High-tech graphene oxide reinforced conducting matrix nanocomposites—Current status and progress

Ayesha Kausar, Ishaq Ahmad, Tran Dai Lam

Article ID: 2637
Vol 6, Issue 1, 2023

VIEWS - 787 (Abstract) 85 (PDF)

Abstract


Graphene oxide can be referred to as oxidized graphene. Similar to graphene, oxidized graphene possesses remarkable structural features, advantageous properties, and technical applications. Among polymeric matrices, conducting polymers have been categorized for p conjugated backbone and semiconducting features. In this context, doping, or nano-additive inclusion, has been found to enhance the electrical conduction features of conjugated polymers. Like other carbon nanostructures (fullerene, carbon nanotube, etc.), graphene has been used to reinforce the conjugated matrices. Graphene can be further modified into several derived forms, including graphene oxide, reduced graphene oxide, and functionalized graphene. Among these, graphene oxide has been identified as an important graphene derivative and nanofiller for conducting matrices. This overview covers essential aspects and progressions in the sector of conjugated polymers and graphene oxide derived nanomaterials. Since the importance of graphene oxide derived nanocomposites, this overview has been developed aiming at conductive polymer/graphene oxide nanocomposites. The novelty of this article relies on the originality and design of the outline, the review framework, and recent literature gathering compared with previous literature reviews. To the best of our knowledge, such an all-inclusive overview of conducting polymer/graphene oxide focusing on fundamentals and essential technical developments has not been seen in the literature before. Due to advantageous structural, morphological, conducting, and other specific properties, conductive polymer/graphene oxide nanomaterials have been applied for a range of technical applications such as supercapacitors, photovoltaics, corrosion resistance, etc. Future research on these high-performance nanocomposites may overcome the design and performance-related challenges facing industrial utilization.


Keywords


Graphene Oxide; Conductive Polymer; Nanocomposite; Conductivity; Supercapacitor

Full Text:

PDF


References


1. Wang JJ, Shen ZH, Zhou WY, et al. Mesoscale computational prediction of lightweight, thermally conductive polymer nanocomposites containing graphene-wrapped hollow particle fillers. Characterization and Application of Nanomaterials 2021; 4(1): 77–86. doi: 10.24294/can.v4i1.1292.

2. Shirakawa H. Nobel lecture: The discovery of polyacetylene film—The dawning of an era of conducting polymers. Reviews of Modern Physics 2001; 73: 713. doi: 10.1103/RevModPhys.73.713.

3. Shanmugam M, Augustin A, Mohan S, et al. Conducting polymeric nanocomposites: A review in solar fuel applications. Fuel 2022; 325: 124899. doi: 10.1016/j.fuel.2022.124899.

4. Nasajpour-Esfahani N, Dastan D, Alizadeh A, et al. A critical review on intrinsic conducting polymersand their applications. Journal of Industrial and Engineering Chemistry 2023; 125: 14–37. doi: 10.1016/j.jiec.2023.05.013.

5. Aytas S, Yusan S, Sert S, et al. Preparation and characterization of magnetic graphene oxide nanocomposite (GO-Fe3O4) for removal of strontium and cesium from aqueous solutions. Characterization and Application of Nanomaterials 2021; 4(1): 63–76. doi: 10.24294/can.v4i1.1291.

6. Bellucci S. Decontamination of surface water from organic pollutants using graphene membranes. Characterization and Application of Nanomaterials 2023; 6(1): 2033. doi: 10.24294/can.v6i1.2033.

7. Gopal J, Muthu M, Sivanesan I. A comprehensive compilation of graphene/fullerene polymer nanocomposites for electrochemical energy storage. Polymers 2023; 15(3): 701. doi: 10.3390/polym15030701.

8. Pan X, Debije MG, Schenning APHJ, Bastiaansen CWM. Enhanced thermal conductivity in oriented polyvinyl alcohol/graphene oxide composites. ACS Applied Materials & Interfaces 2021; 13(24): 28864–28869. doi: 10.1021/acsami.1c06415.

