene based polymer nanocomposites. Cogent Chemistry. 2020; 6(1): 1833476. doi: 10.1080/23312009.2020.1833476

14. Kausar A, Ahmad I, Lam TD. High-tech graphene oxide reinforced conducting matrix nanocomposites—Current status and progress. Characterization and Application of Nanomaterials. 2023; 6(1). doi: 10.24294/can.v6i1.2637

15. Rehman F, Memon FH, Ali A, et al. Recent progress on fabrication methods of graphene-based membranes for water purification, gas separation, and energy sustainability. Reviews in Inorganic Chemistry. 2022; 43(1): 13-31. doi: 10.1515/revic-2022-0001

16. Javed RMN, Al-Othman A, Tawalbeh M, Olabi AG. Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renewable and Sustainable Energy Reviews. 2022; 168: 112836.

17. Favre E. Membrane Separation Processes and Post-Combustion Carbon Capture: State of the Art and Prospects. Membranes. 2022; 12(9): 884. doi: 10.3390/membranes12090884

18. Lee J, Park CY, Kong CI, et al. Ultrathin Water-Cast Polymer Membranes for Hydrogen Purification. ACS Applied Materials & Interfaces. 2022; 14(5): 7292-7300. doi: 10.1021/acsami.1c21780

19. He X, Ou D, Wu S, et al. A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods. Advanced Composites and Hybrid Materials. 2021; 5(1): 21-38. doi: 10.1007/s42114-021-00321-1

20. Bera B, Dey A. The use of polymer-graphene composites as membrane. Polymer Nanocomposites Containing Graphene. Published online 2022: 557-588. doi: 10.1016/b978-0-12-821639-2.00024-0

21. Katia Cecilia de SF, Gustavo Feliciano de JB, André Santarosa F. Graphene Membranes: From Reverse Osmosis to Gas Separation. International Journal of Membrane Science and Technology. 2021; 8(2): 1-27. doi: 10.15379/2410-1869.2021.08.02.01

22. Bhandari S, Rahaman M. Thermal properties of polymer-graphene composites. In: Rahaman M, Nayak L, Hussein IA, Das NC (editors). Polymer Nanocomposites Containing Graphene. Elsevier; 2022. pp. 163-181. doi: 10.1016/b978-0-12-821639-2.00014-8

23. Alen SK, Nam S, Dastgheib SA. Recent Advances in Graphene Oxide Membranes for Gas Separation Applications. International Journal of Molecular Sciences. 2019; 20(22): 5609. doi: 10.3390/ijms20225609

24. Hegab HM, Kallem P, Pandey RP, et al. Mechanistic insights into the selective mass-transport and fabrication of holey graphene-based membranes for water purification applications. Chemical Engineering Journal. 2022; 431: 134248. doi: 10.1016/j.cej.2021.134248

25. Castro-Muñoz R, Cruz-Cruz A, Alfaro-Sommers Y, et al. Reviewing the recent developments of using graphene-based nanosized materials in membrane separations. Critical Reviews in Environmental Science and Technology. 2021; 52(19): 3415-3452. doi: 10.1080/10643389.2021.1918509

26. Fatemi SM, Fatemi SJ, Abbasi Z. Gas separation using graphene nanosheet: insights from theory and simulation. Journal of Molecular Modeling. 2020; 26(11). doi: 10.1007/s00894-020-04581-4

27. Liu M, Cen R, Zhao J, et al. Selective gradient separation of aminophenol isomers by cucurbit[6]uril. Separation and Purification Technology. 2023; 304: 122342. doi: 10.1016/j.seppur.2022.122342

28. Bahri M, Gebre SH, Elaguech MA, et al. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coordination Chemistry Reviews. 2023; 475: 214910. doi: 10.1016/j.ccr.2022.214910

29. You X, Zhang Q, Yang J, et al. Review on 3D-printed graphene-reinforced composites for structural applications. Composites Part A: Applied Science and Manufacturing. 2023; 167: 107420. doi: 10.1016/j.compositesa.2022.107420

30. Berger C, Song Z, Li X, et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science. 2006; 312(5777): 1191-1196. doi: 10.1126/science.1125925

31. Li M, Yin B, Gao C, et al. Graphene: Preparation, tailoring, and modification. In: Book Graphene: Preparation, Tailoring, and Modification. Wiley Online Library; 2023.

