An eco-friendly route for green synthesis of ZnO-CoFe2O4 nanoparticles from cardamom and ginger extract as an efficient electrochemical catalyst for water oxidation

Aynaz Kamyab, Mir Hadi Banan Khojasteh, Karim Asadpour-Zeynali

Article ID: 3182
Vol 6, Issue 2, 2023

VIEWS - 785 (Abstract) 151 (PDF)

Abstract


Water splitting has been one of the potential techniques as a clean and renewable energy resource for the fulfillment of world energy demands. One of the major aspects of this procedure is the exploitation of efficient and inexpensive electrocatalysts due to the fact that the water oxidation procedure is accompanied by a delayed reaction. In this research, ZnO-CoFe2O4 nanostructure was successfully synthesized via the green method and green resources from cardamom seeds and ginger peels for oxygen evolution reaction (OER). The modified Glassy carbon electrode (GCE) with ZnO-CoFe2O4 is effective for the electrochemical water oxidation interaction since it has sufficient electrical strength and excellent catalytic performance. The creation of rice-like and small granular structures of ZnO-CoFe2O4 nano-catalysts was confirmed by characterization methods such as XRD, FESEM, EDS and MAP. According to the achieved results, in the electrolysis of water, with in-cell voltage of 1.40 V and 50 mA cm–2 for current density in a 0.1 M KOH electrolyte and OER only has 170 mV overpotentials.

Keywords


green synthesis; nanoparticles; ZnO-CoFe2O4; cardamoms; ginger peels

Full Text:

PDF


References


1. Kalair A, Abas N, Saleem MS, et al. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021; 3(1): e135. doi: 10.1002/est2.135

2. Anwar MN, Fayyaz A, Sohail NF, et al. CO2 utilization: Turning greenhouse gas into fuels and valuable products. Journal of Environmental Management 2020; 260: 110059. doi: 10.1016/j.jenvman.2019.110059

3. Mehravaran M, Aber S, Asadpour-Zeynali K. Combining the bioelectricity generation with Photo-Electrocatalytic reduction of CO2 for pollutants degradation and ethanol generation. Journal of Electroanalytical Chemistry 2023; 941: 117541. doi: 10.1016/j.jelechem.2023.117541

4. Yapicioglu A, Dincer I. Performance assesment of hydrogen and ammonia combustion with various fuels for power generators. International Journal of Hydrogen Energy 2018; 43(45): 21037–21048. doi: 10.1016/j.ijhydene.2018.08.198

5. Yadav GD. In pursuit of the net zero goal and sustainability: Hydrogen economy, carbon dioxide refineries, and valorization of biomass & waste plastic. AsiaChem Magazine 2023; 3(1): 110–123. doi: 10.51167/acm00046

6. Shahparast S, Asadpour-Zeynali K. α-MnO2/FeCo-LDH on nickel foam as an efficient electrocatalyst for water oxidation. ACS OMEGA 2023; 8(1): 1702–1709. doi: 10.1021/acsomega.2c07580

7. van der Zalm JM, Quintal J, Hira SA, et al. Recent trends in electrochemical catalyst design for hydrogen evolution, oxygen evolution, and overall water splitting. Electrochimica Acta 2023; 439: 141715. doi: 10.1016/j.electacta.2022.141715

8. Sun H, Xu X, Kim H, et al. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications. Energy & Environmental Materials 2022; 6(5): e12441. doi: 10.1002/eem2.12441

9. Eftekhari A. Tuning the electrocatalysts for oxygen evolution reaction. Materials Today Energy 2017; 5: 37–57. doi: 10.1016/j.mtener.2017.05.002

10. Nong HN, Oh H-S, Reier T, et al. Oxide‐supported IrNiOx core–shell particles as efficient, cost‐effective, and stable catalysts for electrochemical water splitting. Angewandte Chemie 2015; 54(10): 2975–2979. doi: 10.1002/anie.201411072

11. Li Y, Sun Y, Qin Y, et al. Recent advances on water‐splitting electrocatalysis mediated by noble‐metal‐based nanostructured materials. Advanced Energy Materials 2020; 10(11): 1903120. doi: 10.1002/aenm.201903120

