Application of nanotechnology in periodontal therapy: Narrative review

Svitlana Boitsaniuk, Mariana Levkiv, Orest Kochan

Article ID: 4306
Vol 7, Issue 1, 2024

VIEWS - 1826 (Abstract) 1222 (PDF)

Abstract


The potential of nanotechnology to improve human health, optimize natural resource utilization, and reduce environmental pollution is remarkable. With the ever-growing advancement in dentistry, one of the breakthroughs is using nanotechnology. Nanotechnology in periodontics has touched every aspect of treatment modality, from non-surgical therapy to implant procedures, including regenerative procedures. Understanding their mechanism plays a pivotal role in more efficient usage of nanotechnology, better treatment procedures, and eventually better outcomes. In this paper, we review the application of nanotechnology in periodontal therapy. We performed the search for papers in Scopus using the key words and phrases as follows: “nanodentistry”; “dentistry and nanotechnology”; “dentistry and nanoparticles”; “dentistry and nanomedicine”; “dentistry and nanorobots”. There were found 530 papers in total. Some papers belonged to two and more categories. It is revealed that the number of papers versus year does not follow any specific pattern, but the cumulative amount of papers versus year is fitted with the exponential regression. There were also selected papers using certain inclusion/exclusion criteria. Only the selected papers were analyzed. Nanomedicine is subjected to intensive studies nowadays. There are some promising results that will likely be implemented into praxis soon in the fields of medical diagnostics and clinical therapeutics. The appearance of nanotechnology can have a considerable impact on the treatment of periodontal diseases.


Keywords


nano dentistry; nanoparticle; nanotechnology; periodontal tissue; periodontal disease; treatment options

Full Text:

PDF


References


1. Krolczyk G, Legutko S, Gajek M. Predicting the surface roughness in the dry machining of duplex stainless steel (DSS). Metalurgija. 2013; 52(2): 259-62.

2. Anatychuk L, Kochan O, Pasechnikova N, et al. Thermoelectric medical device for measuring heat flux from ocular surface. In: Proceedings of the 2021 13th International Conference on Measurement; 17-19 May 2021; Bratislava, Slovakia. pp. 178-181. doi: 10.23919/Measurement52780.2021.9446775

3. Pieniak D, Niewczas AM, Pikuła K, et al. Effect of Hydrothermal Factors on the Microhardness of Bulk-Fill and Nanohybrid Composites. Materials. 2023; 16(5): 2130. doi: 10.3390/ma16052130

4. Pirmoradian M, Hooshmand T, Jafari-Semnani S, et al. Degree of conversion and microhardness of bulk-fill dental composites polymerized by LED and QTH light curing units. Journal of Oral Biosciences. 2020; 62(1): 107-113. doi: 10.1016/j.job.2019.12.004

5. Jun S, Kochan OV, Jotsov VS. Methods of Reducing the Effect of the Acquired Thermoelectric Inhomogeneity of Thermocouples on Temperature Measurement Error. Measurement Techniques. 2015; 58(3): 327-331. doi: 10.1007/s11018-015-0709-z

6. Kochan O, Kochan R, Bojko O, et al. Temperature Measurement System Based on Thermocouple with Controlled Temperature Field. In: Proceedings of the 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications; 6-8 September 2007; Dortmund, Germany. pp. 47-50. doi: 10.1109/idaacs.2007.4488370

7. Vasylkiv N, Kochan O, Kochan R, et al. The control system of the profile of temperature field. In: Proceedings of the 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications; 21-23 September 2009; Rende, Italy. pp. 201-206. doi: 10.1109/idaacs.2009.5342994

8. Hu Z, Bodyanskiy YV, Kulishova NYe, et al. A Multidimensional Extended Neo-Fuzzy Neuron for Facial Expression Recognition. International Journal of Intelligent Systems and Applications. 2017; 9(9): 29-36. doi: 10.5815/ijisa.2017.09.04

