References
Wang JJ, Shen ZH, Zhou WY, et al. Mesoscale computational prediction of lightweight, thermally conductive polymer nanocomposites containing graphene-wrapped hollow particle fillers. Characterization and Application of Nanomaterials 2021; 4(1): 77–86. doi: 10.24294/can.v4i1.1292.
Shirakawa H. Nobel lecture: The discovery of polyacetylene film—The dawning of an era of conducting polymers. Reviews of Modern Physics 2001; 73: 713. doi: 10.1103/RevModPhys.73.713.
Shanmugam M, Augustin A, Mohan S, et al. Conducting polymeric nanocomposites: A review in solar fuel applications. Fuel 2022; 325: 124899. doi: 10.1016/j.fuel.2022.124899.
Nasajpour-Esfahani N, Dastan D, Alizadeh A, et al. A critical review on intrinsic conducting polymersand their applications. Journal of Industrial and Engineering Chemistry 2023; 125: 14–37. doi: 10.1016/j.jiec.2023.05.013.
Aytas S, Yusan S, Sert S, et al. Preparation and characterization of magnetic graphene oxide nanocomposite (GO-Fe3O4) for removal of strontium and cesium from aqueous solutions. Characterization and Application of Nanomaterials 2021; 4(1): 63–76. doi: 10.24294/can.v4i1.1291.
Bellucci S. Decontamination of surface water from organic pollutants using graphene membranes. Characterization and Application of Nanomaterials 2023; 6(1): 2033. doi: 10.24294/can.v6i1.2033.
Gopal J, Muthu M, Sivanesan I. A comprehensive compilation of graphene/fullerene polymer nanocomposites for electrochemical energy storage. Polymers 2023; 15(3): 701. doi: 10.3390/polym15030701.
Pan X, Debije MG, Schenning APHJ, Bastiaansen CWM. Enhanced thermal conductivity in oriented polyvinyl alcohol/graphene oxide composites. ACS Applied Materials & Interfaces 2021; 13(24): 28864–28869. doi: 10.1021/acsami.1c06415.
Kausar A. Nanocomposite material for supercapacitor application. American Journal of Applied Physics 2020; 4(1): 1–8.
Patil S, Rajkuberan C, Sagadevan S. Recent biomedical advancements in graphene oxide and future perspectives. Journal of Drug Delivery Science and Technology 2023; 86: 104737. doi: 10.1016/j.jddst.2023.104737.
Kausar A. Hybrid polymeric nanocomposites with EMI shielding applications. In: Joseph K, Wilson R, George G (editors). Materials for potential EMI shielding applications. Amsterdam: Elsevier; 2020. p. 227–236. doi: 10.1016/B978-0-12-817590-3.00014-2.
Jose A, Job A, Jose JK, Balachandran M. Novel applications of graphene and its derivatives: A short review. Current Nanomaterials 2023; 8(3): 200–208. doi: 10.2174/2405461507666220823124855.
Verma C, Berdimurodov E, Verma DK, et al. 3D nanomaterials: The future of industrial, biological, and environmental applications. Inorganic Chemistry Communications 2023; 156: 111163. doi: 10.1016/j.inoche.2023.111163.
Meyer JC, Geim AK, Katsnelson MI, et al. The structure of suspended graphene sheets. Nature 2007; 446(7131): 60–63. doi: 10.1038/nature05545.
Xie Y, Lee J, Jia H, Feng PXL. Frequency tuning of two-dimensional nanoelectromechanical resonators via comb-drive MEMS actuators. In: Proceedings of 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII); 2019 Jun 23–27; Berlin. New York: IEEE; 2019. p. 254–257. doi: 10.1109/TRANSDUCERS.2019.8808703.
Gao Y, Zhang Y, Chen P, et al. Toward single-layer uniform hexagonal boron nitride–graphene patchworks with zigzag linking edges. Nano Letters 2013; 13(7): 3439–3443. doi: 10.1021/nl4021123.
Huang PY, Ruiz-Vargas CS, van der Zande AM, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011; 469: 389–392. doi: 10.1038/nature09718.
Seah CM, Chai SP, Mohamed AR. Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 2014; 70: 1–21. doi: 10.1016/j.carbon.2013.12.073.
Kausar A. A review of fundamental principles and applications of polymer nanocomposites filled with both nanoclay and nano-sized carbon allotropes–graphene and carbon nanotubes. Journal of Plastic Film & Sheeting 2020; 36(2): 209–228. doi: 10.1177/8756087919884607.