32. Sumdani MG, Islam MR, Yahaya ANA, et al. Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. Journal of Nanoparticle Research. 2021; 23(11). doi: 10.1007/s11051-021-05371-6

33. Urade AR, Lahiri I, Suresh KS. Graphene Properties, Synthesis and Applications: A Review. JOM. 2022; 75(3): 614-630. doi: 10.1007/s11837-022-05505-8

34. Narayanam PK, Botcha VD, Ghosh M, et al. Growth and photocatalytic behavior of transparent reduced GO–ZnO nanocomposite sheets. Nanotechnology. 2019; 30(48): 485601. doi: 10.1088/1361-6528/ab3ced

35. Shen X, Zeng X, Dang C. Graphene Composites. In: Celasco E, Chaika AN, Stauber T, et al. (editors). Handbook of Graphene. Scrivener Publishing LLC; 2019. pp. 1-25. doi: 10.1002/9781119468455.ch53

36. Zandiatashbar A, Lee GH, An SJ, et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications. 2014; 5(1). doi: 10.1038/ncomms4186

37. Zhou Q, Xia G, Du M, et al. Scotch-tape-like exfoliation effect of graphene quantum dots for efficient preparation of graphene nanosheets in water. Applied Surface Science. 2019; 483: 52-59. doi: 10.1016/j.apsusc.2019.03.290

38. Lee H, Lee KS. Interlayer distance controlled graphene, supercapacitor and method of producing the same. In: Book Interlayer Distance Controlled Graphene, Supercapacitor and Method of producing the Same. Google Patents; 2019.

39. Ibrahim A, Klopocinska A, Horvat K, et al. Graphene-Based Nanocomposites: Synthesis, Mechanical Properties, and Characterizations. Polymers. 2021; 13(17): 2869. doi: 10.3390/polym13172869

40. Shahryari Z, Yeganeh M, Gheisari K, et al. A brief review of the graphene oxide-based polymer nanocomposite coatings: preparation, characterization, and properties. Journal of Coatings Technology and Research. 2021; 18(4): 945-969. doi: 10.1007/s11998-021-00488-8

41. Smaisim GF, Abed AM, Al-Madhhachi H, et al. Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review. BioNanoScience. 2022; 13(1): 219-248. doi: 10.1007/s12668-022-01048-z

42. Worku AK, Ayele DW. Recent Advances of Graphene-Based Materials for Emerging Technologies. Results in Chemistry; 2023.

43. Szomek M, Moesgaard L, Reinholdt P, et al. Membrane organization and intracellular transport of a fluorescent analogue of 27-hydroxycholesterol. Chemistry and Physics of Lipids. 2020; 233: 105004. doi: 10.1016/j.chemphyslip.2020.105004

44. Li Z, Zhang J, Zhang N, et al. Tunable nano-wrinked channels of reduced graphene oxide membranes for molecular sieving gas separation. Carbon. 2024; 216: 118524. doi: 10.1016/j.carbon.2023.118524

45. Castro-Muñoz R, Agrawal KV, Lai Z, et al. Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Separation and Purification Technology. 2023; 308: 122919. doi: 10.1016/j.seppur.2022.122919

46. Elzubair A, Uchôa LR, Da Silva MHP. Production and Characterization of Graphene Oxide/Polymer Support Composite Membranes for Water Desalination and Purification. Desalination and Water Treatment; 2024.

47. Nidamanuri N, Li Y, Li Q, Dong M. Graphene and graphene oxide-based membranes for gas separation. Engineered Science. 2020; 9(9): 3-16.

