Cutting-edge conjugated nanocomposites—Fundamentals and anti-corrosion significance

Ayesha Kausar, Ishaq Ahmad

623 (Abstract) 214 (PDF)

Keywords


conjugated; nanocomposites; matrix; conductivity; anti-corrosion

Full Text:

PDF


References


1. Kausar A, Ahmad I, Dai Lam T. High-tech graphene oxide reinforced conducting matrix nanocomposites—Current status and progress. Characterization and Application of Nanomaterials 2023; 6(1): 2637. doi: 10.24294/can.v6i1.2637

2. Bellucci S. Decontamination of surface water from organic pollutants using graphene membranes. Characterization and Application of Nanomaterials 2023; 6(1): 2033. doi: 10.24294/can.v6i1.2033

3. Wang Q, Wang R, Zhang Q, et al. Application of biomass corrosion inhibitors in metal corrosion control: A review. Molecules 2023; 28(6): 2832. doi: 10.3390/molecules28062832

4. Kumar A. Role of conducting polymers in corrosion protection. World Journal of Advanced Research and Reviews 2023; 17(2): 45–47. doi: 10.30574/wjarr.2023.17.2.0238

5. Diao Y, Yang H, Lu Y, et al. Converting iron corrosion product to nanostructured conducting polymers: Synthetic strategies and applications. Accounts of Materials Research 2023; 4(7): 616–626. doi: 10.1021/accountsmr.3c00031

6. Naville W, Magnabosco R, Costa I. Uniaxial plastic strain effect on the corrosion-fatigue resistance of ISO 5832-1 stainless steel biomaterial. International Journal of Fatigue 2023; 173: 107701. doi: 10.1016/j.ijfatigue.2023.107701

7. Kausar A. Epitome of fullerene in conducting polymeric nanocomposite—Fundamentals and beyond. Polymer-Plastics Technology and Materials 2023; 62(5): 618–631. doi: 10.1080/25740881.2022.2121223

8. Góral-Kurbiel M, Drelinkiewicz A, Kosydar R, et al. Palladium content effect on the electrocatalytic activity of palladium–polypyrrole nanocomposite for cathodic reduction of oxygen. Electrocatalysis 2014; 5: 23–40. doi: 10.1007/s12678-013-0155-0

9. Ding C, Liu Y, Wang M, et al. Self-healing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys. Journal of Materials Chemistry A 2016; 4(21): 8041–8052. doi: 10.1039/C6TA02575G

10. Ribeiro DV, Abrantes JCC. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Construction and Building Materials 2016; 111: 98–104. doi: 10.1016/j.conbuildmat.2016.02.047

11. Yezer BA, Khair AS, Sides PJ, Prieve DC. Use of electrochemical impedance spectroscopy to determine double-layer capacitance in doped nonpolar liquids. Journal of Colloid and Interface Science 2015; 449: 2–12. doi: 10.1016/j.jcis.2014.08.052

12. Cano FJ, Castilleja-Escobedo O, Espinoza-Pérez LJ, et al. Effect of deposition conditions on phase content and mechanical properties of yttria-stabilized zirconia thin films deposited by Sol-Gel/Dip-coating. Journal of Nanomaterials 2021; 2021: 4449890. doi: 10.1155/2021/4449890

13. Umoren SA, Eduok UM. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydrate Polymers 2016; 140: 314–341. doi: 10.1016/j.carbpol.2015.12.038

14. Bhandari M, Preet Kaur D, Raj S, et al. Electrically conducting smart biodegradable polymers and their applications. In: Ali GAM, Makhlouf ASH (editors). Handbook of Biodegradable Materials. Springer, Cham; 2022. pp. 1–24. doi: 10.1007/978-3-030-83783-9_64-1

15. Van Nguyen T, Van Le Q, Peng S, et al. Exploring conducting polymers as a promising alternative for electrochromic devices. Advanced Materials Technologies 2023; 8(18): 2300474. doi: 10.1002/admt.202300474

16. Sazou D, Deshpande PP. Conducting polyaniline nanocomposite-based paints for corrosion protection of steel. Chemical Papers 2017; 71: 459–487. doi: 10.1007/s11696-016-0044-0

17. Gao F, Mu J, Bi Z, et al. Recent advances of polyaniline composites in anticorrosive coatings: A review. Progress in Organic Coatings 2021; 151: 106071. doi: 10.1016/j.porgcoat.2020.106071

18. Elkouh NA, Breedlove JJ, Pilvelait BR. Protective cover system including a corrosion inhibitor and method of inhibiting corrosion of a metallic object. U.S. Patent 7,759,265, 20 July 2010.