12. Jo W-K, Moru S, Tonda S. Cobalt-coordinated sulfur-doped graphitic carbon nitride on reduced graphene oxide: An efficient metal–(N,S)–C-class bifunctional electrocatalyst for overall water splitting in alkaline media. ACS Sustainable Chemistry & Engineering 2019; 7(18): 15373–15384. doi: 10.1021/acssuschemeng.9b02705

13. Yu Y, Wang T, Zhang Y, et al. Recent progress of transition metal compounds as electrocatalysts for electrocatalytic water splitting. The Chemical Record 2023; 23(11): e202300109. doi: 10.1002/tcr.202300109

14. Shih AJ, Monteiro MCO, Dattila F, et al. Water electrolysis. Nature Reviews Methods Primers 2022; 2: 84. doi: 10.1038/s43586-022-00164-0

15. Yang H, Huang Y, Teoh WY, et al. Molybdenum selenide nanosheets surrounding nickel selenides sub-microislands on nickel foam as high-performance bifunctional electrocatalysts for water splitting. Electrochimica Acta 2020; 349: 136336. doi: 10.1016/j.electacta.2020.136336

16. Rethinasabapathy M, Ezhil Vilian AT, Hwang SK, et al. Cobalt ferrite microspheres as a biocompatible anode for higher power generation in microbial fuel cells. Journal of Power Sources 2021; 483: 229170. doi: 10.1016/j.jpowsour.2020.229170

17. Qian H-S, Hu Y, Li Z-Q, et al. ZnO/ZnFe2O4 magnetic fluorescent bifunctional hollow nanospheres: Synthesis, characterization, and their optical/magnetic properties. The Journal of Physical Chemistry C 2010; 114(41): 17455–17459. doi: 10.1021/jp105583b

18. Kiani A, Davar F, Bazarganipour M. Influence of verjuice extract on the morphology, phase, and magnetic properties of green synthesized CoFe2O4 nanoparticle: Its application as an anticancer drug delivery. Ceramics International 2022; 48(23): 34895–34906. doi: 10.1016/j.ceramint.2022.08.079

19. Abdel Maksoud MIA, El-Sayyad GS, Ashour AH, et al. Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1–x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Materials Science and Engineering: C 2018; 92: 644–656. doi: 10.1016/j.msec.2018.07.007

20. Mariosi FR, Venturini J, da Cas Viegas A, Bergmann CP. Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceramics International 2020; 46(3): 2772–2779. doi: 10.1016/j.ceramint.2019.09.266

21. Londoño-Calderón CL, Londoño-Calderón A, Menchaca-Nal S, et al. Magnetic properties of cobalt ferrite octahedrons obtained from calcination of granular nanotubes growing on bacterial nanocellulose. Journal of Magnetism and Magnetic Materials 2020; 495: 165899. doi: 10.1016/j.jmmm.2019.165899

22. Sudarsan S, Anandkumar M, Trofimov EA. Synthesis and characterization of copper ferrite nanocomposite from discarded printed circuit boards as an effective photocatalyst for Congo red dye degradation. Journal of Industrial and Engineering Chemistry 2023; In press. doi: 10.1016/j.jiec.2023.10.020

23. Raizada P, Sudhaik A, Singh P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Materials Science for Energy Technologies 2019; 2(3): 509–525. doi: 10.1016/j.mset.2019.04.007

24. Wilson A, Mishra SR, Gupta R, Ghosh K. Preparation and photocatalytic properties of hybrid core–shell reusable CoFe2O4–ZnO nanospheres. Journal of Magnetism and Magnetic Materials 2012; 324(17): 2597–2601. doi: 10.1016/j.jmmm.2012.02.009

25. Shekofteh-Gohari M, Habibi-Yangjeh A, Abitorabi M, Rouhi A. Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: A review. Critical Reviews in Environmental Science and Technology 2018; 48(10–12): 806–857. doi: 10.1080/10643389.2018.1487227

26. Dhiman P, Rana G, Kumar A, et al. ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: A review. Environmental Chemistry Letters 2022; 20: 1047–1081. doi: 10.1007/s10311-021-01361-1

27. Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews 2018; 81: 536–551. doi: 10.1016/j.rser.2017.08.020

28. Labhane PK, Sonawane SH, Sonawane GH, et al. Influence of Mg doping on ZnO nanoparticles decorated on graphene oxide (GO) crumpled paper like sheet and its high photo catalytic performance under sunlight. Journal of Physics and Chemistry of Solids 2018; 114: 71–82. doi: 10.1016/j.jpcs.2017.11.017

29. Saranya J, Sreeja BS, Padmalaya G, et al. Microwave thermally assisted porous structured cerium oxide/zinc oxide design: Fabrication, electrochemical activity towards Pb Ions, anticancer assessment in HeLa and VERO cell lines. Journal of Inorganic and Organometallic Polymers and Materials 2021; 31: 1279–1292. doi: 10.1007/s10904-020-01809-x

30. Ar Rahim D, Fang W, Wibowo H, et al. Review of high temperature H2S removal from syngas: Perspectives on downstream process integration. Chemical Engineering and Processing–Process Intensification 2023; 183: 109258. doi: 10.1016/j.cep.2022.109258

31. Bansal R, Nair S, Pandey KK. UV resistant wood coating based on zinc oxide and cerium oxide dispersed linseed oil nano-emulsion. Materials Today Communications 2022; 30: 103177. doi: 10.1016/j.mtcomm.2022.103177

32. Mirzai M, Akhlaghian F, Rahmani F. Photodegradation of ciprofloxacin in water using photocatalyst of zinc oxide nanowires doped with copper and cerium oxides. Water and Environment Journal 2020; 34(3): 420–431. doi: 10.1111/wej.12477

33. Shanmugam N, Thirumal V, Kannadasan N, et al. Influence of cerium and nickel Co-doping on ZnO nanostructures for electrochemical behavior of H2O2 sensing applications. Sustainability 2022; 14(10): 6353. doi: 10.3390/su14106353

34. Zheng J, Song X, Liu X, et al. Synthesis of hexagonal CoFe2O4/ZnO nanoparticles and their electromagnetic properties. Materials Letters 2012; 73: 143–146. doi: 10.1016/j.matlet.2012.01.035

35. Dippong T, Levei EA, Cadar O. Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles. Nanomaterials 2021; 11(6): 1560. doi: 10.3390/nano11061560

36. Yadav D, Shukla R. Structural, morphological, optical, magnetic and photocatalytic properties of ZnO/CoFe2O4 nanocomposites. Kinetics and Catalysis 2023; 64: 603–615. doi: 10.1134/S0023158423050129

37. Sathishkumar P, Pugazhenthiran N, Mangalaraja RV, et al. ZnO supported CoFe2O4 nanophotocatalysts for the mineralization of Direct Blue 71 in aqueous environments. Journal of Hazardous Materials 2013; 252–253: 171–179. doi: 10.1016/j.jhazmat.2013.02.030

38. Rahmayeni, Devi A, Stiadi Y, et al. Preparation, characterization of ZnO/CoFe2O4 magnetic nanocomposites and activity evaluation under solar light irradiation. Journal of Chemical and Pharmaceutical Research 2015; 7(95): 139–146.

39. Castro TJ, da Silva SW, Nakagomi F, et al. Structural and magnetic properties of ZnO–CoFe2O4 nanocomposites. Journal of Magnetism and Magnetic Materials 2015; 389: 27–33. doi: 10.1016/j.jmmm.2015.04.036

40. Madhukara Naik M, Bhojya Naik HS, Nagaraju G, et al. Green synthesis of zinc doped cobalt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies. Nano-Structures & Nano-Objects 2019; 19: 100322. doi: 10.1016/j.nanoso.2019.100322

41. Chitralekha, Thakur OP, Gaurav S, et al. Green synthesis of ZnO-CoFe2O4 nanocomposite and study of its structural and electrical behavior along with hydroelectric cell application. In: Sethuraman B, Jain P, Gupta M (editors). Recent Advances in Mechanical Engineering, Proceedings of the 1st International Conference on Sustainable Technologies and Advances in Automation, Aerospace and Robotics; 16–17 December 2022; Bhopal (Online), Madhya Pradesh, India. Springer; 2023. pp. 543–553. doi: 10.1007/978-981-99-2349-6_49

