Mo-doped titanate nanofibers from hydrothermal syntheses for improving bone scaffold

Yang Tian, Lu Zhang, Yiting Xiao, Trenton Collins, Abdussamad Akhter, Yan Huang, Z. Ryan Tian

Article ID: 3587
Vol 7, Issue 1, 2024

VIEWS - 1146 (Abstract) 483 (PDF)

Abstract


A longstanding interest in bone tissue engineering is the development of new bio-scaffolds that can be manufactured on a large scale with high throughput at low cost. Here, we report a low-cost and systematically optimized hydrothermal synthesis for producing Mo-doped potassium titanate nanofibers with high structural purity. This new nanosynthesis is based on bone tissue growth on an undoped titanate nanowires-entangled scaffold, as previously reported by our team. The morphological and structural characterization data suggest that the crystal structure of Mo-doped titanate nanofibers closely resembles that of the undoped ones. This resemblance is potentially valuable for assessing the role of Mo dopants in engineering bone tissue.

Keywords


nanosynthesis; titanate nanofiber; bone scaffold; molybdenum dopant

Full Text:

PDF


References


1. Gao C, Wei D, Yang H, et al. Nanotechnology for treating osteoporotic vertebral fractures. International Journal of Nanomedicine. 2015; 10: 5139–5157. doi: 10.2147/IJN.S85037

2. Zhang B, Li J, He L, et al. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomaterialia. 2020; 114: 431–448. doi: 10.1016/j.actbio.2020.07.024

3. Min Q, Liu J, Zhang Y, et al. Dual network hydrogels incorporated with bone morphogenic protein-7-loaded hyaluronic acid complex nanoparticles for inducing chondrogenic differentiation of synovium-derived mesenchymal stem cells. Pharmaceutics. 2020; 12(7): 613. doi: 10.3390/pharmaceutics12070613

4. Wu T, Li B, Wang W, et al. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomaterials Science. 2020; 8(16): 4603–4615. doi: 10.1039/D0BM00523A

5. Oudadesse H, Najem S, Mosbahi S, et al. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. Journal of Biomedical Materials Research Part A. 2021; 109(5): 590–599. doi: 10.1002/jbm.a.37043

6. Nie L, Deng Y, Li P, et al. Hydroxyethyl chitosan-reinforced polyvinyl alcohol/biphasic calcium phosphate hydrogels for bone regeneration. ACS Omega. 2020; 5(19): 10948–10957. doi: 10.1021/acsomega.0c00727

7. Aldaadaa A, Qaysi M, Knowles J. Physical properties and biocompatibility effects of doping SiO2 and TiO2 into phosphate-based glass for bone tissue engineering. Journal of Biomaterials Applications. 2018; 33(2): 271–280. doi: 10.1177/08853282187888

8. Hashemi A, Ezati M, Mohammadnejad J, et al. Chitosan coating of TiO2 nanotube arrays for improved metformin release and osteoblast differentiation. International Journal of Nanomedicine. 2020; 15: 4471–4481. doi: 10.2147/IJN.S248927

9. Liang F, Zhou L, Wang K. Apatite formation on porous titanium by alkali and heat-treatment. Surface and Coatings Technology. 2003; 165(2): 133–139. doi: 10.1016/S0257-8972(02)00735-1

10. Cole P, Tian Y, Thornburgh S, et al. Hydrothermal synthesis of valve metal Zr-doped titanate nanofibers for bone tissue engineering. Nano and Medical Materials. 2023; 3(2): 249. doi: 10.59400/nmm.v3i2.249

11. Awasthi GP, Kaliannagounder VK, Maharjan B, et al. Albumin-induced exfoliation of molybdenum disulfide nanosheets incorporated polycaprolactone/zein composite nanofibers for bone tissue regeneration. Materials Science and Engineering: C. 2020; 116: 111162. doi: 10.1016/j.msec.2020.111162

12. Tian B, Li X, Zhang J, et al. A 3D-printed molybdenum-containing scaffold exerts dual pro-osteogenic and anti-osteoclastogenic effects to facilitate alveolar bone repair. International Journal of Oral Science. 2022; 14(1): 1–18. doi: 10.1038/s41368-022-00195-z

13. Vasto S, Baldassano D, Sabatino L, et al. The role of consumption of molybdenum biofortified crops in bone homeostasis and healthy aging. Nutrients. 2023; 15(4): 1022. doi: 10.3390/nu15041022

14. Wu S, Wang J, Jin L, et al. Effects of polyacrylonitrile/MoS2 composite nanofibers on the growth behavior of bone marrow mesenchymal stem cells. ACS Applied Nano Materials. 2018; 1(1): 337–343. doi: 10.1021/acsanm.7b00188

15. Marins NH, Lee BEJ, e Silva RM, et al. Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids and Surfaces B: Biointerfaces. 2019; 182: 110386. doi: 10.1016/j.colsurfb.2019.110386

16. Frandsen CJ, Brammer KS, Noh K, et al. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts. Materials Science and Engineering: C. 2014; 37: 332–341. doi: 10.1016/j.msec.2014.01.014

17. Dong W, Cogbill A, Zhang T, et al. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. The Journal of Physical Chemistry B. 2006; 110(34): 16819–16822. doi: 10.1021/jp0637633

18. Dong W, Zhang T, Epstein J, et al. Multifunctional nanowire bioscaffolds on titanium. Chemistry of Materials. 2007; 19(18): 4454–4459. doi: 10.1021/cm070845a

19. Xiao Y, Tian Y, Zhan Y, Zhu J. Degradation of organic pollutants in flocculated liquid digestate using photocatalytic titanate nanofibers: Mechanism and response surface optimization. Frontiers of Agricultural Science and Engineering. 2023; 10(3): 492–502. doi: 10.15302/J-FASE-2023503

20. Dong W, Zhang T, McDonald M, et al. Biocompatible nanofiber scaffolds on metal for controlled release and cell colonization. Nanomedicine: Nanotechnology, Biology and Medicine. 2006; 2(4): 248–252. doi: 10.1016/j.nano.2006.10.005

21. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976; 32(5): 751–767. doi: 10.1107/S0567739476001551

22. Xue D, Luo J, Li Z, et al. Enhanced photoelectrochemical properties from Mo-doped TiO2 nanotube arrays film. Coatings. 2020; 10(1): 75. doi: 10.3390/coatings10010075

23. Wang X, Liu SJ, Qi YM, et al. Behavior of potassium titanate whisker in simulated body fluid. Materials Letters. 2014; 135: 139–142. doi: 10.1016/j.matlet.2014.07.145

24. de Souza Balbinot G, da Cunha Bahlis EA, Visioli F, et al. Polybutylene-adipate-terephthalate and niobium-containing bioactive glasses composites: Development of barrier membranes with adjusted properties for guided bone regeneration. Materials Science and Engineering: C. 2021; 125: 112115. doi: 10.1016/j.msec.2021.112115




DOI: https://doi.org/10.24294/can.v7i1.3587

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Yang Tian, Lu Zhang, Yiting Xiao, Trenton Collins, Abdussamad Akhter, Yan Huang, Z. Ryan Tian

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.