References
Bellucci S. Decontamination of surface water from organic pollutants using graphene membranes. Characterization and Application of Nanomaterials 2023; 6(1): 2033. doi: 10.24294/can.v6i1.2033
Kausar A, Ahmad I, Dai Lam T. High-tech graphene oxide reinforced conducting matrix nanocomposites—Current status and progress. Characterization and Application of Nanomaterials 2023; 6(1): 2637. doi: 10.24294/can.v6i1.2637
Kausar A, Ahmad I. Cutting-edge conjugated nanocomposites—Fundamentals and anti-corrosion significance. Characterization and Application of Nanomaterials 2023; 6(2): 3361. doi: 10.24294/can.v6i2.3361
Ge X, Chai Z, Shi Q, et al. Graphene superlubricity: A review. Friction 2023; 11: 1953–1973. doi: 10.1007/s40544-022-0681-y
Ranganatha S. A short review on metal phosphide based 2D nanomaterials for high performance electrochemical supercapacitors. Materials Research Innovations 2023; 27: 93–99. doi: 10.1080/14328917.2022.2085009
Turunc E, Kahraman O, Dogen A, Binzet R. Green synthesis of graphene quantum dot-and its electrochemical, antioxidant and antimicrobial activities. Synthetic Metals 2023; 299: 117453. doi: 10.1016/j.synthmet.2023.117453
Kausar A, Ahmad I. Graphene quantum dots in high performance nanocomposites—Design to phantastic progressions. Materials Research Innovations 2023; 1–15. doi: 10.1080/14328917.2023.2267362
Sakthieswaran N, Sophia M. Prosopis juliflora fibre reinforced green building plaster materials—An eco-friendly weed control technique by effective utilization. Environmental Technology & Innovation 2020; 20: 101158. doi: 10.1016/j.eti.2020.101158
Liu J, Feng Y, Zhu Q, Sarkis J. Green supply chain management and the circular economy: Reviewing theory for advancement of both fields. International Journal of Physical Distribution & Logistics Management 2018; 48(9): 794–817. doi: 10.1108/IJPDLM-01-2017-0049
Mohan T, Kanny K. Green Nanofillers for Polymeric Materials. Springer; 2020. pp. 99–138.
Siwal SS, Zhang Q, Devi N, Thakur VK. Carbon-based polymer nanocomposite for high-performance energy storage applications. Polymers 2020; 12(3): 505. doi: 10.3390/polym12030505
Beloin-Saint-Pierre D, Hischier R. Towards a more environmentally sustainable production of graphene-based materials: Building on current knowledge to offer recommendations. The International Journal of Life Cycle Assessment 2021; 26: 327–343. doi: 10.1007/s11367-020-01864-z
Li X, Wang F, Al-Razgan M, et al. Race to environmental sustainability: Can structural change, economic expansion and natural resource consumption effect environmental sustainability? A novel dynamic ARDL simulations approach. Resources Policy 2023; 86: 104044. doi: 10.1016/j.resourpol.2023.104044
Kori AH, Jagirani MS, Soylak M. Graphene-based nanomaterials: A sustainable material for Solid-Phase Microextraction (SPME) for environmental applications. Analytical Letters 2023; 56(15): 2385–2400. doi: 10.1080/00032719.2023.2173221
Jiang B, Zhao Q, Zhang Z, et al. Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Research 2020; 13: 1564–1570. doi: 10.1007/s12274-020-2771-3
Manikandan V, Lee NY. Reduced graphene oxide: Biofabrication and environmental applications. Chemosphere 2023; 311: 136934. doi: 10.1016/j.chemosphere.2022.136934
Zhang XY, Yang YS, Wang W, et al. Fluorescent sensors for the detection of hydrazine in environmental and biological systems: Recent advances and future prospects. Coordination Chemistry Reviews 2020; 417: 213367. doi: 10.1016/j.ccr.2020.213367
Sengupta S, Pal S, Pal A, et al. A review on synthesis, toxicity profile and biomedical applications of graphene quantum dots (GQDs). Inorganica Chimica Acta 2023; 121677. doi: 10.1016/j.ica.2023.121677
Lin S, Tang J, Zhang K, et al. Tuning oxygen-containing functional groups of graphene for supercapacitors with high stability. Nanoscale Advances 2023; 5: 1163–1171. doi: 10.1039/D2NA00506A
Xia K, Wang C, Jian M, et al. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Research 2018; 11: 1124–1134. doi: 10.1007/s12274-017-1731-z
Anastas PT. Handbook of Green Chemistry. Wiley-VCH; 2013.