19. Ngwabebhoh FA, Sáha T, Stejskal J, et al. Conducting polypyrrole-coated leathers. Progress in Organic Coatings 2023; 179: 107495. doi: 10.1016/j.porgcoat.2023.107495

20. Kausar A. Nanodiamond reinforced polymer nanocomposite: Prospective corrosion protection materials. InL Phenomena and Theories in Corrosion Science, Methods of Prevention. NOVA Science Publishers Inc.; 2019. pp. 179–193.

21. Madhan Kumar A, Suresh Babu R, Ramakrishna S, de Barros ALF. Electrochemical synthesis and surface protection of polypyrrole-CeO2 nanocomposite coatings on AA2024 alloy. Synthetic Metals 2017; 234: 18–28. doi: 10.1016/j.synthmet.2017.10.003

22. Suthar V, de Souza FM, Asare MA, Gupta RK. Polymers and their nanocomposites for corrosion protection. In: Gupta RK (editor). Specialty Polymers: Fundamentals, Properties, Applications and Advances, 1st ed. CRC Press; 2023.

23. Li J, Bai H, Feng Z. Advances in the modification of silane-based sol-gel coating to improve the corrosion resistance of magnesium alloys. Molecules 2023; 28(6): 2563. doi: 10.3390/molecules28062563

24. Adamczyk L, Kulesza PJ. Fabrication of composite coatings of 4-(pyrrole-1-yl) benzoate-modified poly-3,4-ethylenedioxythiophene with phosphomolybdate and their application in corrosion protection. Electrochimica Acta 2011; 56(10): 3649–3655. doi: 10.1016/j.electacta.2010.12.078

25. Gobara M, Baraka A, Akidb R, Zorainyac M. Corrosion protection mechanism of Ce4+/organic inhibitor for AA2024 in 3.5% NaCl. RSC Advances 2020; 10(4): 2227–2240. doi: 10.1039/C9RA09552G

26. Qiang Y, Guo L, Li H, Lan X. Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium. Chemical Engineering Journal 2020; 406: 126863. doi: 10.1016/j.cej.2020.126863

27. Lai Q-T, Sun Q-J, Tang Z, et al. Conjugated polymer-based nanocomposites for pressure sensors. Molecules 2023; 28(4): 1627. doi: 10.3390/molecules28041627

28. Ananda Kumar S, Shree Meenakshi K, Sankaranarayanan TSN, Srikanth S. Corrosion resistant behaviour of PANI–metal bilayer coatings. Progress in Organic Coatings 2008; 62(3): 285–292. doi: 10.1016/j.porgcoat.2008.01.005

29. Li H, Huang W, Qiu B, et al. Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites. Advanced Composites and Hybrid Materials 2022; 5: 1888–1898. doi: 10.1007/s42114-022-00508-0

30. Zhang H, Cui J, Sun J, He W. Corrosion inhibition of methanol towards stainless steel bipolar plate for direct formic acid fuel cell. International Journal of Hydrogen Energy 2020; 45(55): 30924–30931. doi: 10.1016/j.ijhydene.2020.08.038

31. Boppana SB, Dayanand S, Kumar MRA, et al. Synthesis and characterization of nano graphene and ZrO2 reinforced Al 6061 metal matrix composites. Journal of Materials Research and Technology 2020; 9(4): 7354–7362. doi: 10.1016/j.jmrt.2020.05.013

32. Wang S, Chen F, Zhuang G, et al. Synthesis of an all-carbon conjugated polymeric segment of carbon nanotubes and its application for lithium-ion batteries. Nano Research 2023; 16: 10342–10347. doi: 10.1007/s12274-023-5530-4