9. Hu Z, Tereikovskyi I, et al. Procedure for Processing Biometric Parameters Based on Wavelet Transformations. International Journal of Modern Education and Computer Science. 2021; 13(2): 11-22. doi: 10.5815/ijmecs.2021.02.02

10. Dobrzański L, Dobrzański L, Dobrzańska-Danikiewicz A, et al. The Concept of Sustainable Development of Modern Dentistry. Processes. 2020; 8(12): 1605. doi: 10.3390/pr8121605

11. Ng XW, Mundargi RC, Venkatraman SS. Nanomedicine: size-related drug delivery applications, including periodontics and endodontics. In: Kishen A (editor). Nanotechnology in Endodontics: Current and Potential Clinical Applications. Springer; 2015. pp. 71-95. doi: 10.1007/978-3-319-13575-5_5

12. Ozak ST, Ozkan P. Nanotechnology and dentistry. European Journal of Dentistry. 2013; 7(01): 145-51.

13. Mantri SS, Mantri SP. The nano era in dentistry. Journal of Natural Science, Biology, and Medicine. 2013; 4(1): 39. doi: 10.4103%2F0976-9668.107258

14. Dogra S, Gupta A, Goyal V, et al. Recent trends, therapeutic applications, and future trends of nanomaterials in dentistry. In: Kanchi S, Sharma D (editors). Nanomaterials in Diagnostic Tools and Devices. Elsevier; 2020. pp. 257-292. doi: 10.1016/b978-0-12-817923-9.00010-9

15. Hamissi H, Hamissi Z, Hamissi ZH. Nanotechnology in dental practice: current achievement and prospects. Acta Medica Mediterranea. 2016; 32: 1441-8.

16. Freitas RA. Molecular robots and other high-tech possibilities. The Journal of the American Dental Association. 2000; 131: 1559-1565. doi: 10.14219/jada.archive.2000

17. Thoutam LR, Tayal S, Ajayan J, et al. Emerging Materials. Springer Nature Singapore; 2022. doi: 10.1007/978-981-19-1312-9

18. Nahar L, Sarker SD. Nanotechnology and oral health. In: Talukdar AD, Sarker SD, Patra JK (editors). Advances in Nanotechnology-Based Drug Delivery Systems. Elsevier; 2022. pp. 155-176. doi: 10.1016/b978-0-323-88450-1.00014-4

19. Kochan O, Boitsaniuk S, Levkiv M, et al. Emergence of Nano-Dentistry as a Reality of Contemporary Dentistry. Applied Sciences. 2022; 12(4): 2008. doi: 10.3390/app12042008

20. Althahban S, Alomari AS, El-Din M. Sallam H, Jazaa Y. An investigation of wear, mechanical, and water sorption/solubility behaviors of a commercial restorative composite containing nano-additives. Journal of Materials Research and Technology. 2023; 23: 491-502. doi: 10.1016/j.jmrt.2023.01.025

21. Aminu N, Chan SY, Toh SM. Roles of nanotechnological approaches in periodontal disease therapy. Journal of Applied Pharmaceutical Science. 2017; 7(7): 234-42. doi: 10.7324/JAPS.2017.70735

22. Verma S, Chevvuri R, Sharma H. Nanotechnology in dentistry: unleashing the hidden gems. Journal of Indian Society of Periodontology. 2018; 22(3): 196. doi: 10.4103/jisp.jisp_35_18

23. Sinha N, Kulshreshtha NM, Dixit M, et al. Nanodentistry: novel approaches. In: Ecaterina Andronescu and Alexandru Mihai Grumezescu (editors). Nanostructures for Oral Medicine. Elsevier; 2017. pp. 751-776. doi: 10.1016/b978-0-323-47720-8.00025-0

24. Denefil O, Chorniy S, Boitsaniuk S, et al. Analysis of microbiocenosis of a gingival sulcus and periodontal pockets of patients with periodontal diseases associated with systemic pathology. Exploration of Medicine. Published online December 11, 2023: 942-955. doi: 10.37349/emed.2023.00186