48. Sainath K, Modi A, Bellare J. CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: Evaluating effect of filler concentration on performance. Chemical Engineering Journal Advances. 2021; 5: 100074. doi: 10.1016/j.ceja.2020.100074

49. Lee J, Aluru NR. Water-solubility-driven separation of gases using graphene membrane. Journal of Membrane Science. 2013; 428: 546-553. doi: 10.1016/j.memsci.2012.11.006

50. Liu N, Cheng J, Hou W, et al. Unsaturated Zn–N2–O active sites derived from hydroxyl in graphene oxide and zinc atoms in core shell ZIF-8@ZIF-67 nanocomposites enhanced CO2 adsorption capacity. Microporous and Mesoporous Materials. 2021; 312: 110786. doi: 10.1016/j.micromeso.2020.110786

51. Szczęśniak B, Choma J. Graphene-containing microporous composites for selective CO2 adsorption. Microporous and Mesoporous Materials. 2020; 292: 109761. doi: 10.1016/j.micromeso.2019.109761

52. Zhang X, Liu H, Shi Y, et al. Boosting CO2 Conversion with Terminal Alkynes by Molecular Architecture of Graphene Oxide-Supported Ag Nanoparticles. Matter. 2020; 3(2): 558-570. doi: 10.1016/j.matt.2020.07.022

53. Miricioiu MG, Iacob C, Nechifor G, et al. High Selective Mixed Membranes Based on Mesoporous MCM-41 and MCM-41-NH2 Particles in a Polysulfone Matrix. Frontiers in Chemistry. 2019; 7. doi: 10.3389/fchem.2019.00332

54. Jiang D, Cooper VR, Dai S. Porous Graphene as the Ultimate Membrane for Gas Separation. Nano Letters. 2009; 9(12): 4019-4024. doi: 10.1021/nl9021946

55. Du Y, Huang L, Wang Y, et al. Recent developments in graphene‐based polymer composite membranes: Preparation, mass transfer mechanism, and applications. Journal of Applied Polymer Science. 2019; 136(28). doi: 10.1002/app.47761

56. Cheng Y, Pu Y, Zhao D. Two‐Dimensional Membranes: New Paradigms for High‐Performance Separation Membranes. Chemistry – An Asian Journal. 2020; 15(15): 2241-2270. doi: 10.1002/asia.202000013

57. Li M, Wang F, Guo Z. The fabrication and application of triphase reaction interface based on superwettability for improved reaction efficiency. Journal of Materials Chemistry A. 2024.

58. Koenig SP, Wang L, Pellegrino J, et al. Selective molecular sieving through porous graphene. Nature Nanotechnology. 2012; 7(11): 728-732. doi: 10.1038/nnano.2012.162

59. Huang L, Jia W, Lin H. Etching and acidifying graphene oxide membranes to increase gas permeance while retaining molecular sieving ability. AIChE Journal. 2020; 66(12). doi: 10.1002/aic.17022

60. Singh S, Varghese AM, Reinalda D, et al. Graphene - based membranes for carbon dioxide separation. Journal of CO2 Utilization. 2021; 49: 101544. doi: 10.1016/j.jcou.2021.101544

61. Hu L, Bui VT, Esmaeili N, et al. Nanoengineering membrane surfaces: A new paradigm for efficient CO2 capture. Carbon Capture Science & Technology. 2024; 10: 100150. doi: 10.1016/j.ccst.2023.100150

62. Li H, Song Z, Zhang X, et al. Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation. Science. 2013; 342(6154): 95-98. doi: 10.1126/science.1236686

63. Dong G, Hou J, Wang J, et al. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science. 2016; 520: 860-868. doi: 10.1016/j.memsci.2016.08.059

64. Ibrahim AFM, Banihashemi F, Lin YS. Graphene oxide membranes with narrow inter-sheet galleries for enhanced hydrogen separation. Chemical Communications. 2019; 55(21): 3077-3080. doi: 10.1039/c8cc10283j

65. Yang Y, Bolling L, Priolo MA, et al. Super Gas Barrier and Selectivity of Graphene Oxide‐Polymer Multilayer Thin Films. Advanced Materials. 2012; 25(4): 503-508. doi: 10.1002/adma.201202951

