Cross-linked polymer nanocomposite networks coated nano sand light-weight proppants for hydraulic fracturing applications

Mohan Raj Krishnan, Wengang Li, Edreese Housni Alsharaeh

Article ID: 3314
Vol 6, Issue 2, 2023

VIEWS - 444 (Abstract) 174 (PDF)

Abstract


Three-dimensionally cross-linked polymer nanocomposite networks coated nano sand light-weight proppants (LWPs) were successfully prepared via ball-milling the macro sand and subsequently modifying the resultant nano sand with sequential polymer nanocomposite coating. The modified nano sand proppants had good sphericity and roundness. Thermal analyses showed that the samples can withstand up to 411 ℃. Moreover, the proppant samples’ specific gravity (S.G.) was 1.02–1.10 g/cm3 with excellent water dispersibility. Therefore, cross-linked polymer nanocomposite networks coated nano sand particles can act as potential candidates as water-carrying proppants for hydraulic fracturing operations.


Keywords


proppants; nano sand; polymer; nanocomposites; graphene; hydraulic fracturing

Full Text:

PDF


References


1. Gao W, He S, Jie J. Evaluation on long-term flow conductivity of coated proppants (Chinese). Natural Gas Industry 2007; 27(10): 100–102.

2. Krishnan MR, Aldawsari Y, Michael FM, et al. Mechanically reinforced polystyrene-polymethyl methacrylate copolymer-graphene and Epoxy-Graphene composites dual-coated sand proppants for hydraulic fracture operations. Journal of Petroleum Science and Engineering 2021; 196: 107744. doi: 10.1016/j.petrol.2020.107744

3. Liang F, Sayed M, Al-Muntasheri GA, et al. A comprehensive review on proppant technologies. Petroleum 2016; 2(1): 26–39. doi: 10.1016/j.petlm.2015.11.001

4. Michael FM, Krishnan MR, Li W, Alsharaeh EH. A review on polymer-nanofiller composites in developing coated sand proppants for hydraulic fracturing. Journal of Natural Gas Science and Engineering 2020; 83: 103553. doi: 10.1016/j.jngse.2020.103553

5. Raysoni N, Weaver JD. Long-term proppant performance. In: SPE International Symposium and Exhibition on Formation Damage Control; February 15–17 2012; Lafayette, Louisiana, USA. doi: 10.2118/150669-MS

6. Belyadi H, Fathi E, Belyadi F. Proppant characteristics and application design. In: Belyadi H, Fathi E, Belyadi F (editors). Hydraulic Fracturing in Unconventional Reservoirs. Gulf Professional Publishing; 2017. pp. 73–96. doi: 10.1016/B978-0-12-849871-2.00006-X

7. Howard GC, Fast CR. Hydraulic Fracturing. Society of Petroleum Engineers; 1970. 210p.

8. Mader D. In: Mader D (editor). Hydraulic Proppant Fracturing and Gravel Packing. 1st ed. Elsevier Science; 1989.

9. Montgomery CT, Smith MB. Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology 2010; 62(12): 26–40. doi: 10.2118/1210-0026-JPT

10. Nguyen PD, Weaver JD, Dewprashad BT, et al. Enhancing fracture conductivity through surface modification of proppant. In: SPE Formation Damage Control Conference; 18–19 February 1998; Lafayette, Louisiana, USA. doi: 10.2118/39428-MS

11. Norman LR, Terracina JM, McCabe MA, Nguyen PD. Application of curable resin-coated proppants. SPE Production & Operation 1992; 7(4): 343–349. doi: 10.2118/20640-PA

12. Salah M, El-Sebaee M, Batmaz T. Channel fracturing technology: A paradigm shift in stimulation of tight reservoir and unlock production potential. In: SPE Europec Featured at 79th EAGE Conference and Exhibition; 12–15 June 2017; Paris, France. doi: 10.2118/185873-MS

13. Wu T, Wu B, Zhao S. Acid resistance of silicon-free ceramic proppant. Materials Letters 2013; 92: 210–212. doi: 10.1016/j.matlet.2012.10.124

14. Michael FM, Krishnan MR, AlSoughayer S, et al. Thermo-elastic and self-healing polyacrylamide -2D nanofiller composite hydrogels for water shutoff treatment. Journal of Petroleum Science and Engineering 2020; 193: 107391. doi: 10.1016/j.petrol.2020.107391

15. Michael FM, Krishnan MR, Fathima A, et al. Zirconia/graphene nanocomposites effect on the enhancement of thermo-mechanical stability of polymer hydrogels. Materials Today Communications 2019; 21: 100701. doi: 10.1016/j.mtcomm.2019.100701

16. Almohsin A, Michal F, Alsharaeh E, et al. Self-healing PAM composite hydrogel for water shutoff at high temperatures: Thermal and rheological investigations. In: SPE Gas & Oil Technology Showcase and Conference; 21–23 October 2019; Dubai, UAE. doi: 10.2118/198664-MS

17. Almohsin A, Alsharaeh E, Michael FM, Krishnan MR. Polymer-Nanofiller Hydrogels. U.S. Patent 20,220,290,033A1, 15 September 2022.