25. Gurevitch J, Koricheva J, Nakagawa S, et al. Meta-analysis and the science of research synthesis. Nature. 2018; 555(7695): 175-182. doi: 10.1038/nature25753

26. Dagli N, Patel B, Dagli R, et al. Bibliometric analysis and visualization of research on nanotechnology in dentistry from 1999 to 2022. Journal of Applied Pharmaceutical Science. 2023; 13(9): 58-66. doi: 10.7324/japs.2023.146431

27. DeCoursey W. Statistics and Probability for Engineering Applications. Elsevier; 2003.

28. Mendenhall W, Sincich T, Boudreau NS. A Second Course in Statistics: Regression Analysis. Prentice Hall; 2003.

29. Sun L, Qin H, Przystupa K, et al. Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network. Sensors. 2022; 22(20): 7900. doi: 10.3390/s22207900

30. Chen X, Przystupa K, Ye Z, et al. Forecasting short-term electric load using extreme learning machine with improved tree seed algorithm based on Lévy flight. Eksploatacja i Niezawodność - Maintenance and Reliability. 2022; 24(1): 153-162. doi: 10.17531/ein.2022.1.17

31. Spiegelhalter D. The Art of Statistics: Learning from Data. Penguin UK; 2019.

32. Luby Š. Nanoscience - from manipulation of atoms to human needs. European Pharmaceutical Journal. 2021; 68(1): 84-88. doi: 10.2478/afpuc-2021-0005

33. Malik S, Muhammad K, Waheed Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules. 2023; 28(18): 6624. doi: 10.3390/molecules28186624

34. Guo T, Yang M, Wang D, et al. Antibiofilm and mechanical properties of silver nanowire-modified glass ionomer cement. Journal of Dentistry. 2023; 135: 104569. doi: 10.1016/j.jdent.2023.104569

35. Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, et al. Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials. 2020; 10(9): 1770. doi: 10.3390/nano10091770

36. Beyene HD, Werkneh AA, Bezabh HK, et al. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies. 2017; 13: 18-23. doi: 10.1016/j.susmat.2017.08.001

37. Jandt KD, Watts DC. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dental Materials. 2020; 36(11): 1365-1378. doi: 10.1016/j.dental.2020.08.006

38. Rokaya D, Srimaneepong V, Sapkota J, et al. Polymeric materials and films in dentistry: An overview. Journal of Advanced Research. 2018; 14: 25-34. doi: 10.1016/j.jare.2018.05.001

39. Aizenbud I, Wilensky A, Almoznino G. Periodontal Disease and Its Association with Metabolic Syndrome—A Comprehensive Review. International Journal of Molecular Sciences. 2023; 24(16): 13011. doi: 10.3390/ijms241613011

40. Alsalleeh F, Alhadlaq AS, Althumiri NA, et al. Public Awareness of the Association between Periodontal Disease and Systemic Disease. Healthcare. 2022; 11(1): 88. doi: 10.3390/healthcare11010088

41. Pyo J, Lee M, Ock M, et al. Quality of Life and Health in Patients with Chronic Periodontitis: A Qualitative Study. International Journal of Environmental Research and Public Health. 2020; 17(13): 4895. doi: 10.3390/ijerph17134895

42. Foong LK, Foroughi MM, Mirhosseini AF, et al. Applications of nano-materials in diverse dentistry regimes. RSC Advances. 2020; 10(26): 15430-15460. doi: 10.1039/d0ra00762e

43. Ji S, Choi YS, Choi Y. Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis? Journal of Periodontal Research. 2014; 50(5): 570-585. doi: 10.1111/jre.12248

44. Coppola N, Cantile T, Adamo D, et al. Supportive care and antiviral treatments in primary herpetic gingivostomatitis: a systematic review. Clinical Oral Investigations. 2023; 27(11): 6333-6344. doi: 10.1007/s00784-023-05250-5