Chen J, Shi W, Gao Z, et al. Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents. Nano Research 2018; 11: 820–830. doi: 10.1007/s12274-017-1691-3
Borah M, Dahiya M, Sharma S, et al. Few layer graphene derived from wet ball milling of expanded graphite and few layer graphene based polymer composite. Materials Focus 2014; 3: 300–309. doi: 10.1166/mat.2014.1185
Ramírez C, Shamshirgar AS, Pérez-Coll D, et al. CVD nanocrystalline multilayer graphene coated 3D-printed alumina lattices. Carbon 2023; 202: 36–46. doi: 10.1016/j.carbon.2022.10.085
Lokhande A, Teotia S, Qattan I, et al. Green chemistry based fabrication of holey graphene electrodes for high-performance supercapacitors. Materials Letters 2020; 271: 127793. doi: 10.1016/j.matlet.2020.127793
Yadav A, Kumar H, Sharma R, Kumari R. Synthesis, processing, and applications of 2D (nano) materials: A sustainable approach. Surfaces and Interfaces 2023; 39: 102925. doi: 10.1016/j.surfin.2023.102925
Leng X, Vazquez RJ, McCuskey SR, et al. Bacteria-loaded graphene bioanode for renewable energy generation. Carbon 2023; 205: 33–39. doi: 10.1016/j.carbon.2023.01.019
Ruan G, Sun Z, Peng Z, Tour JM. Growth of graphene from food, insects, and waste. ACS Nano 2011; 5(9): 7601–7607. doi: 10.1021/nn202625c
Kalita G, Masahiro M, Uchida H, et al. Few layers of graphene as transparent electrode from botanical derivative camphor. Materials Letters 2010; 64: 2180–2183. doi: 10.1016/j.matlet.2010.07.005
Zhang B, Song J, Yang G, Han B. Large-scale production of high-quality graphene using glucose and ferric chloride. Chemical Science 2014; 5(12): 4656–4660. doi: 10.1039/C4SC01950D
Tavakoli F, Salavati-Niasari M, Mohandes F. Green synthesis and characterization of graphene nanosheets. Materials Research Bulletin 2015; 63: 51–57. doi: 10.1016/j.materresbull.2014.11.045
Gu B, Jiang Q, Luo B, et al. A sandwich-like chitosan-based antibacterial nanocomposite film with reduced graphene oxide immobilized silver nanoparticles. Carbohydrate Polymers 2021; 260: 117835. doi: 10.1016/j.carbpol.2021.117835
Upadhyay RK, Soin N, Bhattacharya G, et al. Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Materials Letters 2015; 160: 355–358. doi: 10.1016/j.matlet.2015.07.144
Li Y, Xia Z, Gong Q, et al. Green synthesis of free standing cellulose/graphene oxide/polyaniline aerogel electrode for high-performance flexible all-solid-state supercapacitors. Nanomaterials 2020; 10(8): 1546. doi: 10.3390/nano10081546
Gao J, Liu F, Liu Y, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chemistry of Materials 2010; 22: 2213–2218. doi: 10.1021/cm902635j
Fernández-Merino MJ, Guardia L, Paredes J, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. The Journal of Physical Chemistry C 2010; 114(14): 6426–6432. doi: 10.1021/jp100603h
Ren Z, Li H, Li J, et al. Green synthesis of reduced graphene oxide/chitosan/gold nanoparticles composites and their catalytic activity for reduction of 4-nitrophenol. International Journal of Biological Macromolecules 2023; 229: 732–745. doi: 10.1016/j.ijbiomac.2022.12.282
Sayed A, Mazrouaa AM, Mohamed MG, Abdel-Raouf MES. Green synthesis of chitosan/erythritol/graphene oxide composites for simultaneous removal of some toxic species from simulated solution. Environmental Science and Pollution Research 2023; 30: 25903–25919. doi: 10.1007/s11356-022-23951-4
Sharif M, Tavakoli S. Biodegradable chitosan-graphene oxide as an affective green filler for improving of properties in epoxy nanocomposites. International Journal of Biological Macromolecules 2023; 233: 123550. doi: 10.1016/j.ijbiomac.2023.123550
Meera K, Ramesan M. Tailoring the performance of boehmite nanoparticles reinforced carboxymethyl chitosan/cashew gum blend nanocomposites via green synthesis. Polymer 2023; 268: 125706. doi: 10.1016/j.polymer.2023.125706
Mann GS, Singh LP, Kumar P, Singh S. Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials 2020; 33(8): 1145–1171. doi: 10.1177/0892705718816354
Ahsan F, Dana NH, Sarker SK, et al. Data-driven next-generation smart grid towards sustainable energy evolution: Techniques and technology review. Protection and Control of Modern Power Systems. 2023; 8(3): 1–42. doi: 10.1186/s41601-023-00319-5
Tajjour S, Chandel SS. A comprehensive review on sustainable energy management systems for optimal operation of future-generation of solar microgrids. Sustainable Energy Technologies and Assessments 2023; 58: 103377. doi: 10.1016/j.seta.2023.103377
Mishnaevsky L, Branner K, Petersen HN, et al. Materials for wind turbine blades: An overview. Materials 2017; 10(11): 1285. doi: 10.3390/ma10111285