18. Almohsin A, Alsharaeh E, Krishnan MR. Polymer-Sand Nanocomposite Lost Circulation Material. U.S. Patent 20,230,142,223A1, 11 May 2023.

19. Almohsin AM, Alsharaeh E, Krishnan MR, Alghazali M. Coated Nanosand as Relative Permeability Modifier. U.S. Patent 20,230,060,690A1, 2 March 2023.

20. Almohsin A, Krishnan MR, Alsharaeh E, Harbi B. Preparation and properties investigation on sand-polyacrylamide composites with engineered interfaces for water shutoff applications. In: Middle East Oil, Gas and Geosciences Show; 19–21 February 2023; Manama, Bahrain. doi: 10.2118/213481-MS

21. Krishnan MR, Li W, Alsharaeh EH. Ultra-lightweight nanosand/polymer nanocomposite materials for hydraulic fracturing operations. SSRN e-Journal 2022. doi: 10.2139/ssrn.4233321

22. Krishnan M, Michal F, Alsoughayer S, et al. Thermodynamic and kinetic investigation of water absorption by PAM composite hydrogel. In: SPE Kuwait Oil & Gas Show and Conference; 13–16 October 2019; Mishref, Kuwait. doi: 10.2118/198033-MS

23. Fu L, Zhang G, Ge J, et al. Surface modified proppants used for porppant flowback control in hydraulic fracturing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016; 507: 18–25. doi: 10.1016/j.colsurfa.2016.07.039

24. Liu P, Guo S, Lian M, et al. Improving water-injection performance of quartz sand proppant by surface modification with surface-modified nanosilica. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015; 470: 114–119. doi: 10.1016/j.colsurfa.2015.01.073

25. Qian T, Muhsan A, Htwe L, et al. Urethane based nanocomposite coated proppants for improved crush resistance during hydraulic fracturing. IOP Conference Series: Materials Science and Engineering 2020; 863: 012013. doi: 10.1088/1757-899X/863/1/012013

26. Tabatabaei M, Dahi Taleghani A, Cai Y, et al. Using nanoparticles coating to enhance proppant functions to achieve sustainable production. In: SPE Annual Technical Conference and Exhibition; 30 September–2 October 2019; Calgary, Alberta, Canada. doi: 10.2118/196067-MS

27. Bestaoui-Spurr N. Materials science improves silica sand strength. In: SPE International Symposium and Exhibition on Formation Damage Control; 26–28 February 2014; Lafayette, Louisiana, USA. doi: 10.2118/168158-MS

28. Krishnan MR, Aldawsari Y, Michael FM, et al. 3D-Polystyrene-polymethyl methacrylate/divinyl benzene networks-Epoxy-Graphene nanocomposites dual-coated sand as high strength proppants for hydraulic fracture operations. Journal of Natural Gas Science and Engineering 2021; 88: 103790. doi. 10.1016/j.jngse.2020.103790

29. Biryukova A, Dzhienalyev T, Panichkin A. Ceramic proppants for hydraulic fracturing. IOP Conference Series: Materials Science and Engineering 2021; 1040: 012008. doi. 10.1088/1757-899X/1040/1/012008

30. Hao J, Ma H, Feng X, et al. Microstructure and fracture mechanism of low density ceramic proppants. Materials Letters 2018; 213: 92–94. doi. 10.1016/j.matlet.2017.11.021

31. Liang F, Sayed M, Al-Muntasheri G, Chang FF. Overview of existing proppant technologies and challenges. In: SPE Middle East Oil & Gas Show and Conference; 8–11 March 2015; Manama, Bahrain. doi: 10.2118/172763-MS

32. Man S, Wong RCK. Compression and crushing behavior of ceramic proppants and sand under high stresses. Journal of Petroleum Science and Engineering 2017; 158: 268–283. doi: 10.1016/j.petrol.2017.08.052

33. Krishnan MR, Omar H, Aldawsari Y, et al. Insight into thermo-mechanical enhancement of polymer nanocomposites coated microsand proppants for hydraulic fracturing. Heliyon 2022; 8(12): e12282. doi: 10.1016/j.heliyon.2022.e12282

34. Aramendiz J, Imqam A. Water-based drilling fluid formulation using silica and graphene nanoparticles for unconventional shale applications. Journal of Petroleum Science and Engineering 2019; 179: 742–749. doi: 10.1016/j.petrol.2019.04.085