45. Suárez LJ, Garzón H, Arboleda S, et al. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Frontiers in Immunology. 2020; 11. doi: 10.3389/fimmu.2020.591255

46. Iviglia G, Kargozar S, Baino F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. Journal of Functional Biomaterials. 2019; 10(1): 3. doi: 10.3390/jfb10010003

47. Santonocito S, Ferlito S, Polizzi A, et al. Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives. International Journal of Molecular Sciences. 2022; 23(22): 13708. doi: 10.3390/ijms232213708

48. Chi M, Qi M, A L, et al. Novel Bioactive and Therapeutic Dental Polymeric Materials to Inhibit Periodontal Pathogens and Biofilms. International Journal of Molecular Sciences. 2019; 20(2): 278. doi: 10.3390/ijms20020278

49. Liang J, Peng X, Zhou X, et al. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules. 2020; 25(3): 516. doi: 10.3390/molecules25030516

50. Makvandi P, Josic U, Delfi M, et al. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. Advanced Science. 2021; 8(8). doi: 10.1002/advs.202004014

51. Hanafy N, Leporatti S, El-Kemary M. Mucoadhesive Hydrogel Nanoparticles as Smart Biomedical Drug Delivery System. Applied Sciences. 2019; 9(5): 825. doi: 10.3390/app9050825

52. Seki M, Ishikawa T, Terada H, Nashimoto M. Microbicidal Effects of Stored Aqueous Ozone Solution Generated by Nano-bubble Technology. Vivo. 2017; 31(4): 579-583. doi: 10.21873/invivo.11097

53. Jaiswal S, Mishra P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Medical Microbiology and Immunology. 2017; 207(1): 39-53. doi: 10.1007/s00430-017-0525-y

54. Lei D, Wang Q, Kong Y, et al. Triclosan-loaded pH-responsive copolymer to target bacteria and to have long bacteriostatic efficacy. European Journal of Pharmaceutical Sciences. 2020; 148: 105320. doi: 10.1016/j.ejps.2020.105320

55. Aminu N, Yam MF, Chan SY, et al. The evaluation of healing effect of triclosan and flurbiprofen-loaded nanogels in experimental periodontitis in rats by morphometric analysis. The Saudi Dental Journal. 2021; 33(7): 554-559. doi: 10.1016/j.sdentj.2020.08.0

56. Kumar M, Sharma M, Govila V, et al. A Comparative Evaluation of Tetracycline Containing Microspheres and Commercially Available Tetracycline Fibers to Evaluate Their Efficacy in Periodontal Pocket Therapy—A Clinical and Microbiological Study. Global Journal for Research Analysis. 2017; 6(8): 65-67.

57. Plemmons D, Sneed K, Pathak Y. Nano therapy Spotlight: Arestin™ Minocycline Microspheres. Chemical & Pharmaceutical Research. 2023; 5(1). doi: 10.33425/2689-1050.1046

58. Kuete V, Seukep AJ. Harungana madagascariensis as a source of antibacterial agents. In: Advances in Botanical Research. Academic Press; 2023.

59. Carter SSD, Costa PF, Vaquette C, et al. Additive Biomanufacturing: An Advanced Approach for Periodontal Tissue Regeneration. Annals of Biomedical Engineering. 2016; 45(1): 12-22. doi: 10.1007/s10439-016-1687-2

60. Calasans-Maia MD, Barboza Junior CAB, Soriano-Souza CA, et al. Microspheres of alginate encapsulated minocycline-loaded nanocrystalline carbonated hydroxyapatite: therapeutic potential and effects on bone regeneration. International Journal of Nanomedicine. 2019; 14: 4559-4571. doi: 10.2147/IJN.S201631

61. Meenakshi SS, Sankari M. Effectiveness of Chitosan Nanohydrogel as a Bone Regenerative Material in Intrabony Defects in Patients with Chronic Periodontitis: A Randomized Clinical Trial. Journal of Advanced Oral Research. 2021; 12(2): 222-228. doi: 10.1177/2320206821998574

62. Wu L, Li F, Morrow BR, Jiang S, et al. A novel antimicrobial and remineralizing toothpaste containing CaCl2/chitosan microspheres. American Journal of Dentistry. 2018; 31(3): 149.