66. Chuah CY, Lee J, Song J, et al. Carbon Molecular Sieve Membranes Comprising Graphene Oxides and Porous Carbon for CO2/N2 Separation. Membranes. 2021; 11(4): 284. doi: 10.3390/membranes11040284

67. Lee SE, Jang J, Kim J, et al. Tunable sieving of small gas molecules using horizontal graphene oxide membrane. Journal of Membrane Science. 2020; 610: 118178. doi: 10.1016/j.memsci.2020.118178

68. Xu S, Li H, Xiao L, et al. Quantitative Determination of Poly (methyl Methacrylate) Micro/Nanoplastics by Cooling-Assisted Solid-Phase Microextraction Coupled to Gas Chromatography–Mass Spectrometry: Theoretical and Experimental Insights. Analytical Chemistry. 2024.

69. Brito dos Santos F, Perez ID, McMichael PS, et al. Synthesis of a Novel Cellulose Nanofiber-Based Composite Hydrogel with Poly(methyl methacrylate-co-methacrylic Acid) for Effective Water Removal from Liquid Fuels. Industrial & Engineering Chemistry Research. 2024; 63(5): 2210-2222. doi: 10.1021/acs.iecr.3c02019

70. Bahrami A, Raisi A. Polyurethane-Based Blend Membrane Containing Polycarbonate for Gas Separation: Compatibility Analysis, Microstructure Evaluation, and CO2 Separation Performance. Industrial & Engineering Chemistry Research. 2024; 63(2): 1080-1099. doi: 10.1021/acs.iecr.3c03251

71. Ajaj Y, AL-Salman HNK, Hussein AM, et al. Effect and investigating of graphene nanoparticles on mechanical, physical properties of polylactic acid polymer. Case Studies in Chemical and Environmental Engineering. 2024; 9: 100612. doi: 10.1016/j.cscee.2024.100612

72. Khan I, Khan I, Saeed K, et al. Polymer nanocomposites: an overview. In: Ali N, Bila M, Khan A, et al. (editors). Smart Polymer Nanocomposites. Elsevier; 2023. pp. 167-184. doi: 10.1016/b978-0-323-91611-0.00017-7

73. Sin C, Baranovskii ES. Hölder continuity of solutions for unsteady generalized Navier–Stokes equations with p(x,t)-power law in 2D. Journal of Mathematical Analysis and Applications. 2023; 517(2): 126632. doi: 10.1016/j.jmaa.2022.126632

74. Ray M, Verma A, Maiti A, et al. Nano-Engineered Polymer Matrix-Based Composites. In: Verma RK, Kesarwani S, Xu J, Davim JP (editors). Polymer Nanocomposites: Fabrication to Applications. CRC Press; 2023. pp. 21-39. doi: 10.1201/9781003343912-2

75. Wang Y, Nie W, Wang L, et al. Understanding the graphene-polymer interfacial mechanical behavior via coarse-grained modeling. Computational Materials Science. 2023; 222: 112109. doi: 10.1016/j.commatsci.2023.112109

76. Baldanza A, Pastore Carbone MG, Brondi C, et al. Chemical Vapour Deposition Graphene–PMMA Nanolaminates for Flexible Gas Barrier. Membranes. 2022; 12(6): 611. doi: 10.3390/membranes12060611

77. Francis J, Ramesh A, Suchand Sangeeth CS. Self-Assembled Monolayer-Based Molecular Electronic Devices. Nanoelectronics Devices: Design, Materials, and Applications (Part I). In: Rawat G, Yadav AB (editors). Bentham Science Publishers; 2023. pp. 33-77. doi: 10.2174/9789815136623123010005

78. Naik SG, Rabinal MK. Liquid free float metal contacts to form multiple molecular junctions. Materials Science in Semiconductor Processing. 2023; 156: 107270. doi: 10.1016/j.mssp.2022.107270