35. Parizad A, Shahbazi K, Ayatizadeh Tanha A. Enhancement of polymeric water-based drilling fluid properties using nanoparticles. Journal of Petroleum Science and Engineering 2018; 170: 813–828. doi: 10.1016/j.petrol.2018.06.081

36. Krishnan MR, Alsharaeh E. Potential removal of benzene-toluene-xylene toxic vapors by nanoporous poly(styrene-r-methylmethacrylate) copolymer composites. Environmental Nanotechnology, Monitoring & Management 2023; 20: 100860. doi: 10.1016/j.enmm.2023.100860

37. Krishnan MR, Omar H, Almohsin A, Alsharaeh EH. An overview on nanosilica–polymer composites as high-performance functional materials in oil fields. Polymer Bulletin 2023. doi: 10.1007/s00289-023-04934-y

38. Krishnan MR, Aldawsari YF, Alsharaeh EH. Three-dimensionally cross-linked styrene-methyl methacrylate-divinyl benzene terpolymer networks for organic solvents and crude oil absorption. Journal of Applied Polymer Science 2021; 138(9): 49942. doi: 10.1002/app.49942

39. Krishnan MR, Aldawsari YF, Alsharaeh EH. 3D-poly(styrene-methyl methacrylate)/divinyl benzene-2D-nanosheet composite networks for organic solvents and crude oil spill cleanup. Polymer Bulletin 2021; 79: 3779–3802. doi: 10.1007/s00289-021-03565-5

40. Boyou NV, Ismail I, Sulaiman WRW, et al. Experimental investigation of hole cleaning in directional drilling by using nano-enhanced water-based drilling fluids. Journal of Petroleum Science and Engineering 2019; 176: 220–231. doi: 10.1016/j.petrol.2019.01.063

41. Cheraghian G, Wu Q, Mostofi M, et al. Effect of a novel clay/silica nanocomposite on water-based drilling fluids: Improvements in rheological and filtration properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018; 555: 339–350. doi: 10.1016/j.colsurfa.2018.06.072

42. Feng Y-C, Ma C-Y, Deng J-G, et al. A comprehensive review of ultralow-weight proppant technology. Petroleum Science 2021; 18: 807–826. doi: 10.1007/s12182-021-00559-w

43. Kulkarni MC, Ochoa OO. Mechanics of light weight proppants: A discrete approach. Composites Science and Technology 2012; 72(8): 879–885. doi: 10.1016/j.compscitech.2012.02.017

44. Tasqué JE, Vega IN, Marco S, et al. Ultra-light weight proppant: Synthesis, characterization, and performance of new proppants. Journal of Natural Gas Science and Engineering 2021; 85: 103717. doi: 10.1016/j.jngse.2020.103717

45. Danso DK, Negash BM, Ahmed TY, et al. Recent advances in multifunctional proppant technology and increased well output with micro and nano proppants. Journal of Petroleum Science and Engineering 2021; 196: 108026. doi: 10.1016/j.petrol.2020.108026

46. Pangilinan KD, de Leon ACC, Advincula RC. Polymers for proppants used in hydraulic fracturing. Journal of Petroleum Science and Engineering 2016; 145: 154–160. doi: 10.1016/j.petrol.2016.03.022

47. Zoveidavianpoor M, Gharibi A. Application of polymers for coating of proppant in hydraulic fracturing of subterraneous formations: A comprehensive review. Journal of Natural Gas Science and Engineering 2015; 24: 197–209. doi: 10.1016/j.jngse.2015.03.024

48. Chen T, Wang Y, Yan C, et al. Preparation of heat resisting poly(methyl methacrylate)/graphite composite microspheres used as ultra‐lightweight proppants. Journal of Applied Polymer Science 2015;132(18): 41924. doi: 10.1002/app.41924

49. Han X, Cheng Q, Bao F, et al. Synthesis of low-density heat-resisting polystyrene/graphite composite microspheres used as water carrying fracturing proppants. Polymer-Plastics Technology and Engineering 2014; 53(16): 1647–1653. doi: 10.1080/03602559.2014.919648

50. Brooks B. Suspension polymerization processes. Chemical Engineering & Technology 2010; 33(11): 1737–1744. doi: 10.1002/ceat.201000210

51. Kawaguchi S, Ito K. Dispersion polymerization. In: Okubo M (editor). Polymer Particles. Springer Berlin, Heidelberg; 2005. pp. 299–328. doi: 10.1007/b100118

52. Wang Q, Fu S, Yu T. Emulsion polymerization. Progress in Polymer Science 1994; 19(4): 703–753. doi: 10.1016/0079-6700(94)90031-0

53. Samitsu S, Zhang R, Peng X, et al. Flash freezing route to mesoporous polymer nanofibre networks. Nature Communications 2013; 4: 2653. doi: 10.1038/ncomms3653