63. Thomas S, Baiju RM (editors). Nanomaterials in Dental Medicine. Springer Nature Singapore; 2023. doi: 10.1007/978-981-19-8718-2

64. Bordoloi P, Shahira S, Ramesh A, Thomas B. Nanorobotic wonders: A revolutionary era in periodontics. Indian Journal of Multidisciplinary Dentistry. 2018; 8: 101-5. doi: 10.4103/ijmd.ijmd_29_18

65. Zong TX, Silveira AP, Morais JAV, et al. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. Nanomaterials. 2022; 12(11): 1855. doi: 10.3390/nano12111855

66. Loza K, Heggen M, Epple M. Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Advanced Functional Materials. 2020; 30(21). doi: 10.1002/adfm.201909260

67. Nandi SK, Shivaram A, Bose S, et al. Silver nanoparticle deposited implants to treat osteomyelitis. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2017; 106(3): 1073-1083. doi: 10.1002/jbm.b.33910

68. Chornij N, Boitsaniuk S, Stechyshyn I, et al. Prevention and methods of correction of hyperesthesia of dental hard tissues of teeth. Pharmacologyonline. 2021; 2: 1436-42.

69. Singh AV, Ansari MHD, Laux P, et al. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opinion on Drug Delivery. 2019; 16(11): 1259-1275. doi: 10.1080/17425247.2019.1676228

70. Arjmand T, Legallais M, Nguyen TTT, et al. Functional Devices from Bottom-Up Silicon Nanowires: A Review. Nanomaterials. 2022; 12(7): 1043. doi: 10.3390/nano12071043

71. Zhu L, Zhou C, Chen S, et al. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells. 2022; 11(21): 3380. doi: 10.3390/cells11213380

72. Kim HW, Kim YJ. Effect of silicon or cerium doping on the anti-inflammatory activity of biphasic calcium phosphate scaffolds for bone regeneration. Progress in Biomaterials. 2022; 11(4): 421-430. doi: 10.1007/s40204-022-00206-6

73. Santonocito S, Ferlito S, Polizzi A, et al. Impact exerted by scaffolds and biomaterials in periodontal bone and tissue regeneration engineering: new challenges and perspectives for disease treatment. Exploration of Medicine. 2023; 4: 215-234. doi: 10.37349/emed.2023.00135

74. Grassi FR, Grassi R, Vivarelli L, et al. Design Techniques to Optimize the Scaffold Performance: Freeze-dried Bone Custom-made Allografts for Maxillary Alveolar Horizontal Ridge Augmentation. Materials. 2020; 13(6): 1393. doi: 10.3390/ma13061393

75. Francisco I, Basílio Â, Ribeiro MP, et al. Three-Dimensional Impression of Biomaterials for Alveolar Graft: Scoping Review. Journal of Functional Biomaterials. 2023; 14(2): 76. doi: 10.3390/jfb14020076

76. Rajula MP, Narayanan V, Venkatasubbu GD, et al. Synthesis and Characterization of Naringin Functionalized Nano-Hydroxyapatite for Bone Tissue Engineering. Journal of Pharmacy and Bioallied Sciences. 2023;15(Suppl 1): S372-S376. doi: 10.4103/jpbs.jpbs_626_22

77. Liu J, Ruan J, Weir MD, et al. Periodontal Bone-Ligament-Cementum Regeneration via Scaffolds and Stem Cells. Cells. 2019; 8(6): 537. doi: 10.3390/cells8060537

78. Mohd N, Razali M, Ghazali MJ, et al. 3D-Printed Hydroxyapatite and Tricalcium Phosphates-Based Scaffolds for Alveolar Bone Regeneration in Animal Models: A Scoping Review. Materials. 2022; 15(7): 2621. doi: 10.3390/ma15072621