33. Gergely A, Pászti Z, Hakkel O, et al. Corrosion protection of cold-rolled steel with alkyd paint coatings composited with submicron-structure types polypyrrole-modified nano-size alumina and carbon nanotubes. Materials Science and Engineering: B 2012; 177(18): 1571–1582. doi: 10.1016/j.mseb.2012.03.049

34. Jayakumari BY, Swaminathan EN, Partheeban P. A review on characteristics studies on carbon nanotubes-based cement concrete. Construction and Building Materials 2023; 367: 130344. doi: 10.1016/j.conbuildmat.2023.130344

35. Wang R, Sun L, Zhu X, et al. Carbon nanotube‐based strain sensors: Structures, fabrication, and applications. Advanced Materials Technologies 2023; 8(1): 2200855. doi: 10.1002/admt.202200855

36. Deshpande PP, Vathare SS, Vagge ST, et al. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: Electrochemical investigations. Chemical Papers 2013; 67: 1072–1078. doi: 10.2478/s11696-012-0273-9

37. Madhusudhan CK, Muhammad F, Maruthi N, et al. Anticorrosion and supercapacitor applications of polypyrrole coated graphite nanocomposites. Sustainable Chemical Engineering 2023; 5: 17–31. doi: 10.37256/sce.5120243591

38. Han G, Yuan J, Shi G, Wei F. Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films 2005; 474(1–2): 64–69. doi: 10.1016/j.tsf.2004.08.011

39. Richard Prabakar S, Pyo M. Corrosion protection of aluminum in LiPF6 by poly(3,4-ethylenedioxythiophene) nanosphere-coated multiwalled carbon nanotube. Corrosion Science 2012; 57: 42–48. doi: 10.1016/j.corsci.2011.12.036

40. Mariano LC, Salvatierra RV, Cava CE, et al. Electrical properties of self-assembled films of polyaniline/carbon nanotubes composites. The Journal of Physical Chemistry C 2014; 118(43): 24811–24818. doi: 10.1021/jp502650u

41. Li J, Cui J, Yang J, et al. Silanized graphene oxide reinforced organofunctional silane composite coatings for corrosion protection. Progress in Organic Coatings 2016; 99: 443–451. doi: 10.1016/j.porgcoat.2016.07.008

42. Fu X, Lin J, Liang Z, et al. Graphene oxide as a promising nanofiller for polymer composite. Surfaces and Interfaces 2023; 37: 102747. doi: 10.1016/j.surfin.2023.102747

43. Gul W, Akbar Shah SR, Khan A, et al. Synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) and their application as nano-fillers to improve the physical and mechanical properties of medium density fiberboard. Frontiers in Materials 2023; 10: 1206918. doi: 10.3389/fmats.2023.1206918

44. Liu S, Gu L, Zhang H, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings. Journal of Materials Science & Technology 2016; 32(5): 425–431. doi: 10.1016/j.jmst.2015.12.017

45. Chang C-H, Huang T-C, Peng C-W, et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012; 50(14): 5044–5051. doi: 10.1016/j.carbon.2012.06.043

46. Hemmasi AH, Khademi-Eslam H, Talaiepoor M, et al. Effect of nanoclay on the mechanical and morphological properties of wood polymer nanocomposite. Journal of Reinforced Plastics and Composites 2010; 29(7): 964–971. doi: 10.1177/0731684408101790

47. Lin Y-T, Don T-M, Wong C-J, et al. Improvement of mechanical properties and anticorrosion performance of epoxy coatings by the introduction of polyaniline/graphene composite. Surface and Coatings Technology 2019; 374: 1128–1138. doi: 10.1016/j.surfcoat.2018.01.050

48. Ramezanzadeh B, Bahlakeh G, Mohamadzadeh Moghadam MH, Miraftab R. Impact of size-controlled p-phenylenediamine (PPDA)-functionalized graphene oxide nanosheets on the GO-PPDA/Epoxy anti-corrosion, interfacial interactions and mechanical properties enhancement: Experimental and quantum mechanics investigations. Chemical Engineering Journal 2018; 335: 737–755. doi: 10.1016/j.cej.2017.11.019