Mishnaevsky L Jr. How to repair the next generation of wind turbine blades. Energies 2023; 16(23): 7694. doi: 10.3390/en16237694
Sukumaran NP, Gopi S. Overview of biopolymers: Resources, demands, sustainability, and life cycle assessment modeling and simulation. In: Biopolymers and their Industrial Applications. Elsevier; 2021. pp. 1–19. doi: 10.1016/B978-0-12-819240-5.00001-8
Liu S, Yu T, Wu Y, et al. Evolution of cellulose into flexible conductive green electronics: A smart strategy to fabricate sustainable electrodes for supercapacitors. RSC Advances 2014; 4(64): 34134–34143. doi: 10.1039/C4RA07017H
Tanwar S, Sharma A. Insight into use of biopolymer in hybrid electrode materials for supercapacitor applications—A critical review. Journal of Applied Physics 2023; 133. doi: 10.1063/5.0138950
Zhuang X, Wang F, Hu X. Biodegradable polymers: A promising solution for green energy devices. European Polymer Journal 2023; 204: 112696. doi: 10.1016/j.eurpolymj.2023.112696
Alsaad AM, Aljarrah IA, Ahmad A, et al. The structural, optical, thermal, and electrical properties of synthesized PEO/GO thin films. Applied Physics A 2022; 128: 676. doi: 10.1007/s00339-022-05829-x
Sun K, Li J, Wu D, Jiang J. Green synthesis of porous honeycomblike carbon materials for supercapacitor electrodes. Industrial & Engineering Chemistry Research 2020; 59(32): 14288–14295. doi: 10.1021/acs.iecr.0c00828
Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: A review. Journal of Materials Chemistry A 2017; 5(25): 12653–12672. doi: 10.1039/C7TA00863E
Lee SJ, Theerthagiri J, Nithyadharseni P, et al. Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renewable and Sustainable Energy Reviews 2021; 143: 110849. doi: 10.1016/j.rser.2021.110849
Ramachandran T, Sana SS, Kumar KD, et al. Asymmetric supercapacitors: Unlocking the energy storage revolution. Journal of Energy Storage 2023; 73: 109096. doi: 10.1016/j.est.2023.109096
Yasami S, Mazinani S, Abdouss M. Developed composites materials for flexible supercapacitors electrode: “Recent progress & future aspects”. Journal of Energy Storage 2023; 72: 108807. doi: 10.1016/j.est.2023.108807
Sardana S, Aggarwal K, Siwach P, et al. Hierarchical three dimensional polyaniline/N‐doped graphene nanocomposite hydrogel for energy storage applications. Energy Storage 2023; 5(2): e328. doi: 10.1002/est2.328
Zhang J, Li C, Peng Z, et al. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. Scientific Reports 2017; 7: 4886. doi: 10.1038/s41598-017-04958-1
Kashksara KM, Tavakolipour H, Mokhtarian M. Effects of atmospheric-thermosonication process on phenolic compounds extraction, extraction productivity and antioxidant activity of freeze-dried green tea and green coffee aqueous extracts. Journal of Agriculture and Food Research. 2023; 12: 100582. doi: 10.1016/j.jafr.2023.100582
Deng W, Zang C, Li Q, et al. Hydrothermally derived green carbon dots from broccoli water extracts: Decreased toxicity, enhanced free-radical scavenging, and anti-inflammatory performance. ACS Biomaterials Science & Engineering 2023; 9(3): 1307–1319. doi: 10.1021/acsbiomaterials.2c01537
Çıplak Z, Yıldız A, Yıldız N. Green preparation of ternary reduced graphene oxide-au@ polyaniline nanocomposite for supercapacitor application. Journal of Energy Storage 2020; 32: 101846. doi: 10.1016/j.est.2020.101846
Arthisree D, Madhuri W. Optically active polymer nanocomposite composed of polyaniline, polyacrylonitrile and green-synthesized graphene quantum dot for supercapacitor application. International Journal of Hydrogen Energy 2020; 45(16): 9317–9327. doi: 10.1016/j.ijhydene.2020.01.179
Zhong C, Deng Y, Hu W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 2015; 44(21): 7484–7539. doi: 10.1039/C5CS00303B
Sumboja A, Wang X, Yan J, Lee PS. Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochimica Acta 2012; 65: 190–195. doi: 10.1016/j.electacta.2012.01.046
Chakraborty S, Mary N. Biocompatible supercapacitor electrodes using green synthesised ZnO/Polymer nanocomposites for efficient energy storage applications. Journal of Energy Storage 2020; 28: 101275. doi: 10.1016/j.est.2020.101275
Yang X, Fei B, Ma J, et al. Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes. Carbohydrate Polymers 2018; 180: 385–392. doi: 10.1016/j.carbpol.2017.10.013
Tian W, Gao Q, Zhang L, et al. Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. Journal of Materials Chemistry A 2016; 4(22): 8690–8699. doi: 10.1039/C6TA02828D
Chen LF, Huang ZH, Liang HW, et al. Bacterial‐cellulose‐derived carbon nanofiber@ MnO2 and nitrogen‐doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density. Advanced Materials 2013; 25: 4746–4752.