9. Kausar A. Nanocomposite material for supercapacitor application. American Journal of Applied Physics 2020; 4(1): 1–8.

10. Patil S, Rajkuberan C, Sagadevan S. Recent biomedical advancements in graphene oxide and future perspectives. Journal of Drug Delivery Science and Technology 2023; 86: 104737. doi: 10.1016/j.jddst.2023.104737.

11. Kausar A. Hybrid polymeric nanocomposites with EMI shielding applications. In: Joseph K, Wilson R, George G (editors). Materials for potential EMI shielding applications. Amsterdam: Elsevier; 2020. p. 227–236. doi: 10.1016/B978-0-12-817590-3.00014-2.

12. Jose A, Job A, Jose JK, Balachandran M. Novel applications of graphene and its derivatives: A short review. Current Nanomaterials 2023; 8(3): 200–208. doi: 10.2174/2405461507666220823124855.

13. Verma C, Berdimurodov E, Verma DK, et al. 3D nanomaterials: The future of industrial, biological, and environmental applications. Inorganic Chemistry Communications 2023; 156: 111163. doi: 10.1016/j.inoche.2023.111163.

14. Meyer JC, Geim AK, Katsnelson MI, et al. The structure of suspended graphene sheets. Nature 2007; 446(7131): 60–63. doi: 10.1038/nature05545.

15. Xie Y, Lee J, Jia H, Feng PXL. Frequency tuning of two-dimensional nanoelectromechanical resonators via comb-drive MEMS actuators. In: Proceedings of 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII); 2019 Jun 23–27; Berlin. New York: IEEE; 2019. p. 254–257. doi: 10.1109/TRANSDUCERS.2019.8808703.

16. Gao Y, Zhang Y, Chen P, et al. Toward single-layer uniform hexagonal boron nitride–graphene patchworks with zigzag linking edges. Nano Letters 2013; 13(7): 3439–3443. doi: 10.1021/nl4021123.

17. Huang PY, Ruiz-Vargas CS, van der Zande AM, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011; 469: 389–392. doi: 10.1038/nature09718.

18. Seah CM, Chai SP, Mohamed AR. Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 2014; 70: 1–21. doi: 10.1016/j.carbon.2013.12.073.

19. Kausar A. A review of fundamental principles and applications of polymer nanocomposites filled with both nanoclay and nano-sized carbon allotropes–graphene and carbon nanotubes. Journal of Plastic Film & Sheeting 2020; 36(2): 209–228. doi: 10.1177/8756087919884607.

20. Mohan VB, Lau K, Hui D, Bhattacharyya D. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering 2018; 142: 200–220. doi: 10.1016/j.compositesb.2018.01.013.

21. Brodie BC. XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859; 149: 249–259. doi: 10.1098/rstl.1859.0013

22. Feicht P, Biskupek J, Gorelik TE, et al. Brodie’s or Hummers’ method: Oxidation conditions determine the structure of graphene oxide. Chemistry–A European Journal 2019; 25(38): 8955–8959. doi: 10.1002/chem.201901499.

23. Kurapati SK, Reddy MN, Sujithra R, et al. Nanomaterials and nanostructures in additive manufacturing: Properties, applications, and technological challenges. In: Deshmukh K, Pasha SKK, Sadasivuni K (editors). Nanotechnology-based additive manufacturing: Product design, properties and applications. Baden-Wurttemberg: Wiley-VCH; 2023. p. 53–102. doi: 10.1002/9783527835478.ch3.

24. Maheshkumar KV, Krishnamurthy K, Sathishkumar P, et al. Research updates on graphene oxide‐based polymeric nanocomposites. Polymer Composites 2014; 35(12): 2297–2310. doi: 10.1002/pc.22899.

25. Chen W, Lv G, Shen J, et al. The preparation and application of polymer/graphene nanocomposites. Emerging Materials Research 2020; 9(3): 943–959. doi: 10.1680/jemmr.17.00031.

26. del Valle MA, Gacitúa MA, Hernández F, et al. Nanostructured conducting polymers and their applications in energy storage devices. Polymers 2023; 15(6): 1450. doi: 10.3390/polym15061450.