49. Zhu G, Cui X, Zhang Y, et al. Poly (vinyl butyral)/graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer 2019; 172: 415–422. doi: 10.1016/j.polymer.2019.03.056

50. Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel. Corrosion Science 2018; 137: 111–126. doi: 10.1016/j.corsci.2018.03.038

51. Sheng X, Cai W, Zhong L, et al. Synthesis of functionalized graphene/polyaniline nanocomposites with effective synergistic reinforcement on anticorrosion. Industrial & Engineering Chemistry Research 2016; 55(31): 8576–8585. doi: 10.1021/acs.iecr.6b01975

52. Catt K, Li H, Tracy Cui X. Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion. Acta Biomaterialia 2017; 48: 530–540. doi: 10.1016/j.actbio.2016.11.039

53. Cano FJ, Romero-Núñez A, Liu H, et al. Variation in the bandgap by gradual reduction of GOs with different oxidation degrees: A DFT analysis. Diamond and Related Materials 2023; 139: 110382. doi: 10.1016/j.diamond.2023.110382

54. Wang X, Tang F, Qi X, et al. Enhanced protective coatings based on nanoparticle fullerene C60 for oil & gas pipeline corrosion mitigation. Nanomaterials 2019; 9(10): 1476. doi: 10.3390/nano9101476

55. Kausar A. Fullerene nanofiller reinforced epoxy nanocomposites—Developments, progress and challenges. Materials Research Innovations 2021; 25(3): 175–185. doi: 10.1080/14328917.2020.1748794

56. Gao R, Liu Z, Liu Z, et al. Open-cage fullerene as a macrocyclic ligand for Na, Pt, and Rh metal complexes. Journal of the American Chemical Society 2023; 145(32): 18022–18028. doi: 10.1021/jacs.3c05733

57. Samadianfard R, Seifzadeh D, Habibi-Yangjeh A, Jafari-Tarzanagh Y. Oxidized fullerene/sol-gel nanocomposite for corrosion protection of AM60B magnesium alloy. Surface and Coatings Technology 2020; 385: 125400. doi: 10.1016/j.surfcoat.2020.125400

58. Turan ME, Sun Y, Aydin F, et al. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites. Materials Chemistry and Physics 2018; 218: 182–188. doi: 10.1016/j.matchemphys.2018.07.050

59. Liu W, Speranza G. Functionalization of carbon nanomaterials for biomedical applications. C 2019; 5(4): 72. doi: 10.3390/c5040072

60. Zhang Y, Lang Y, Li G. Recent advances of non‐fullerene organic solar cells: From materials and morphology to devices and applications. EcoMat 2023; 5(1): e12281. doi: 10.1002/eom2.12281

61. Li W, Yang R, Sun M. Superior thermoelectric properties of bulk and monolayer fullerene networks. Journal of Materials Chemistry A 2023; 11(8): 3949–3960. doi: 10.1039/D2TA08537B

62. Idumah CI. Recent advancements in fire retardant mechanisms of carbon nanotubes, graphene, and fullerene polymeric nanoarchitectures. Journal of Analytical and Applied Pyrolysis 2023; 174: 106113. doi: 10.1016/j.jaap.2023.106113

63. Zubtsova YA, Kamanina N. The effect of fullerene on the temporal characteristics of a nematic liquid crystal-polyaniline-fullerene C60 system. Technical Physics Letters 2006; 32: 582–585. doi: 10.1134/S1063785006070108

64. Cheng X, Yokozeki T, Yamamoto M, et al. The decoupling electrical and thermal conductivity of fullerene/polyaniline hybrids reinforced polymer composites. Composites Science and Technology 2017; 144: 160–168. doi: 10.1016/j.compscitech.2017.03.030

65. Gizdavic-Nikolaidis M, Vella J, Bowmaker GA, Zujovic ZD. Rapid microwave synthesis of polyaniline–C60 nanocomposites. Synthetic Metals 2016; 217: 14–18. doi: 10.1016/j.synthmet.2016.03.009