Ren F, Li Z, Tan WZ, et al. Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. Journal of Colloid and Interface Science 2018; 532: 58–67. doi: 10.1016/j.jcis.2018.07.101
Tian J, Peng D, Wu X, et al. Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydrate Polymers 2017; 156: 19–25. doi: 10.1016/j.carbpol.2016.09.005
Wan C, Jiao Y, Liang D, et al. A geologic architecture system‐inspired micro‐/nano‐heterostructure design for high‐performance energy storage. Advanced Energy Materials 2018; 8(33): 1802388. doi: 10.1002/aenm.201802388
Zu G, Shen J, Zou L, et al. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 2016; 99: 203–211. doi: 10.1016/j.carbon.2015.11.079
Ouyang W, Sun J, Memon J, et al. Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 2013; 62: 501–509. doi: 10.1016/j.carbon.2013.06.049
Chuah R, Gopinath SC, Subramaniam S. Cleaner deoxygenation of graphene oxide from agro-byproducts for downstream and biological applications. Biomass Conversion and Biorefinery 2023; 13: 14303–14316. doi: 10.1007/s13399-022-03089-6
Nguyen TB, Yoon B, Nguyen TD, et al. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon 2023; 206: 383–391. doi: 10.1016/j.carbon.2023.02.060
İnsel MA, Karakuş S. Polymeric materials for nanosupercapacitors. In: Recent Advancements in Polymeric Materials for Electrochemical Energy Storage. Springer; 2023. pp. 167–185. doi: 10.1007/978-981-99-4193-3_10
Mensah-Darkwa K, Zequine C, Kahol PK, Gupta RK. Supercapacitor energy storage device using biowastes: A sustainable approach to green energy. Sustainability 2019; 11(2): 414. doi: 10.3390/su11020414
Walker TR, Fequet L. Current trends of unsustainable plastic production and micro (nano) plastic pollution. TrAC Trends in Analytical Chemistry 2023; 116984. doi: 10.1016/j.trac.2023.116984
Worm B, Lotze HK, Jubinville I, et al. Plastic as a persistent marine pollutant. Annual Review of Environment and Resources 2017; 42: 1–26. doi: 10.1146/annurev-environ-102016-060700
Maalouf A, Agamuthu P. Waste management evolution in the last five decades in developing countries—A review. Waste Management & Research 2023; 41(9): 1420–1434. doi: 10.1177/0734242X231160099
Rafey A, Siddiqui FZ. A review of plastic waste management in India–challenges and opportunities. International Journal of Environmental Analytical Chemistry 2023; 103: 3971–3987. doi: 10.1080/03067319.2021.1917560
Schröder P, Oyinlola M. From polymers to microplastics: Plastic value chains in Africa. In: Digital Innovations for a Circular Plastic Economy in Africa. Routledge; 2023. pp. 63–75.
