Mo-doped titanate nanofibers from hydrothermal syntheses for improving bone scaffold

Yang Tian, Lu Zhang, Yiting Xiao, Trenton Collins, Abdussamad Akhter, Yan Huang, Z. Ryan Tian

Article ID: 3587
Vol 7, Issue 1, 2024

VIEWS - 377 (Abstract) 233 (PDF)

Abstract


A longstanding interest in bone tissue engineering is the development of new bio-scaffolds that can be manufactured on a large scale with high throughput at low cost. Here, we report a low-cost and systematically optimized hydrothermal synthesis for producing Mo-doped potassium titanate nanofibers with high structural purity. This new nanosynthesis is based on bone tissue growth on an undoped titanate nanowires-entangled scaffold, as previously reported by our team. The morphological and structural characterization data suggest that the crystal structure of Mo-doped titanate nanofibers closely resembles that of the undoped ones. This resemblance is potentially valuable for assessing the role of Mo dopants in engineering bone tissue.

TRANSLATE with xEnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian   TRANSLATE with COPY THE URL BELOW BackEMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack

Keywords


nanosynthesis; titanate nanofiber; bone scaffold; molybdenum dopant

Full Text:

PDF


References


1. Gao C, Wei D, Yang H, et al. Nanotechnology for treating osteoporotic vertebral fractures. International Journal of Nanomedicine. 2015; 10: 5139–5157. doi: 10.2147/IJN.S85037

2. Zhang B, Li J, He L, et al. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomaterialia. 2020; 114: 431–448. doi: 10.1016/j.actbio.2020.07.024

3. Min Q, Liu J, Zhang Y, et al. Dual network hydrogels incorporated with bone morphogenic protein-7-loaded hyaluronic acid complex nanoparticles for inducing chondrogenic differentiation of synovium-derived mesenchymal stem cells. Pharmaceutics. 2020; 12(7): 613. doi: 10.3390/pharmaceutics12070613

4. Wu T, Li B, Wang W, et al. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomaterials Science. 2020; 8(16): 4603–4615. doi: 10.1039/D0BM00523A

5. Oudadesse H, Najem S, Mosbahi S, et al. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. Journal of Biomedical Materials Research Part A. 2021; 109(5): 590–599. doi: 10.1002/jbm.a.37043

6. Nie L, Deng Y, Li P, et al. Hydroxyethyl chitosan-reinforced polyvinyl alcohol/biphasic calcium phosphate hydrogels for bone regeneration. ACS Omega. 2020; 5(19): 10948–10957. doi: 10.1021/acsomega.0c00727

7. Aldaadaa A, Qaysi M, Knowles J. Physical properties and biocompatibility effects of doping SiO2 and TiO2 into phosphate-based glass for bone tissue engineering. Journal of Biomaterials Applications. 2018; 33(2): 271–280. doi: 10.1177/08853282187888

8. Hashemi A, Ezati M, Mohammadnejad J, et al. Chitosan coating of TiO2 nanotube arrays for improved metformin release and osteoblast differentiation. International Journal of Nanomedicine. 2020; 15: 4471–4481. doi: 10.2147/IJN.S248927

9. Liang F, Zhou L, Wang K. Apatite formation on porous titanium by alkali and heat-treatment. Surface and Coatings Technology. 2003; 165(2): 133–139. doi: 10.1016/S0257-8972(02)00735-1

10. Cole P, Tian Y, Thornburgh S, et al. Hydrothermal synthesis of valve metal Zr-doped titanate nanofibers for bone tissue engineering. Nano and Medical Materials. 2023; 3(2): 249. doi: 10.59400/nmm.v3i2.249

11. Awasthi GP, Kaliannagounder VK, Maharjan B, et al. Albumin-induced exfoliation of molybdenum disulfide nanosheets incorporated polycaprolactone/zein composite nanofibers for bone tissue regeneration. Materials Science and Engineering: C. 2020; 116: 111162. doi: 10.1016/j.msec.2020.111162

12. Tian B, Li X, Zhang J, et al. A 3D-printed molybdenum-containing scaffold exerts dual pro-osteogenic and anti-osteoclastogenic effects to facilitate alveolar bone repair. International Journal of Oral Science. 2022; 14(1): 1–18. doi: 10.1038/s41368-022-00195-z

13. Vasto S, Baldassano D, Sabatino L, et al. The role of consumption of molybdenum biofortified crops in bone homeostasis and healthy aging. Nutrients. 2023; 15(4): 1022. doi: 10.3390/nu15041022

14. Wu S, Wang J, Jin L, et al. Effects of polyacrylonitrile/MoS2 composite nanofibers on the growth behavior of bone marrow mesenchymal stem cells. ACS Applied Nano Materials. 2018; 1(1): 337–343. doi: 10.1021/acsanm.7b00188

15. Marins NH, Lee BEJ, e Silva RM, et al. Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids and Surfaces B: Biointerfaces. 2019; 182: 110386. doi: 10.1016/j.colsurfb.2019.110386

16. Frandsen CJ, Brammer KS, Noh K, et al. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts. Materials Science and Engineering: C. 2014; 37: 332–341. doi: 10.1016/j.msec.2014.01.014

17. Dong W, Cogbill A, Zhang T, et al. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. The Journal of Physical Chemistry B. 2006; 110(34): 16819–16822. doi: 10.1021/jp0637633

18. Dong W, Zhang T, Epstein J, et al. Multifunctional nanowire bioscaffolds on titanium. Chemistry of Materials. 2007; 19(18): 4454–4459. doi: 10.1021/cm070845a

19. Xiao Y, Tian Y, Zhan Y, Zhu J. Degradation of organic pollutants in flocculated liquid digestate using photocatalytic titanate nanofibers: Mechanism and response surface optimization. Frontiers of Agricultural Science and Engineering. 2023; 10(3): 492–502. doi: 10.15302/J-FASE-2023503

20. Dong W, Zhang T, McDonald M, et al. Biocompatible nanofiber scaffolds on metal for controlled release and cell colonization. Nanomedicine: Nanotechnology, Biology and Medicine. 2006; 2(4): 248–252. doi: 10.1016/j.nano.2006.10.005

21. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976; 32(5): 751–767. doi: 10.1107/S0567739476001551

22. Xue D, Luo J, Li Z, et al. Enhanced photoelectrochemical properties from Mo-doped TiO2 nanotube arrays film. Coatings. 2020; 10(1): 75. doi: 10.3390/coatings10010075

23. Wang X, Liu SJ, Qi YM, et al. Behavior of potassium titanate whisker in simulated body fluid. Materials Letters. 2014; 135: 139–142. doi: 10.1016/j.matlet.2014.07.145

24. de Souza Balbinot G, da Cunha Bahlis EA, Visioli F, et al. Polybutylene-adipate-terephthalate and niobium-containing bioactive glasses composites: Development of barrier membranes with adjusted properties for guided bone regeneration. Materials Science and Engineering: C. 2021; 125: 112115. doi: 10.1016/j.msec.2021.112115




DOI: https://doi.org/10.24294/can.v7i1.3587

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.