66. Wang B, Gao X, Piao G. Preparation of polyaniline-doped fullerene whiskers. International Journal of Polymer Science 2013; 2013: 867934. doi: 10.1155/2013/867934

67. Keykhosravi S, Rietveld IB, Couto D, et al. [60] fullerene for medicinal purposes, a purity criterion towards regulatory considerations. Materials 2019; 12(16): 2571. doi: 10.3390/ma12162571

68. Goclon J, Winkler K. Band gap tuning in composites of polypyrrole derivatives and C60Pd3 polymer as models for p–n junction: A first principle computational study. ChemistrySelect 2018; 3(2): 373–383. doi: 10.1002/slct.201702752

69. Thummarungsan N, Pattavarakorn D, Sirivat A. Electrically responsive materials based on dibutyl phathalate plasticized poly(lactic acid) and spherical fullerene. Smart Materials and Structures 2022; 31: 035029. doi: 10.1088/1361-665X/ac5013

70. Zhou F, Ma Q, Huang Y, et al. Effects of phosphoric acid on the photovoltaic properties of photovoltaic cells with laminated polypyrrole-fullerene layers. Materials Science Forum 2011; 663–665: 861–864. doi: 10.4028/www.scientific.net/MSF.663-665.861

71. Wysocka-Zolopa M, Goclon J, Basa A, Winkler K. Polypyrrole nanoparticles doped with fullerene uniformly distributed in the polymeric phase: Synthesis, morphology, and electrochemical properties. The Journal of Physical Chemistry C 2018; 122(44): 25539–25554. doi: 10.1021/acs.jpcc.8b07681

72. Lim SP, Pandikumar A, Lim YS, et al. In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells. Scientific Reports 2014; 4: 5305. doi: 10.1038/srep05305

73. Kalagi SS, Patil PS. Secondary electrochemical doping level effects on polaron and bipolaron bands evolution and interband transition energy from absorbance spectra of PEDOT: PSS thin films. Synthetic Metals 2016; 220: 661–666. doi: 10.1016/j.synthmet.2016.08.009

74. Causin V, Marega C, Marigo A, et al. Crystallization and melting behavior of poly(3-butylthiophene), poly(3-octylthiophene), and poly(3-dodecylthiophene). Macromolecules 2005; 38(2): 409–415. doi: 10.1021/ma048159+

75. Qiao X, Wang X, Zhao X, et al. Nonisothermal crystallization of poly(3-dodecylthiophene) and poly(3-octadecylthiophene). Synthetic Metals 2000; 113(1–2): 1–6. doi: 10.1016/S0379-6779(99)00131-9

76. Zabihi F, Chen Q, Xie Y, et al. Fabrication of efficient graphene-doped polymer/fullerene bilayer organic solar cells in air using spin coating followed by ultrasonic vibration post treatment. Superlattices and Microstructures 2016; 100: 1177–1192. doi: 10.1016/j.spmi.2016.10.087

77. Rangel-Olivares FR, Arce-Estrada EM, Cabrera-Sierra R. Synthesis and characterization of polyaniline-based polymer nanocomposites as anti-corrosion coatings. Coatings 2021; 11(6): 653. doi: 10.3390/coatings11060653

78. Jeevananda T, Siddaramaiah, Kim NH, et al. Synthesis and characterization of polyaniline‐multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate. Polymers for Advanced Technologies 2008; 19(12): 1754–1762. doi: 10.1002/pat.1191

79. Madhan Kumar A, Gasem ZM. Effect of functionalization of carbon nanotubes on mechanical and electrochemical behavior of polyaniline nanocomposite coatings. Surface and Coatings Technology 2015; 276: 416–423. doi: 10.1016/j.surfcoat.2015.06.036

80. Madhan Kumar A, Sudhagar P, Fujishima A, Gasem ZM. Hierarchical polymer nanocomposite coating material for 316L SS implants: Surface and electrochemical aspects of PPy/f-CNTs coatings. Polymer 2014; 55(21): 5417–5424. doi: 10.1016/j.polymer.2014.08.073

81. Patel RJ. Electrochemically Deposited Poly(thiophene)s and Their Composites with Carbon Nanotubes and Fullerenes [PhD thesis]. The Pennsylvania State University; 2011: AAT 3501021.