42. Tatarchuk T, Shyichuk A, Sojka Z, et al. Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications. Journal of Molecular Liquids 2021; 328: 115375. doi: 10.1016/j.molliq.2021.115375

43. Mosleh-Shirazi S, Kasaee SR, Dehghani F, et al. Investigation through the anticancer properties of green synthesized spinel ferrite nanoparticles in present and absent of laser photothermal effect. Ceramics International 2023; 49(7): 11293–11301. doi: 10.1016/j.ceramint.2022.11.329

44. Bardhan SK, Gupta S, Gorman ME, Ali Haider M. Biorenewable chemicals: Feedstocks, technologies and the conflict with food production. Renewable and Sustainable Energy Reviews 2015; 51: 506–520. doi: 10.1016/j.rser.2015.06.013

45. Guterl J-K, Sieber V. Biosynthesis “debugged”: Novel bioproduction strategies. Engineering in Life Sciences 2013; 13: 4–18. doi: 10.1002/ELSC.201100231

46. Dershwitz P, Bandow NL, Yang J, et al. Oxygen generation via water splitting by a novel biogenic metal ion-binding compound. Applied and Environmental Microbiology 2021; 87(14): e0028621. doi: 10.1128/AEM.00286-21

47. Raut SD, Shinde NM, Nakate YT, et al. Coconut-water-mediated carbonaceous electrode: A promising eco-friendly material for bifunctional water splitting application. ACS OMEGA 2021; 6(19): 12623–12630. doi: 10.1021/acsomega.1c00641

48. Bachheti RK, Fikadu A, Bachheti A, Husen A. Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: A review. Saudi Journal of Biological Sciences 2020; 27(10): 2551–2562. doi: 10.1016/j.sjbs.2020.05.012

49. Ramesh M, Anbuvannan M, Viruthagiri G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 136: 864–870. doi: 10.1016/j.saa.2014.09.105

50. Manikandan A, Sridhar R, Arul Antony S, Ramakrishna S. A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures. Journal of Molecular Structure 2014; 1076: 188–200. doi: 10.1016/j.molstruc.2014.07.054

51. Bhuyan T, Mishra K, Khanuja M, et al. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing 2015; 32: 55–61. doi: 10.1016/j.mssp.2014.12.053

52. Senthilkumar S, Sivakumar T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. International Journal of Pharmacy and Pharmaceutical Science 2014; 6(6): 461–465.

53. Yuvakkumar R, Suresh J, Joseph Nathanael A, et al. Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Materials Letters 2014; 128: 170–174. doi: 10.1016/j.matlet.2014.04.112

54. Sakita AMP, Vallés E, Della Noce R, Benedetti AV. Novel NiFe/NiFe-LDH composites as competitive catalysts for clean energy purposes. Applied Surface Science 2018; 447: 107–116. doi: 10.1016/j.apsusc.2018.03.235

55. Yang JW. Nanostructured Heterojunction Photoelectrodes for Unassisted Photoelectrochemical Water Splitting [PhD thesis]. Seoul National University; 2023. 208p.

56. Kiani MN, Butt MS, Gul IH, et al. Synthesis and characterization of cobalt-doped ferrites for biomedical applications. ACS OMEGA 2023; 8(4): 3755–3761. doi: 10.1021/acsomega.2c05226

57. Oo KM, Aung ZZM, Thant SS. Synthesis and characterization of cobalt zinc ferrite nanoparticles. Technological University Lashio Journal of Research & Innovation 2020; 1(2): 132–134.