27. Thapa YN, Kafle BP, Adhikari R. Properties and applications of conjugated polymers for flexible electronics: Current trends and perspectives. In: Thapa YN, Kafle BP, Adhikari R (editors). Flexible and wearable sensors: Materials, technologies, and challenges. Boca Raton: CRC Press; 2023. p. 97–114.

28. Willardson RK, Beer AC. Semiconductors and semimetals. Cambridge: Academic Press; 1977.

29. MacDiarmid AG. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). A Journal of the German Chemical Society 2001; 40(14): 2581–2590. doi: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.

30. Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011; 196(1): 1–12. doi: 10.1016/j.jpowsour.2010.06.084.

31. Unsworth J, Lunn BA, Innis PC, et al. Technical review: Conducting polymer electronics. Journal of Intelligent Material Systems and Structures 1992; 3(3): 380–395. doi: 10.1177/1045389X9200300301.

32. Epstein AJ. Electrically conducting polymers: Science and technology. MRS Bulletin 1997; 22(6): 16–23. doi: 10.1557/S0883769400033583.

33. Su WP, Schrieffer JR, Heeger AJ. Solitons in polyacetylene. Physical Review Letters 1979; 42(25): 1698. doi: 10.1103/PhysRevLett.42.1698.

34. Saraswathi R, Gerard M, Malhotra BD. Characteristics of aqueous polycarbazole batteries. Journal of Applied Polymer Science 1999; 74(1): 145–150. doi: 10.1002/(SICI)1097-4628(19991003)74:1<145::AID-APP18>3.0.CO;2-C.

35. Krische B, Zagorska M. The polythiophene paradox. Synthetic Metals 1989; 28(1–2): 263–268. doi: 10.1016/0379-6779(89)90531-6.

36. Machida S, Miyata S, Techagumpuch A. Chemical synthesis of highly electrically conductive polypyrrole. Synthetic Metals 1989; 31(3): 311–318. doi: 10.1016/0379-6779(89)90798-4.

37. Pouget JP, Jozefowicz ME, Epstein AJ, et al. X-ray structure of polyaniline. Macromolecules 1991; 24(3): 779–789. doi: 10.1021/ma00003a022.

38. Genies EM, Boyle A, Lapkowski M, Tsintavis C. Polyaniline: A historical survey. Synthetic Metals 1990; 36(2): 139–182. doi: 10.1016/0379-6779(90)90050-U.

39. Díez-Pascual AM. Development of graphene-based polymeric nanocomposites: A brief overview. Polymers 2021; 13(17): 2978. doi: 10.3390/polym13172978.

40. Sun X, Huang C, Wang L, et al. Recent progress in graphene/polymer nanocomposites. Advanced Materials 2021; 33(6): 2001105. doi: 10.1002/adma.202001105.

41. Kausar A. Shape memory polyurethane/graphene nanocomposites: Structures, properties, and applications. Journal of Plastic Film & Sheeting 2020; 36(2): 151–166. doi: 10.1177/875608791986529.

42. Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. Journal of Food and Drug Analysis 2014; 22(1): 105–115. doi: 10.1016/j.jfda.2014.01.009.

43. Kausar A. High-performance competence of polyaniline-based nanomaterials. Materials Research Innovations 2019; 24(2): 113–122. doi: 10.1080/14328917.2019.1611253.

44. Wang YS, Li SM, Hsiao ST, et al. Thickness-self-controlled synthesis of porous transparent polyaniline-reduced graphene oxide composites towards advanced bifacial dye-sensitized solar cells. Journal of Power Sources 2014; 260: 326–337. doi: 10.1016/j.jpowsour.2014.02.090.

45. Li Y, Peng H, Li G, Chen K. Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. European Polymer Journal 2012; 48(8): 1406–1412. doi: 10.1016/j.eurpolymj.2012.05.014.

46. Gao Z, Wang F, Chang J, et al. Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochimica Acta 2014; 133: 325–334. doi: 10.1016/j.electacta.2014.04.033.

47. Chauhan NPS, Mozafari M, Chundawat NS, et al. High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities. Journal of Industrial and Engineering Chemistry 2016; 36: 13–29. doi: 10.1016/j.jiec.2016.03.003.

