References
WHO. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 3 February 2022).
Thun MJ, De Lancey JO, Center MM, et al. The global burden of cancer: Priorities for prevention. Carcinogenesis. 2010; 31(1): 100-110. doi: 10.1093/carcin/bgp263
Bray F, Møller B. Predicting the future burden of cancer. Nature Reviews Cancer. 2006; 6(1): 63-74. doi: 10.1038/nrc1781
Blackadar CB. Historical review of the causes of cancer. World Journal of Clinical Oncology. 2016; 7(1): 54-86. doi: 10.5306/wjco.v7.i1.54
GIZMODO, Egyptian mummy had prostate cancer; lots more ancient peeps probably did too. Available online: https://gizmodo.com/egyptian-mummy-had-prostate-cancerlots-more-ancient-p-5854019 (accessed on 3 February 2022).
N.C. Institute, Risk factors for cancer. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk (accessed on 3 February 2022).
Liu M, Yu X, Chen Z, et al. Aptamer selection and applications for breast cancer diagnostics and therapy. Journal of Nanobiotechnology. 2017; 15(1): 1-16. doi: 10.1186/s12951-017-0311-4
Chen T, Ren L, Liu X, et al. DNA nanotechnology for cancer diagnosis and therapy. International Journal of Nanomedicine. 2018; 19(6): 1671. doi: 10.3390/ijms19061671
Aeran H, Kumar V, Uniyal S, Tanwer P, et al. Nanodentistry: Is just a fiction or future. Journal of Oral Biology and Craniofacial Research. 2015; 5(3): 207-211. doi: 10.1016/j.jobcr.2015.06.012
Sarath KS, Nasim BP, Abraham E. Nanorobots a future device for diagnosis and treatment. Journal of Pharmacy and Pharmaceutics. 2018; 5(1): 44-49. doi: 10.15436/2377-1313.18.1815
Neto AMJC, Lopes IA, Pirota KR. A review on nanorobots. Journal of Computational and Theoretical Nanoscience. 2010; 7(10): 1870-1877. doi: 10.1166/jctn.2010.1552
Sivasankar M, Durairaj RB. Brief review on nano robots in bio medical applications. Advances in Robotics & Automation. 2012; 1(1): 101. doi: 10.4172/2168-9695.1000101
Manjunath V, Kishore V. The promising future in medicine: Nanorobots. Biomedical Science and Engineering. 2014; 2(2): 42-47. doi: 10.12691/bse-2-2-3
Jeong Y, Jin S, Palanikumar L, et al. Stimuli-responsive adaptive nanotoxin to directly penetrate the cellular membrane by molecular folding and unfolding. Journal of the American Chemical Society. 2022; 144(12): 5503-5516. doi: 10.1021/jacs.2c00084
Desrosiers A, Derbali RM, Hassine S, et al. Programmable self-regulated molecular buffers for precise sustained drug delivery. Nature Communications. 2022; 13(1): 1-13. doi: 10.1038/s41467-022-33491-7
Harroun SG, Prévost-Tremblay C, Lauzon D, et al. Programmable DNA switches and their applications. Nanoscale. 2018; 10: 4607-4641. doi: 10.1039/C7NR07348H
Lenaghan SC, Wang Y, Xi N, et al. Grand challenges in bioengineered nanorobots for cancer therapy. IEEE Transactions on Bio-Medical Engineering. 2013; 60(3): 667-673. doi: 10.1109/TBME.2013.2244599
Paul S. A brief insight into nanorobots. In: Bhattacharyya S, Das N, Bhattacharjee D (editors). Handbook of Research on Recent Developments in Intelligent Communication Application. IGI Global; 2017. pp. 23-74.