Mohan VB, Lau K, Hui D, Bhattacharyya D. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering 2018; 142: 200–220. doi: 10.1016/j.compositesb.2018.01.013.
Brodie BC. XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859; 149: 249–259. doi: 10.1098/rstl.1859.0013
Feicht P, Biskupek J, Gorelik TE, et al. Brodie’s or Hummers’ method: Oxidation conditions determine the structure of graphene oxide. Chemistry–A European Journal 2019; 25(38): 8955–8959. doi: 10.1002/chem.201901499.
Kurapati SK, Reddy MN, Sujithra R, et al. Nanomaterials and nanostructures in additive manufacturing: Properties, applications, and technological challenges. In: Deshmukh K, Pasha SKK, Sadasivuni K (editors). Nanotechnology-based additive manufacturing: Product design, properties and applications. Baden-Wurttemberg: Wiley-VCH; 2023. p. 53–102. doi: 10.1002/9783527835478.ch3.
Maheshkumar KV, Krishnamurthy K, Sathishkumar P, et al. Research updates on graphene oxide‐based polymeric nanocomposites. Polymer Composites 2014; 35(12): 2297–2310. doi: 10.1002/pc.22899.
Chen W, Lv G, Shen J, et al. The preparation and application of polymer/graphene nanocomposites. Emerging Materials Research 2020; 9(3): 943–959. doi: 10.1680/jemmr.17.00031.
del Valle MA, Gacitúa MA, Hernández F, et al. Nanostructured conducting polymers and their applications in energy storage devices. Polymers 2023; 15(6): 1450. doi: 10.3390/polym15061450.
Thapa YN, Kafle BP, Adhikari R. Properties and applications of conjugated polymers for flexible electronics: Current trends and perspectives. In: Thapa YN, Kafle BP, Adhikari R (editors). Flexible and wearable sensors: Materials, technologies, and challenges. Boca Raton: CRC Press; 2023. p. 97–114.
Willardson RK, Beer AC. Semiconductors and semimetals. Cambridge: Academic Press; 1977.
MacDiarmid AG. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). A Journal of the German Chemical Society 2001; 40(14): 2581–2590. doi: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.
Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011; 196(1): 1–12. doi: 10.1016/j.jpowsour.2010.06.084.
Unsworth J, Lunn BA, Innis PC, et al. Technical review: Conducting polymer electronics. Journal of Intelligent Material Systems and Structures 1992; 3(3): 380–395. doi: 10.1177/1045389X9200300301.
Epstein AJ. Electrically conducting polymers: Science and technology. MRS Bulletin 1997; 22(6): 16–23. doi: 10.1557/S0883769400033583.
Su WP, Schrieffer JR, Heeger AJ. Solitons in polyacetylene. Physical Review Letters 1979; 42(25): 1698. doi: 10.1103/PhysRevLett.42.1698.
Saraswathi R, Gerard M, Malhotra BD. Characteristics of aqueous polycarbazole batteries. Journal of Applied Polymer Science 1999; 74(1): 145–150. doi: 10.1002/(SICI)1097-4628(19991003)74:1<145::AID-APP18>3.0.CO;2-C.
Krische B, Zagorska M. The polythiophene paradox. Synthetic Metals 1989; 28(1–2): 263–268. doi: 10.1016/0379-6779(89)90531-6.
Machida S, Miyata S, Techagumpuch A. Chemical synthesis of highly electrically conductive polypyrrole. Synthetic Metals 1989; 31(3): 311–318. doi: 10.1016/0379-6779(89)90798-4.
Pouget JP, Jozefowicz ME, Epstein AJ, et al. X-ray structure of polyaniline. Macromolecules 1991; 24(3): 779–789. doi: 10.1021/ma00003a022.
Genies EM, Boyle A, Lapkowski M, Tsintavis C. Polyaniline: A historical survey. Synthetic Metals 1990; 36(2): 139–182. doi: 10.1016/0379-6779(90)90050-U.
Díez-Pascual AM. Development of graphene-based polymeric nanocomposites: A brief overview. Polymers 2021; 13(17): 2978. doi: 10.3390/polym13172978.
Sun X, Huang C, Wang L, et al. Recent progress in graphene/polymer nanocomposites. Advanced Materials 2021; 33(6): 2001105. doi: 10.1002/adma.202001105.
Kausar A. Shape memory polyurethane/graphene nanocomposites: Structures, properties, and applications. Journal of Plastic Film & Sheeting 2020; 36(2): 151–166. doi: 10.1177/875608791986529.
Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. Journal of Food and Drug Analysis 2014; 22(1): 105–115. doi: 10.1016/j.jfda.2014.01.009.
Kausar A. High-performance competence of polyaniline-based nanomaterials. Materials Research Innovations 2019; 24(2): 113–122. doi: 10.1080/14328917.2019.1611253.
Wang YS, Li SM, Hsiao ST, et al. Thickness-self-controlled synthesis of porous transparent polyaniline-reduced graphene oxide composites towards advanced bifacial dye-sensitized solar cells. Journal of Power Sources 2014; 260: 326–337. doi: 10.1016/j.jpowsour.2014.02.090.
Li Y, Peng H, Li G, Chen K. Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. European Polymer Journal 2012; 48(8): 1406–1412. doi: 10.1016/j.eurpolymj.2012.05.014.
Gao Z, Wang F, Chang J, et al. Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochimica Acta 2014; 133: 325–334. doi: 10.1016/j.electacta.2014.04.033.
Chauhan NPS, Mozafari M, Chundawat NS, et al. High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities. Journal of Industrial and Engineering Chemistry 2016; 36: 13–29. doi: 10.1016/j.jiec.2016.03.003.
Al Hawash M, Kumar R, Barakat MA. Fabrication of polyaniline/graphene oxide nanosheet@ tea waste granules adsorbent for groundwater purification. Nanomaterials 2022; 12(21): 3840. doi: 10.3390/nano12213840.
Borges MHR, Nagay BE, Costa RC, et al. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Advances in Colloid and Interface Science 2023; 314: 102860. doi: 10.1016/j.cis.2023.102860.
Lv C, Ma X, Guo R, et al. Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor. Energy 2023; 270: 126830. doi: 10.1016/j.energy.2023.126830.
Lin L, Yan Z, Gu J, et al. UV‐responsive behavior of azopyridine‐containing diblock copolymeric vesicles: Photoinduced fusion, disintegration and rearrangement. Macromolecular Rapid Communications 2009; 30(13): 1089–1093. doi: 10.1002/marc.200900105.
Molahalli V, Bhat VS, Shetty A, et al. ZnO doped SnO2 nano flower decorated on graphene oxide/polypyrrole nanotubes for symmetric supercapacitor applications. Journal of Energy Storage 2023; 69: 107953. doi: 10.1016/j.est.2023.107953.
Deng M, Yang X, Silke M, et al. Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sensors and Actuators B: Chemical 2011; 158(1): 176–184. doi: 10.1016/j.snb.2011.05.062.
Wu B, Hou S, Xue Y, Chen Z. Electrodeposition–assisted assembled multilayer films of gold nanoparticles and glucose oxidase onto polypyrrole-reduced graphene oxide matrix and their electrocatalytic activity toward glucose. Nanomaterials 2018; 8(12): 993. doi: 10.3390/nano8120993.
Deng S, Dong C, Liu J, et al. An n-type polythiophene derivative with excellent thermoelectric performance. A Journal of the German Chemical Society 2023; 62(18): e202216049. doi: 10.1002/anie.202216049.
Shamsayei M, Yamini Y, Asiabi H. Polythiophene/graphene oxide nanostructured electrodeposited coating for on-line electrochemically controlled in-tube solid-phase microextraction. Journal of Chromatography A 2016; 1475: 8–17. doi: 10.1016/j.chroma.2016.11.003.
Bora C, Pegu R, Saikia BJ, Dolui SK. Synthesis of polythiophene/graphene oxide composites by interfacial polymerization and evaluation of their electrical and electrochemical properties. Polymer International 2014; 63(12): 2061–2067. doi: 10.1002/pi.4739.
Yang Z, Shi X, Yuan J, et al. Preparation of poly (3-hexylthiophene)/graphene nanocomposite via in situ reduction of modified graphite oxide sheets. Applied Surface Science 2010; 257(1): 138–142. doi: 10.1016/j.apsusc.2010.06.051.
Pilo MI, Baluta S, Loria AC, et al. Poly(thiophene)/graphene oxide-modified electrodes for amperometric glucose biosensing. Nanomaterials 2022; 12(16): 2840. doi: 10.3390/nano12162840.
Zamani R, Yamini Y. On-chip electromembrane surrounded solid phase microextraction for determination of tricyclic antidepressants from biological fluids using poly(3,4-ethylenedioxythiophene)—Graphene oxide nanocomposite as a fiber coating. Biosensors 2023; 13(1): 139. doi: 10.3390/bios13010139.