48. Al Hawash M, Kumar R, Barakat MA. Fabrication of polyaniline/graphene oxide nanosheet@ tea waste granules adsorbent for groundwater purification. Nanomaterials 2022; 12(21): 3840. doi: 10.3390/nano12213840.

49. Borges MHR, Nagay BE, Costa RC, et al. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Advances in Colloid and Interface Science 2023; 314: 102860. doi: 10.1016/j.cis.2023.102860.

50. Lv C, Ma X, Guo R, et al. Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor. Energy 2023; 270: 126830. doi: 10.1016/j.energy.2023.126830.

51. Lin L, Yan Z, Gu J, et al. UV‐responsive behavior of azopyridine‐containing diblock copolymeric vesicles: Photoinduced fusion, disintegration and rearrangement. Macromolecular Rapid Communications 2009; 30(13): 1089–1093. doi: 10.1002/marc.200900105.

52. Molahalli V, Bhat VS, Shetty A, et al. ZnO doped SnO2 nano flower decorated on graphene oxide/polypyrrole nanotubes for symmetric supercapacitor applications. Journal of Energy Storage 2023; 69: 107953. doi: 10.1016/j.est.2023.107953.

53. Deng M, Yang X, Silke M, et al. Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sensors and Actuators B: Chemical 2011; 158(1): 176–184. doi: 10.1016/j.snb.2011.05.062.

54. Wu B, Hou S, Xue Y, Chen Z. Electrodeposition–assisted assembled multilayer films of gold nanoparticles and glucose oxidase onto polypyrrole-reduced graphene oxide matrix and their electrocatalytic activity toward glucose. Nanomaterials 2018; 8(12): 993. doi: 10.3390/nano8120993.

55. Deng S, Dong C, Liu J, et al. An n-type polythiophene derivative with excellent thermoelectric performance. A Journal of the German Chemical Society 2023; 62(18): e202216049. doi: 10.1002/anie.202216049.

56. Shamsayei M, Yamini Y, Asiabi H. Polythiophene/graphene oxide nanostructured electrodeposited coating for on-line electrochemically controlled in-tube solid-phase microextraction. Journal of Chromatography A 2016; 1475: 8–17. doi: 10.1016/j.chroma.2016.11.003.

57. Bora C, Pegu R, Saikia BJ, Dolui SK. Synthesis of polythiophene/graphene oxide composites by interfacial polymerization and evaluation of their electrical and electrochemical properties. Polymer International 2014; 63(12): 2061–2067. doi: 10.1002/pi.4739.

58. Yang Z, Shi X, Yuan J, et al. Preparation of poly (3-hexylthiophene)/graphene nanocomposite via in situ reduction of modified graphite oxide sheets. Applied Surface Science 2010; 257(1): 138–142. doi: 10.1016/j.apsusc.2010.06.051.

59. Pilo MI, Baluta S, Loria AC, et al. Poly(thiophene)/graphene oxide-modified electrodes for amperometric glucose biosensing. Nanomaterials 2022; 12(16): 2840. doi: 10.3390/nano12162840.

60. Zamani R, Yamini Y. On-chip electromembrane surrounded solid phase microextraction for determination of tricyclic antidepressants from biological fluids using poly(3,4-ethylenedioxythiophene)—Graphene oxide nanocomposite as a fiber coating. Biosensors 2023; 13(1): 139. doi: 10.3390/bios13010139.

61. Satpathy S, Misra NK, Shukla DK, et al. An in-depth study of the electrical characterization of supercapacitors for recent trends in energy storage system. Journal of Energy Storage 2023; 57: 106198. doi: 10.1016/j.est.2022.106198.

62. Sharma A, Kumar A, Khan R. A highly sensitive amperometric immunosensor probe based on gold nanoparticle functionalized poly(3,4-ethylenedioxythiophene) doped with graphene oxide for efficient detection of aflatoxin B1. Synthetic Metals 2018; 235: 136–144. doi: 10.1016/j.synthmet.2017.12.007.

63. Heeney M, Bailey C, Genevicius K, et al. Stable polythiophene semiconductors incorporating thieno[2,3-b] thiophene. Journal of the American Chemical Society 2005; 127(4): 1078–1079. doi: 10.1021/ja043112p.