79. Herrer L, Martín S, Cea P. Nanofabrication Techniques in Large-Area Molecular Electronic Devices. Applied Sciences. 2020; 10(17): 6064. doi: 10.3390/app10176064

80. Agrawal KV, Benck JD, Yuan Z, et al. Fabrication, Pressure Testing, and Nanopore Formation of Single-Layer Graphene Membranes. The Journal of Physical Chemistry C. 2017; 121(26): 14312-14321. doi: 10.1021/acs.jpcc.7b01796

81. Liu J, Pan Y, Xu J, et al. Introducing amphipathic copolymer into intermediate layer to fabricate ultra-thin Pebax composite membrane for efficient CO2 capture. Journal of Membrane Science. 2023; 667: 121183. doi: 10.1016/j.memsci.2022.121183

82. Gonçalves BJA, de Souza Figueiredo KC. Mixed matrix membranes of polydimethylsiloxane with activated carbon for ABE separation. Journal of Applied Polymer Science. 2024.

83. Junaidi A, Zulfiani U, Khomariyah S, et al. Utilization of polyphenylene sulfide as an organic additive to enhance gas separation performance in polysulfone membranes. RSC Advances. 2024; 14(4): 2311-2319. doi: 10.1039/d3ra06136a

84. Zhang W, Shi Y, Wang B, et al. High-strength electrospun polydimethylsiloxane/polytetrafluoroethylene hybrid membranes with stable and controllable coral-like structures. Composites Part A: Applied Science and Manufacturing. 2023; 164: 107316. doi: 10.1016/j.compositesa.2022.107316

85. Ha H, Park J, Ando S, et al. Gas permeation and selectivity of poly(dimethylsiloxane)/graphene oxide composite elastomer membranes. Journal of Membrane Science. 2016; 518: 131-140. doi: 10.1016/j.memsci.2016.06.028

86. Koolivand H, Sharif A, Chehrazi E, et al. Mixed-matrix membranes comprising graphene-oxide nanosheets for CO2/CH4 separation: A comparison between glassy and rubbery polymer matrices. Polymer Science, Series A. 2016; 58(5): 801-809. doi: 10.1134/s0965545x16050084

87. Zhang Q, Yang Y, Fan H, et al. Synthesis of graphene oxide using boric acid in hummers method. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022; 652: 129802. doi: 10.1016/j.colsurfa.2022.129802

88. Berean KJ, Ou JZ, Nour M, et al. Enhanced Gas Permeation through Graphene Nanocomposites. The Journal of Physical Chemistry C. 2015; 119(24): 13700-13712. doi: 10.1021/acs.jpcc.5b02995

89. Vinodh R, Atchudan R, Kim HJ, et al. Recent Advancements in Polysulfone Based Membranes for Fuel Cell (PEMFCs, DMFCs and AMFCs) Applications: A Critical Review. Polymers. 2022; 14(2): 300. doi: 10.3390/polym14020300

90. Ali ME, Shahat A, Ayoub TI, Kamel RM. Fabrication of high flux polysulfone/mesoporous silica nanocomposite ultrafiltration membranes for industrial wastewater treatment. Biointerface Research in Applied Chemistry. 2022; 12: 7556-7572.

91. Sherugar P, Déon S, Nagaraja KK, et al. Tailoring the structure of polysulfone nanocomposite membranes by incorporating iron oxide doped aluminium oxide for excellent separation performance and antifouling property. Environmental Science: Water Research & Technology. 2022; 8(5): 1059-1077. doi: 10.1039/d1ew00936b

92. Costa Flores M, Figueiredo KC de S. Asymmetric oxygen‐functionalized carbon nanotubes dispersed in polysulfone for CO2 separation. Journal of Applied Polymer Science. 2022; 140(2). doi: 10.1002/app.53303

93. Jaid GM, AbdulRazak AA, Meskher H, et al. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs) in mixed matrix membranes. Materials Today Sustainability. 2024; 25: 100672. doi: 10.1016/j.mtsust.2024.100672