Bourtsalas AT, Yepes IM, Tian Y. US plastic waste exports: A state-by-state analysis pre-and post-China import ban. Journal of Environmental Management 2023; 344: 118604. doi: 10.1016/j.jenvman.2023.118604
Ding Q, Zhu H. The key to solving plastic packaging wastes: Design for recycling and recycling technology. Polymers 2023; 15(6): 1485. doi: 10.3390/polym15061485
Ashish PK, Sreeram A, Xu X, et al. Closing the loop: Harnessing waste plastics for sustainable asphalt mixtures—A comprehensive review. Construction and Building Materials 2023; 400: 132858. doi: 10.1016/j.conbuildmat.2023.132858
El Essawy NA, Ali SM, Farag HA, et al. Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution. Ecotoxicology and Environmental Safety 2017; 145: 57–68. doi: 10.1016/j.ecoenv.2017.07.014
Bhattacharya R. A review on production and application of activated carbon from discarded plastics in the context of ‘waste treats waste’. Journal of Environmental Management 2023; 325: 116613. doi: 10.1016/j.jenvman.2022.116613
Zhang Y, Ma Q, Chen Z, et al. Enhanced adsorption of diclofenac onto activated carbon derived from PET plastic by one-step pyrolysis with KOH. Environmental Science and Pollution Research 2023; 30: 113790–113803. doi: 10.1007/s11356-023-30376-0
Qian J, Dunn CB, Qiang Z. Design of copolymer‐based blend compatibilizers for mixed plastic recycling. Macromolecular Chemistry and Physics 2023; 224(24): 2300291. doi: 10.1002/macp.202300291
Amiri A, Ahmadi G, Shanbedi M, et al. Heat transfer enhancement of water-based highly crumpled few-layer graphene nanofluids. RSC Advances 2016; 6: 105508–105527. doi: 10.1039/C6RA22365F
Araby S, Philips B, Meng Q, et al. Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Composites Part B: Engineering 2021; 212: 108675. doi: 10.1016/j.compositesb.2021.108675
Siddiqui AS, Hayat A, Nawaz MH, et al. Effect of sulfur doping on graphene oxide towards amplified fluorescence quenching based ultrasensitive detection of hydrogen peroxide. Applied Surface Science 2020; 509: 144695. doi: 10.1016/j.apsusc.2019.144695
Tiwari SK, Mishra RK, Ha SK, Huczko A. Evolution of graphene oxide and graphene: From imagination to industrialization. ChemNanoMat 2018; 4(7): 598–620. doi: 10.1002/cnma.201800089
Kumar N, Salehiyan R, Chauke V, et al. Top-down synthesis of graphene: A comprehensive review. FlatChem 2021; 27: 100224. doi: 10.1016/j.flatc.2021.100224
Baciu AM, Kiss I. Review on the post–consumer plastic waste recycling practices and use their products into several industrial applications. Acta Technica Corviniensis–Bulletin of Engineering 2020; 13: 95–103.
Kim H, Kobayashi S, AbdurRahim MA, et al. Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer 2011; 52(8): 1837–1846. doi: 10.1016/j.polymer.2011.02.017
Techawinyutham L, Tengsuthiwat J, Srisuk R, et al. Recycled LDPE/PETG blends and HDPE/PETG blends: Mechanical, thermal, and rheological properties. Journal of Materials Research and Technology 2021; 15: 2445–2458. doi: 10.1016/j.jmrt.2021.09.052
Jun YS, Um JG, Jiang G, et al. Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Composites Part B: Engineering 2018; 133: 218–225. doi: 10.1016/j.compositesb.2017.09.028
Khanam PN, AlMaadeed M, Ouederni M, et al. Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. Vacuum 2016; 130: 63–71. doi: 10.1016/j.vacuum.2016.04.022
Chan XY, Saeidi N, Javadian A, et al. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions. Scientific Reports 2021; 11: 22112. doi: 10.1038/s41598-021-01598-4
Diallo AK, Helal E, Gutierrez G, et al. Graphene: A multifunctional additive for sustainability. Sustainable Materials and Technologies 2022; 33: e00487. doi: 10.1016/j.susmat.2022.e00487
Sultana SN, Helal E, Gutiérrez G, et al. Effect of few-layer graphene on the properties of mixed polyolefin waste stream. Crystals 2023; 13(2): 358. doi: 10.3390/cryst13020358
Priyan MV, Annadurai R, Onyelowe KC, et al. Recycling and sustainable applications of waste printed circuit board in concrete application and validation using response surface methodology. Scientific Reports 2023; 13: 16509. doi: 10.1038/s41598-023-43919-9
Rashid MA, Hasan MN, Dayan MAR, et al. A critical review of sustainable vanillin-modified vitrimers: Synthesis, challenge and prospects. Reactions 2023; 4(1): 66–91. doi: 10.3390/reactions4010003
Tatrari G, Tewari C, Bohra BS, et al. Waste plastic derived graphene sheets as nanofillers to enhance mechanical strength of concrete mixture: An inventive approach to deal with universal plastic waste. Cleaner Engineering and Technology 2021; 5: 100275. doi: 10.1016/j.clet.2021.100275