64. Ates M, Alperen C. Polythiophene-based reduced graphene oxide and carbon black nanocomposites for supercapacitors. Iranian Polymer Journal 2023; 32(10): 1241–1255. doi: 10.1007/s13726-023-01201-9.

65. Hui N, Wang S, Xie H, et al. Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sensors and Actuators B: Chemical 2015; 221: 606–613. doi: 10.1016/j.snb.2015.07.011.

66. Singh SB, Kshetri T, Singh TI, et al. Embedded PEDOT: PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor. Chemical Engineering Journal 2019; 359: 197–207. doi: 10.1016/j.cej.2018.11.160.

67. Kim TH, Choi KI, Kim H, et al. Long-term cyclability of electrochromic poly(3-hexyl thiophene) films modified by surfactant-assisted graphene oxide layers. ACS Applied Materials & Interfaces 2017; 9(23): 20223–20230. doi: 10.1021/acsami.7b04184.

68. Fan T, Tong S, Zeng W, et al. Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. Synthetic Metals 2015; 199: 79–86. doi: 10.1016/j.synthmet.2014.11.017.

69. Zhou H, Han G, Xiao Y, et al. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. Journal of Power Sources 2014; 263: 259–267. doi: 10.1016/j.jpowsour.2014.04.039.

70. Li Y, Xia Z, Gong Q, et al. Green synthesis of free standing cellulose/graphene oxide/polyaniline aerogel electrode for high-performance flexible all-solid-state supercapacitors. Nanomaterials 2020; 10(8): 1546. doi: 10.3390/nano10081546.

71. Reiss P, Couderc E, De Girolamo J, Pron A. Conjugated polymers/semiconductor nanocrystals hybrid materials—Preparation, electrical transport properties and applications. Nanoscale 2011; 3(2): 446–489. doi: 10.1039/C0NR00403K.

72. Kausar A. Nanodiamond: A multitalented material for cutting edge solar cell application. Materials Research Innovations 2018; 22(5): 302–314. doi: 10.1080/14328917.2017.1317448.

73. Costa RD, Malig J, Brenner W, et al. Electron accepting porphycenes on graphene. Advanced Materials 2013; 25(18): 2600–2605. doi: 10.1002/adma.201300231.

74. Vovchenko LL, Matzui LY, Perets YS, Milovanov YS. Dielectric properties and AC conductivity of epoxy/hybrid nanocarbon filler composites. In: Fesenko O, Yatsenko L (editors). NANO 2017: Nanochemistry, biotechnology, nanomaterials, and their applications. Proceedings of the 5th International Conference Nanotechnology and Nanomaterials (NANO2017); 2017 Aug 23–26; Chernivtsi. New York: Springer International Publishing; 2018. p. 377–393. doi: 10.1007/978-3-319-92567-7_24.

75. Stylianakis MM, Stratakis E, Koudoumas E, et al. Organic bulk heterojunction photovoltaic devices based on polythiophene–graphene composites. ACS Applied Materials & Interfaces 2012; 4(9): 4864–4870. doi: 10.1021/am301204g.

76. Tschierske C. Molecular self-organization of amphotropic liquid crystals. Progress in Polymer Science 1996; 21(5): 775–852. doi: 10.1016/S0079-6700(96)00014-7.

77. Li Z, Wang W, Greenham NC, McNeill CR. Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar cells. Physical Chemistry Chemical Physics 2014; 16: 25684–25693. doi: 10.1039/C4CP01111B.

78. Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010; 4(7): 4324–4330. doi: 10.1021/nn101187z.

79. Agbolaghi S. A step towards high-performance photovoltaics via three-component P3HT/PANI-graft-rGO nanocomposites. Fullerenes, Nanotubes and Carbon Nanostructures 2019; 27(8): 650–660. doi: 10.1080/1536383X.2019.1629422.

80. Gnanarathinam A, Palanisamy D, Manikandan N, et al. Comparison of corrosion behavior on laser welded austenitic stainless steel. Materials Today: Proceedings 2021; 39: 649–653. doi: 10.1016/j.matpr.2020.09.184.