58. Rahmayeni, Azizah N, Stiadi Y, et al. Magnetic particles nanorod of ZnO/CuFe2O4 prepared by green synthesized approach: Structural, optical and magnetic properties, and photocatalytic activity. Materials Research 2022; 25: e20210164. doi: 10.1590/1980-5373-MR-2021-0164

59. Naghizadeh M, Taher MA, Tamaddon AM. Facile synthesis and characterization of magnetic nanocomposite ZnO/CoFe2O4 hetero-structure for rapid photocatalytic degradation of imidacloprid. Heliyon 2019; 5(11): e02870. doi: 10.1016/j.heliyon.2019.e02870

60. Mansournia M, Ghaderi L. Single‐ and double‐shelled CoFe2O4 nanoparticles as highly efficient magnetic separable photocatalysts. ChemistrySelect 2019; 4(1): 24–30. doi: 10.1002/slct.201803496

61. Rahmayeni, Alfina A, Stiadi Y, et al. Green synthesis and characterization of ZnO-CoFe2O4 semiconductor photocatalysts prepared using rambutan (Nephelium lappaceum L.) peel extract. Materials Research 2019; 22(5): e20190228. doi: 10.1590/1980-5373-MR-2019-0228

62. Selvanathan V, Shahinuzzaman M, Selvanathan S, et al. Phytochemical-assisted green synthesis of nickel oxide nanoparticles for application as electrocatalysts in oxygen evolution reaction. Catalysts 2021; 11(12): 1523. doi: 10.3390/catal11121523

63. Meng Y-L, Li Y, Tan Z, et al. Hierarchical MoO42– intercalating α-Co(OH)2 nanosheet assemblies: Green synthesis and ultrafast reconstruction for boosting electrochemical oxygen evolution. Energy & Fuels 2021; 35(3): 2775–2784. doi: 10.1021/acs.energyfuels.0c03836

64. Hao X, Chen F, Zhang Y, et al. Magnetic-field-assisted electrodeposition regulates the Ni:Fe ratio for water oxidation. Materials Today Sustainability 2023; 24: 100556. doi: 10.1016/j.mtsust.2023.100556

65. Chen S, Zhang S, Guo L, et al. Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation. Nature Communications 2023; 14: 4127. doi: 10.1038/s41467-023-39822-6

66. Zhang D, Li M, Yong X, et al. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nature Communications 2023; 14: 2517. doi: 10.1038/s41467-023-38213-1

67. Xu Y, Lin Q, Sun Y, et al. Electrochemical/photoelectrochemical water splitting on self-limiting electrodeposited iron-group mutual alloys. Journal of The Electrochemical Society 2023; 170: 056511. doi: 10.1149/1945-7111/acd663

68. Hameed A, Zulfiqar F, Iqbal W, et al. Electrocatalytic water oxidation on CuO–Cu2O modulated cobalt-manganese layered double hydroxide. RSC Advances 2022; 12(45): 28954–28960. doi: 10.1039/D2RA05036F

69. Yang H, Niklas Hausmann J, Hlukhyy V, et al. An intermetallic CaFe6Ge6 approach to unprecedented Ca−Fe−O electrocatalyst for efficient alkaline oxygen evolution reaction. ChemCatChem 2022; 14(14): e202200293. doi: 10.1002/cctc.202200293

70. Cao Y, Su Y, Xu L, et al. Oxygen vacancy-rich amorphous FeNi hydroxide nanoclusters as an efficient electrocatalyst for water oxidation. Journal of Energy Chemistry 2022; 71: 167–173. doi: 10.1016/j.jechem.2022.03.044

71. Li L, Wang Z, She X, et al. Ni-modified FeOOH integrated electrode by self-source corrosion of nickel foam for high-efficiency electrochemical water oxidation. Journal of Colloid and Interface Science 2023; 652: 789–797. doi: 10.1016/j.jcis.2023.08.112

72. Saleem MK, Jabbour K, Niaz NA, et al. Facile engineering of Co3O4/Pr2O3 nanostructure for boosted oxygen evolution reaction. Applied Physics A 2023; 129: 833. doi: 10.1007/s00339-023-07101-2

73. Zhang J, Chen J, Chen Y, et al. The synergistic effect of Co3O4 and KNbO3 in Co3O4@KNbO3 composite for enhanced performance of water oxidation. Materials Letters 2023; 352: 135178. doi: 10.1016/j.matlet.2023.135178




DOI: https://doi.org/10.24294/can.v6i2.3182

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.