Satpathy S, Misra NK, Shukla DK, et al. An in-depth study of the electrical characterization of supercapacitors for recent trends in energy storage system. Journal of Energy Storage 2023; 57: 106198. doi: 10.1016/j.est.2022.106198.
Sharma A, Kumar A, Khan R. A highly sensitive amperometric immunosensor probe based on gold nanoparticle functionalized poly(3,4-ethylenedioxythiophene) doped with graphene oxide for efficient detection of aflatoxin B1. Synthetic Metals 2018; 235: 136–144. doi: 10.1016/j.synthmet.2017.12.007.
Heeney M, Bailey C, Genevicius K, et al. Stable polythiophene semiconductors incorporating thieno[2,3-b] thiophene. Journal of the American Chemical Society 2005; 127(4): 1078–1079. doi: 10.1021/ja043112p.
Ates M, Alperen C. Polythiophene-based reduced graphene oxide and carbon black nanocomposites for supercapacitors. Iranian Polymer Journal 2023; 32(10): 1241–1255. doi: 10.1007/s13726-023-01201-9.
Hui N, Wang S, Xie H, et al. Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sensors and Actuators B: Chemical 2015; 221: 606–613. doi: 10.1016/j.snb.2015.07.011.
Singh SB, Kshetri T, Singh TI, et al. Embedded PEDOT: PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor. Chemical Engineering Journal 2019; 359: 197–207. doi: 10.1016/j.cej.2018.11.160.
Kim TH, Choi KI, Kim H, et al. Long-term cyclability of electrochromic poly(3-hexyl thiophene) films modified by surfactant-assisted graphene oxide layers. ACS Applied Materials & Interfaces 2017; 9(23): 20223–20230. doi: 10.1021/acsami.7b04184.
Fan T, Tong S, Zeng W, et al. Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. Synthetic Metals 2015; 199: 79–86. doi: 10.1016/j.synthmet.2014.11.017.
Zhou H, Han G, Xiao Y, et al. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. Journal of Power Sources 2014; 263: 259–267. doi: 10.1016/j.jpowsour.2014.04.039.
Li Y, Xia Z, Gong Q, et al. Green synthesis of free standing cellulose/graphene oxide/polyaniline aerogel electrode for high-performance flexible all-solid-state supercapacitors. Nanomaterials 2020; 10(8): 1546. doi: 10.3390/nano10081546.
Reiss P, Couderc E, De Girolamo J, Pron A. Conjugated polymers/semiconductor nanocrystals hybrid materials—Preparation, electrical transport properties and applications. Nanoscale 2011; 3(2): 446–489. doi: 10.1039/C0NR00403K.
Kausar A. Nanodiamond: A multitalented material for cutting edge solar cell application. Materials Research Innovations 2018; 22(5): 302–314. doi: 10.1080/14328917.2017.1317448.
Costa RD, Malig J, Brenner W, et al. Electron accepting porphycenes on graphene. Advanced Materials 2013; 25(18): 2600–2605. doi: 10.1002/adma.201300231.
Vovchenko LL, Matzui LY, Perets YS, Milovanov YS. Dielectric properties and AC conductivity of epoxy/hybrid nanocarbon filler composites. In: Fesenko O, Yatsenko L (editors). NANO 2017: Nanochemistry, biotechnology, nanomaterials, and their applications. Proceedings of the 5th International Conference Nanotechnology and Nanomaterials (NANO2017); 2017 Aug 23–26; Chernivtsi. New York: Springer International Publishing; 2018. p. 377–393. doi: 10.1007/978-3-319-92567-7_24.
Stylianakis MM, Stratakis E, Koudoumas E, et al. Organic bulk heterojunction photovoltaic devices based on polythiophene–graphene composites. ACS Applied Materials & Interfaces 2012; 4(9): 4864–4870. doi: 10.1021/am301204g.
Tschierske C. Molecular self-organization of amphotropic liquid crystals. Progress in Polymer Science 1996; 21(5): 775–852. doi: 10.1016/S0079-6700(96)00014-7.
Li Z, Wang W, Greenham NC, McNeill CR. Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar cells. Physical Chemistry Chemical Physics 2014; 16: 25684–25693. doi: 10.1039/C4CP01111B.
Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010; 4(7): 4324–4330. doi: 10.1021/nn101187z.