81. Chaouiki A, Chafiq M, Al-Hadeethi MR, et al. Exploring the corrosion inhibition effect of two hydrazone derivatives for mild steel corrosion in 1.0 M HCl solution via electrochemical and surface characterization studies. International Journal of Electrochemical Science 2020; 15(9): 9354–9377. doi: 10.20964/2020.09.95.

82. Yeo K, Kim J, Kim J. Development of an anti-corrosion conductive nano carbon coating layer on metal bipolar plates. Journal of Nanoscience and Nanotechnology 2018; 18(9): 6278–6282. doi: 10.1166/jnn.2018.15642.

83. Singh Raman RK, Tiwari A. Graphene: The thinnest known coating for corrosion protection. The Journal of The Minerals, Metals & Materials Society (TMS) 2014; 66: 637–642. doi: 10.1007/s11837-014-0921-3.

84. Cui G, Bi Z, Zhang R, et al. A comprehensive review on graphene-based anti-corrosive coatings. Chemical Engineering Journal 2019; 373: 104–121. doi: 10.1016/j.cej.2019.05.034.

85. Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Advanced Materials 2014; 26(12): 1846–1885. doi: 10.1002/adma.201304496.

86. Sarvari R, Sattari S, Massoumi B, et al. Composite electrospun nanofibers of reduced graphene oxide grafted with poly(3-dodecylthiophene) and poly(3-thiophene ethanol) and blended with polycaprolactone. Journal of Biomaterials Science, Polymer Edition 2017; 28(15): 1740–1761. doi: 10.1080/09205063.2017.1354167.

87. Agbolaghi S. Well‐functioned photovoltaics based on nanofibers composed of PBDT‐TIPS‐DTNT‐DT and graphenic precursors thermally modified by polythiophene, polyaniline and polypyrrole. Polymer International 2019; 68(8): 1516–1523. doi: 10.1002/pi.5859.

88. Ryan KR, Down MP, Hurst NJ, et al. Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. eScience 2022; 2(4): 365–381. doi: 10.1016/j.esci.2022.07.003.

89. Cheng X, Kumar V, Yokozeki T, et al. Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties. Composites Part A: Applied Science and Manufacturing 2016; 82: 100–107. doi: 10.1016/j.compositesa.2015.12.006.

90. Duan Z, Yuan Z, Jiang Y, et al. Amorphous carbon material of daily carbon ink: Emerging applications in pressure, strain, and humidity sensors. Journal of Materials Chemistry C 2023; 11(17): 5585–5600. doi: 10.1039/D3TC00016H.

91. Ganguly S, Kanovsky N, Das P, et al. Photopolymerized thin coating of polypyrrole/graphene nanofiber/iron oxide onto nonpolar plastic for flexible electromagnetic radiation shielding, strain sensing, and non‐contact heating applications. Advanced Materials Interfaces 2021; 8(23): 2101255. doi: 10.1002/admi.202101255.

92. Maurya DK, Dhanusuraman R, Guo JZ, Angaiah S. Na-ion conducting filler embedded 3D-electrospun nanofibrous hybrid solid polymer membrane electrolyte for high-performance Na-ion capacitor. Advanced Composites and Hybrid Materials 2023; 6: 45. doi: 10.1007/s42114-022-00604-1.

93. Inshakova E, Inshakova A, Goncharov A. Engineered nanomaterials for energy sector: Market trends, modern applications and future prospects. IOP Conference Series: Materials Science and Engineering 2020; 971(3): 032031. doi: 10.1088/1757-899X/971/3/032031.

94. Tusher MMH, Imam A, Shuvo MSI. Future and challenges of coating materials. In: Verma A, Sethi SK, Ogata S (editors). Coating materials: Computational aspects, applications and challenges. Singapore: Springer Nature Singapore; 2023. p. 229–251.

95. Shukla A, Chandrakar K. 18 future trends in polymer nanocomposites. In: Verma RK, Kesarwani S, Xu J, Davim JP (editors). Polymer nanocomposites: Fabrication to applications. Boca Raton: CRC Press; 2023.




DOI: https://doi.org/10.24294/can.v6i1.2637

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.