54. Krishnan MR, Samitsu S, Fujii Y, Ichinose I. Hydrophilic polymer nanofibre networks for rapid removal of aromatic compounds from water. Chemical Communications 2014; 50(66): 9393–9396. doi: 10.1039/C4CC01786B

55. Krishnan MR, Chien YC, Cheng CF, Ho RM. Fabrication of mesoporous polystyrene films with controlled porosity and pore size by solvent annealing for templated syntheses. Langmuir 2017; 33(34): 8428–8435. doi: 10.1021/acs.langmuir.7b02195

56. Krishnan MR, Lu K-Y, Chiu W-Y, et al. Directed self‐assembly of star‐block copolymers by topographic nanopatterns through nucleation and growth mechanism. Small 2018; 14(16): 1704005. doi: 10.1002/smll.201704005

57. Lo T-Y, Krishnan MR, Lu K-Y, Ho R-M. Silicon-containing block copolymers for lithographic applications. Progress in Polymer Science 2018; 77: 19–68. doi: 10.1016/j.progpolymsci.2017.10.002

58. Cheng C-F, Chen Y-M, Zou F, et al. Li-ion capacitor integrated with nano-network-structured Ni/NiO/C anode and nitrogen-doped carbonized metal–organic framework cathode with high power and long cyclability. ACS Applied Materials & Interfaces 2019; 11(34): 30694–30702. doi: 10.1021/acsami.9b06354

59. Chien Y-C, Huang L-Y, Yang K-C, et al. Fabrication of metallic nanonetworks via templated electroless plating as hydrogenation catalyst. Emergent Materials 2021; 4: 493–501. doi: 10.1007/s42247-020-00108-y

60. Krishnan MR, Almohsin A, Alsharaeh EH. Syntheses and fabrication of mesoporous styrene-co-methyl methacrylate-graphene composites for oil removal. Diamond and Related Materials 2022; 130: 109494. doi: 10.1016/j.diamond.2022.109494

61. Krishnan M, Chen H-Y, Ho R-M. Switchable structural colors from mesoporous polystyrene films. Abstracts of papers–American Chemical Society 2016.

62. Bongu CS, Krishnan MR, Soliman A, et al. Flexible and freestanding MoS2/Graphene composite for high-performance supercapacitors. ACS Omega 2023; 8(40): 36789–3680. doi: 10.1021/acsomega.3c03370

63. Krishnan MR, Rajendran V, Alsharaeh E. Anti-reflective and high-transmittance optical films based on nanoporous silicon dioxide fabricated from templated synthesis. Journal of Non-Crystalline Solids 2023; 606: 122198. doi: 10.1016/j.jnoncrysol.2023.122198

64. Krishnan MR, Alsharaeh EH. Polymer gel amended sandy soil with enhanced water storage and extended release capabilities for sustainable desert agriculture. Journal of Polymer Science and Engineering 2023; 6(1): 2892. doi: 10.24294/jpse.v6i1.2892

65. Jbur AQ, Abdullah WN, Faleh NM, Faleh ZN. Vibration analysis of graphene platelet reinforced stadium architectural roof shells subjected to large deflection. Structural Engineering and Mechanics 2023; 86(2): 157–165. doi: 10.12989/sem.2023.86.2.157

66. Al-Jaafari MAA, Ahmed RA, Fenjan RM, Faleh NM. Nonlinear dynamic characteristic of sandwich graphene platelet reinforced plates with square honeycomb core. Steel and Composite Structures 2023; 46(5): 659–667. doi: 10.12989/scs.2023.46.5.659

67. Guo T, Wang Y, Du Z, et al. Evaluation of coated proppant unconventional performance. Energy & Fuels 2021; 35(11): 9268–9277. doi: 10.1021/acs.energyfuels.1c00187

68. Li W, Alsharaeh E, Krishnan MR. Coated Proppant and Methods of Making and Use Thereof. U.S. Patent 20,230,313,027A1, 5 October 2023.

69. Li W, Alsharaeh E, Krishnan MR. Proppant coatings and methods of making. U.S. Patent 20,210,395,603A1, 23 December 2021.

70. Li W, Alsharaeh E, Krishnan MR. Methods for Making Proppant Coatings. U.S. Patent 11,459,503, 4 October 2022.

71. Krishnan MR, Aldawsari YF, Alsharaeh EH. Three-dimensionally cross-linked styrene-methyl methacrylate-divinyl benzene terpolymer networks for organic solvents and crude oil absorption. Journal of Applied Polymer Science 2021; 138(9): 49942. doi: 10.1002/app.49942

72. Tiwari A, Hihara LH. Thermal stability and thermokinetics studies on silicone ceramer coatings: Part 1-inert atmosphere parameters. Polymer Degradation and Stability 2009; 94(10): 1754–1771. doi: 10.1016/j.polymdegradstab.2009.06.010




DOI: https://doi.org/10.24294/can.v6i2.3314

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.