82. Qiu C, Liu D, Jin K, et al. Electrochemical functionalization of 316 stainless steel with polyaniline-graphene oxide: Corrosion resistance study. Materials Chemistry and Physics 2017; 198: 90–98. doi: 10.1016/j.matchemphys.2017.05.004

83. Mobin M, Ansar F. Polythiophene (PTh)–TiO2–reduced graphene oxide (rGO) nanocomposite coating: Synthesis, characterization, and corrosion protection performance on low-carbon steel in 3.5 wt% NaCl solution. ACS Omega 2022; 7(50): 46717–46730. doi: 10.1021/acsomega.2c05678

84. Bauld R, Fleury LM, Van Walsh M, Fanchini G. Correlation between density of paramagnetic centers and photovoltaic degradation in polythiophene-fullerene bulk heterojunction solar cells. Applied Physics Letters 2012; 101(10): 103306. doi: 10.1063/1.4749813

85. Pavase TR, Lin H, Shaikh Q, et al. Recent advances of conjugated polymer (CP) nanocomposite-based chemical sensors and their applications in food spoilage detection: A comprehensive review. Sensors and Actuators B: Chemical 2018; 273: 1113–1138. doi: 10.1016/j.snb.2018.06.118

86. Sun Z, Wang F, Kong L. Investigation of microwave-absorbing properties of aligned polyaniline/multi-walled carbon nanotubes nanocomposites. Fullerenes, Nanotubes and Carbon Nanostructures 2023. doi: 10.1080/1536383X.2023.2264994

87. Selim MS, Shenashen MA, El-Safty SA, et al. Recent progress in marine foul-release polymeric nanocomposite coatings. Progress in Materials Science 2017; 87: 1–32. doi: 10.1016/j.pmatsci.2017.02.001

88. Su L, Zhou Z, Shen P. Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: Origin of Li storage capacity. The Journal of Physical Chemistry C 2012; 116(45): 23974–23980. doi: 10.1021/jp310054b

89. Zhu M-X, Chen T-X, Li M-T, et al. Tuning nanofillers in sprayed coating toward high flashover strength. IEEE Transactions on Dielectrics and Electrical Insulation 2023; 30(1): 299–307. doi: 10.1109/TDEI.2022.3210489

90. Teijido R, Ruz-Rubio L, Echaide AG, et al. State of the art and current trends on layered inorganic-polymer nanocomposite coatings for anticorrosion and multi-functional applications. Progress in Organic Coatings 2022; 163: 106684. doi: 10.1016/j.porgcoat.2021.106684

91. Chen Q, Zhu L, Chen H, et al. A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self‐healing properties. Advanced Functional Materials 2015; 25(10): 1598–1607. doi: 10.1002/adfm.201404357

92. Montemor MF. Functional and smart coatings for corrosion protection: A review of recent advances. Surface and Coatings Technology 2014; 258: 17–37. doi: 10.1016/j.surfcoat.2014.06.031

93. Abu-Thabit NY, Hamdy AS. Stimuli-responsive polyelectrolyte multilayers for fabrication of self-healing coatings–A review. Surface and Coatings Technology 2016; 303: 406–424. doi: 10.1016/j.surfcoat.2015.11.020

94. Anand Ganesh V, Raut HK, Sreekumaran Nair A, Ramakrishna S. A review on self-cleaning coatings. Journal of Materials Chemistry 2011; 21(41): 16304–16322. doi: 10.1039/C1JM12523K

95. Xu JW, Chua MH, Shah KW. Electrochromic Smart Materials: Fabrication and Applications. Royal Society of Chemistry; 2019. doi: 10.1039/9781788016667




DOI: https://doi.org/10.24294/can.v6i2.3361

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ayesha Kausar, Ishaq Ahmad

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.