Agbolaghi S. A step towards high-performance photovoltaics via three-component P3HT/PANI-graft-rGO nanocomposites. Fullerenes, Nanotubes and Carbon Nanostructures 2019; 27(8): 650–660. doi: 10.1080/1536383X.2019.1629422.
Gnanarathinam A, Palanisamy D, Manikandan N, et al. Comparison of corrosion behavior on laser welded austenitic stainless steel. Materials Today: Proceedings 2021; 39: 649–653. doi: 10.1016/j.matpr.2020.09.184.
Chaouiki A, Chafiq M, Al-Hadeethi MR, et al. Exploring the corrosion inhibition effect of two hydrazone derivatives for mild steel corrosion in 1.0 M HCl solution via electrochemical and surface characterization studies. International Journal of Electrochemical Science 2020; 15(9): 9354–9377. doi: 10.20964/2020.09.95.
Yeo K, Kim J, Kim J. Development of an anti-corrosion conductive nano carbon coating layer on metal bipolar plates. Journal of Nanoscience and Nanotechnology 2018; 18(9): 6278–6282. doi: 10.1166/jnn.2018.15642.
Singh Raman RK, Tiwari A. Graphene: The thinnest known coating for corrosion protection. The Journal of The Minerals, Metals & Materials Society (TMS) 2014; 66: 637–642. doi: 10.1007/s11837-014-0921-3.
Cui G, Bi Z, Zhang R, et al. A comprehensive review on graphene-based anti-corrosive coatings. Chemical Engineering Journal 2019; 373: 104–121. doi: 10.1016/j.cej.2019.05.034.
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Advanced Materials 2014; 26(12): 1846–1885. doi: 10.1002/adma.201304496.
Sarvari R, Sattari S, Massoumi B, et al. Composite electrospun nanofibers of reduced graphene oxide grafted with poly(3-dodecylthiophene) and poly(3-thiophene ethanol) and blended with polycaprolactone. Journal of Biomaterials Science, Polymer Edition 2017; 28(15): 1740–1761. doi: 10.1080/09205063.2017.1354167.
Agbolaghi S. Well‐functioned photovoltaics based on nanofibers composed of PBDT‐TIPS‐DTNT‐DT and graphenic precursors thermally modified by polythiophene, polyaniline and polypyrrole. Polymer International 2019; 68(8): 1516–1523. doi: 10.1002/pi.5859.
Ryan KR, Down MP, Hurst NJ, et al. Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. eScience 2022; 2(4): 365–381. doi: 10.1016/j.esci.2022.07.003.
Cheng X, Kumar V, Yokozeki T, et al. Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties. Composites Part A: Applied Science and Manufacturing 2016; 82: 100–107. doi: 10.1016/j.compositesa.2015.12.006.
Duan Z, Yuan Z, Jiang Y, et al. Amorphous carbon material of daily carbon ink: Emerging applications in pressure, strain, and humidity sensors. Journal of Materials Chemistry C 2023; 11(17): 5585–5600. doi: 10.1039/D3TC00016H.
Ganguly S, Kanovsky N, Das P, et al. Photopolymerized thin coating of polypyrrole/graphene nanofiber/iron oxide onto nonpolar plastic for flexible electromagnetic radiation shielding, strain sensing, and non‐contact heating applications. Advanced Materials Interfaces 2021; 8(23): 2101255. doi: 10.1002/admi.202101255.
Maurya DK, Dhanusuraman R, Guo JZ, Angaiah S. Na-ion conducting filler embedded 3D-electrospun nanofibrous hybrid solid polymer membrane electrolyte for high-performance Na-ion capacitor. Advanced Composites and Hybrid Materials 2023; 6: 45. doi: 10.1007/s42114-022-00604-1.
Inshakova E, Inshakova A, Goncharov A. Engineered nanomaterials for energy sector: Market trends, modern applications and future prospects. IOP Conference Series: Materials Science and Engineering 2020; 971(3): 032031. doi: 10.1088/1757-899X/971/3/032031.
Tusher MMH, Imam A, Shuvo MSI. Future and challenges of coating materials. In: Verma A, Sethi SK, Ogata S (editors). Coating materials: Computational aspects, applications and challenges. Singapore: Springer Nature Singapore; 2023. p. 229–251.
Shukla A, Chandrakar K. 18 future trends in polymer nanocomposites. In: Verma RK, Kesarwani S, Xu J, Davim JP (editors). Polymer nanocomposites: Fabrication to applications. Boca Raton: CRC Press; 2023.