94. Hashemi T, Mehrnia MR, Pourafshari Chenar M. Morphological effects of spherical SiO2 and hexagonal mesoporous MCM‐41 nanoparticles in polyacrylonitrile mixed matrix membranes on the biofouling mitigation in short‐term filtration. Journal of Applied Polymer Science. 2023; 141(3). doi: 10.1002/app.54830

95. Said N, Mansur S, Zainol Abidin MN, Ismail AF. Fabrication and characterization of polysulfone/iron oxide nanoparticle mixed matrix hollow fiber membranes for hemodialysis: Effect of dope extrusion rate and air gap. Journal of Membrane Science and Research. 2023; 9(1).

96. Zahri K, Goh PS, Ismail AF. The incorporation of graphene oxide into polysulfone mixed matrix membrane for CO2/CH4 separation. IOP Conference Series: Earth and Environmental Science. 2016; 36: 012007. doi: 10.1088/1755-1315/36/1/012007

97. Zahri K, Wong KC, Goh PS, et al. Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation. RSC Advances. 2016; 6(92): 89130-89139. doi: 10.1039/c6ra16820e

98. Sainath K, Modi A, Bellare J. In-situ growth of zeolitic imidazolate framework-67 nanoparticles on polysulfone/graphene oxide hollow fiber membranes enhance CO2/CH4 separation. Journal of Membrane Science. 2020; 614: 118506. doi: 10.1016/j.memsci.2020.118506

99. Zhu X, Zhou Y, Hao J, et al. A Charge-Density-Tunable Three/Two-Dimensional Polymer/Graphene Oxide Heterogeneous Nanoporous Membrane for Ion Transport. ACS Nano. 2017; 11(11): 10816-10824. doi: 10.1021/acsnano.7b03576

100. Zhu S, Bi X, Shi Y, et al. Thin Films Based on Polyimide/Metal–Organic Framework Nanoparticle Composite Membranes with Substantially Improved Stability for CO2/CH4 Separation. ACS Applied Nano Materials. 2022; 5(7): 8997-9007. doi: 10.1021/acsanm.2c01248

101. Esmaielzadeh S, Ahmadizadegan H. Gas permeation, thermal, morphology and mechanical properties of polyimide/clay nanocomposites: Effect of organically modified montmorillonite. Journal of Thermoplastic Composite Materials. 2023; 37(1): 363-386. doi: 10.1177/08927057231176421

102. Mehrabi M, Vatanpour V. Polyimide-based separation membranes for liquid separation: A review on fabrication techniques, applications, and future perspectives. Materials Today Chemistry. 2024; 35: 101895. doi: 10.1016/j.mtchem.2024.101895

103. Melicchio A, Favvas EP. Preparation and characterization of graphene oxide as a candidate filler material for the preparation of mixed matrix polyimide membranes. Surface and Coatings Technology. 2018; 349: 1058-1068. doi: 10.1016/j.surfcoat.2018.06.082

104. Shishatskiy S, Makrushin V, Levin I, et al. Effect of Immobilization of Phenolic Antioxidant on Thermo-Oxidative Stability and Aging of Poly(1-trimethylsilyl-1-propyne) in View of Membrane Application. Polymers. 2022; 14(3): 462. doi: 10.3390/polym14030462

105. Seiiedhoseiny M, Ghasemzadeh K, Basile A. Membrane technology in integrated gasification combined cycles. In: Basile A, Lipnizki F, Rahimpour MR, Piemonte V (editors). Current Trends and Future Developments on (Bio-) Membranes. Elsevier; 2024. pp. 743-763. doi: 10.1016/b978-0-323-90258-8.00032-8

106. Santoro S, Tufa RA, Curcio E. Pervaporation and membrane contactors. In: Basile A, Lipnizki F, Rahimpour MR, Piemonte V (editors). Current Trends and Future Developments on (Bio-) Membranes. Elsevier; 2024. pp. 765-788. doi: 10.1016/b978-0-323-90258-8.00019-5