79. Gavinho SR, Pádua AS, Holz LIV, et al. Bioactive Glasses Containing Strontium or Magnesium Ions to Enhance the Biological Response in Bone Regeneration. Nanomaterials. 2023; 13(19): 2717. doi: 10.3390/nano13192717

80. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, et al. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia. 2013; 9(8): 7591-7621. doi: 10.1016/j.actbio.2013.04.012

81. Alqahtani AM. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers. 2023; 15(16): 3355. doi: 10.3390/polym15163355

82. Creste CFZ, Orsi PR, Landim-Alvarenga FC, et al. Highly Effective Fibrin Biopolymer Scaffold for Stem Cells Upgrading Bone Regeneration. Materials. 2020; 13(12): 2747. doi: 10.3390/ma13122747

83. Mansoor A, Khurshid Z, Khan MT, et al. Medical and Dental Applications of Titania Nanoparticles: An Overview. Nanomaterials. 2022; 12(20): 3670. doi: 10.3390/nano12203670

84. Subramani K, Ahmed W. Emerging Nanotechnologies in Dentistry. William Andrew; 2017.

85. Harugade A, Sherje AP, Pethe A. Chitosan: A review on properties, biological activities and recent progress in biomedical applications. Reactive and Functional Polymers. 2023; 191: 105634. doi: 10.1016/j.reactfunctpolym.2023.105634

86. Gaihre B, Lecka-Czernik B, Jayasuriya AC. Injectable nanosilica-chitosan microparticles for bone regeneration applications. Journal of Biomaterials Applications. 2017; 32(6): 813-825. doi: 10.1177/0885328217741523

87. Iglesias N, Galbis E, Valencia C, et al. Biodegradable double cross-linked chitosan hydrogels for drug delivery: Impact of chemistry on rheological and pharmacological performance. International Journal of Biological Macromolecules. 2020; 165: 2205-2218. doi: 10.1016/j.ijbiomac.2020.10.006

88. Mitthra S, Karthick A, Anuradha B, et al. Nanorobots - A Small Wonder. Biosciences, Biotechnology Research Asia. 2016; 13(4): 2131-2134. doi: 10.13005/bbra/2374

89. Comune M, Rai A, Palma P, et al. Antimicrobial and pro-angiogenic properties of soluble and nanoparticle-immobilized LL37 peptides. Biomaterials Science. 2021; 9(24): 8153-8159. doi: 10.1039/d1bm01034d

90. Hasan DM, Abbas MJ, Al-Ghurabi BH. Impact of indium oxide nanoparticles mouth wash in prevention of human dental enamel caries (in vitro study). Medical Journal of Babylon. 2023; 20(2): 322-31. doi: 10.4103/MJBL.MJBL_345_22

91. Gumber HK, Louyakis AS, Sarma T, et al. Effect of a Stannous Fluoride Dentifrice on Biofilm Composition, Gene Expression and Biomechanical Properties. Microorganisms. 2022; 10(9): 1691. doi: 10.3390/microorganisms10091691

92. Giri G, Maddahi Y, Zareinia K. A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications. Applied Sciences. 2021; 11(21): 10385. doi: 10.3390/app112110385

93. Glowacka-Sobotta A, Ziental D, Czarczynska-Goslinska B, et al. Nanotechnology for Dentistry: Prospects and Applications. Nanomaterials. 2023; 13(14): 2130. doi: 10.3390/nano13142130

94. Malik S, Niazi M, Khan M, et al. Cytotoxicity Study of Gold Nanoparticle Synthesis Using Aloe vera, Honey, and Gymnema sylvestre Leaf Extract. ACS Omega. 2023; 8(7): 6325-6336. doi: 10.1021/acsomega.2c06491




DOI: https://doi.org/10.24294/can.v7i1.4306

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Svitlana Boitsaniuk, Mariana Levkiv, Orest Kochan

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.