107. Alberto M, Bhavsar R, Luque-Alled JM, et al. Impeded physical aging in PIM-1 membranes containing graphene-like fillers. Journal of Membrane Science. 2018; 563: 513-520. doi: 10.1016/j.memsci.2018.06.026

108. Olivieri L, Ligi S, De Angelis MG, et al. Effect of Graphene and Graphene Oxide Nanoplatelets on the Gas Permselectivity and Aging Behavior of Poly(trimethylsilyl propyne) (PTMSP). Industrial & Engineering Chemistry Research. 2015; 54(44): 11199-11211. doi: 10.1021/acs.iecr.5b03251

109. Zhang D, Xu S, Wan R, et al. Functionalized graphene oxide cross-linked poly(2,6-dimethyl-1,4-phenylene oxide)-based anion exchange membranes with superior ionic conductivity. Journal of Power Sources. 2022; 517: 230720. doi: 10.1016/j.jpowsour.2021.230720

110. Chen J, Zhang M, Shen C, et al. Preparation and Characterization of Non-N-Bonded Side-Chain Anion Exchange Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide). Industrial & Engineering Chemistry Research. 2022; 61(4): 1715-1724. doi: 10.1021/acs.iecr.1c04171

111. Chu X, Miao S, Zhou A, et al. A strategy to design quaternized poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes by atom transfer radical coupling. Journal of Membrane Science. 2022; 649: 120397. doi: 10.1016/j.memsci.2022.120397

112. Rea R, Ligi S, Christian M, et al. Permeability and Selectivity of PPO/Graphene Composites as Mixed Matrix Membranes for CO2 Capture and Gas Separation. Polymers. 2018; 10(2): 129. doi: 10.3390/polym10020129

113. Theravalappil R, Rahaman M. Patents on graphene-based polymer composites and their applications. Polymer Nanocomposites Containing Graphene. Published online 2022: 615-638. doi: 10.1016/b978-0-12-821639-2.00018-5

114. Kausar A, Bocchetta P. Polymer/Graphene Nanocomposite Membranes: Status and Emerging Prospects. Journal of Composites Science. 2022; 6(3): 76. doi: 10.3390/jcs6030076

115. Penkova AV, Dmitrenko ME, Hafusa A, et al. Analytical applications of graphene oxide for membrane processes as separation and concentration methods. In: Hussain CM (editor). Comprehensive Analytical Chemistry. Elsevier; 2020. pp. 99-124. doi: 10.1016/bs.coac.2020.09.002

116. Zhu Z, Song M, Qu F, et al. Engineering Multinanochannel Polymer-Intercalated Graphene Oxide Membrane for Strict Volatile Sieving in Membrane Distillation. Environmental Science & Technology. 2024.

117. Lichaei MM, Thibault J. Mixed matrix membranes based on two-dimensional materials for efficient CO2 separation: A comprehensive review. Process Safety and Environmental Protection. 2024; 183: 952-975. doi: 10.1016/j.psep.2024.01.069

118. Dischinger SM, Miller DJ, Vermaas DA, et al. Unifying the Conversation: Membrane Separation Performance in Energy, Water, and Industrial Applications. ACS ES&T Engineering. 2024; 4(2): 277-289. doi: 10.1021/acsestengg.3c00475

119. Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chemical Society Reviews. 2024; 4.

120. Venmathi Maran BA, Jeyachandran S, Kimura M. A Review on the Electrospinning of Polymer Nanofibers and Its Biomedical Applications. Journal of Composites Science. 2024; 8(1): 32. doi: 10.3390/jcs8010032

121. Yang C, Gede M, Abdulhamid MA, et al. Solvent and material selection for greener membrane manufacturing. In: Basile A, Favvas EP (editors). Current Trends and Future Developments on (Bio-) Membranes. Elsevier; 2024. pp. 249-293. doi: 10.1016/b978-0-323-99311-1.00016-7




DOI: https://doi.org/10.24294/can.v7i1.4581

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ayesha Kausar, Ishaq Ahmad

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.