Ricotti L, Cafarelli A, Iacovacci V, et al. Advanced micro-nano-bio systems for future targeted therapies. Current Nanoscience. 2015; 11(2): 144-160. doi: 10.2174/1573413710666141114221246
Giri G, Maddahi Y, Zareinia K. A brief review on challenges in design and development of nanorobots for medical applications. Applied Sciences. 2021; 11(21): 10385. doi: 10.3390/app112110385
Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C. MRI-Guided nanorobotic systems for therapeutic and diagnostic applications. Annual Review of Biomedical Engineering. 2011; 13: 157-184. doi: 10.1146/annurev-bioeng-071910-124724
Ungaro F, d’Angelo I, Miro A, et al. Engineered PLGA nano-and micro- carriers for pulmonary delivery: Challenges and promises. The Journal of Pharmacy and Pharmacology. 2012; 64(9): 1217-1235. doi: 10.1111/j.2042-7158.2012.01486.x
Pappu P, Madduru D, Chandrasekharan M, et al. Next generation sequencing analysis of lung cancer datasets: A functional genomics perspective. Indian Journal of Cancer. 2016; 53(1): 1-8. doi: 10.4103/0019-509X.180832
Verma SK, Chauhan R. Nanorobots in dentistry—A review. Indian Journal of Dentistry. 2014; 5: 62-70. doi: 10.1016/j.ijd.2012.12.010
Dixon KL. The radiation biology of radioimmunotherapy. Nuclear Medicine Communications. 2003; 24(9): 951-957. doi: 10.1097/00006231-200309000-00002
Reza KH, Asiwarya G, Radhika G, Bardalai D. Nanorobots: The future trend of drug delivery and therapeutics. International Journal of Pharmaceutical Sciences Review and Research. 2011; 10(1): 60-68.
Freitas RA. Medical nanorobots: The long-term goal for nanomedicine. Available online: http://www.nanomedicine.com/Papers/ArtechChapter2009.pdf (accessed on 3 February 2022).
Freitas RA. Pharmacytes: An ideal vehicle for targeted drug delivery. Journal of Nanoscience and Nanotechnology. 2006; 6(9-10): 2769-2775. doi: 10.1166/jnn.2006.413
Manjunath A, Kishore V. The promising future in medicine: Nanorobots. Biomedical Science and Engineering. 2014; 2(2): 42-47. doi: 10.12691/bse-2-2-3
Karan S, Banerjee B, Tripathi A, Majumder DD. Nanorobots control systems design—A new paradigm for healthcare system. In: Satapathy SC, Govardhan A, Raju KS, Mandal JK (editors). Emerging ICT for Bridging the Future, Proceedings of the 49th Annual Convention of the Computer Society of India (CSI); 12-14 December 2014; Hyderabad, Telangana, India. Springer; 2014. Volume 1.
Bhowmik D, Bhattacharjee C, Jayakar B. Role of nanotechnology in novel drug delivery system. Journal of Pharmaceutical Science and Technology. 2009; 1(1): 20-35.
Freitas RB. IMM report number 18: Nanomedicine. Clottocytes: Artificial mechanical platelets. Available online: http://www.imm.org/reports/rep018/ (accessed on 3 February 2022).
Dabbs DJ, Thompson LDR. Diagnostic Immunohistochemistry: Theranostic and Genomic Applications, 4th ed. Saunders; 2013.
Web of science. Available online: http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=3DCzfvN7XkKHGA5i9Hu&preferencesSaved (accessed on 3 February 2022).
Golan DE, Tashjian AH, Armstrong EJ. Armstrong AW. Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy, 3rd ed. Lippincott Williams & Wilkins; 2011.
Ritter JM, Rang HP, Flower R, Henderson G. Rang & Dale’s Pharmacology, 8th ed. Churchill Livingstone; 2015.
National Health Surveillance Agency—An visa (Portuguese). Available online: http://portal.anvisa.gov.br/wps/content/anvisa+portal/anvisa/sala+de+imprensa/menu+-+noticias+anos/2015/publicadas+novas+normas+para+pesquisa+clinica (accessed on 3 February 2022).
Kratz F, Warnecke A. Finding the optimal balance: Challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. Journal of Controlled Release. 2012; 164(2): 221-235. doi: 10.1016/j.jconrel.2012.05.045
Zeeshan MA, Pané S, Youn SK, et al. Graphite coating of iron nanowires for nanorobotic applications: Synthesis, characterization and magnetic wireless manipulation. Advanced Functional Materials. 2012; 23(7): 823-831. doi: 10.1002/adfm.201202046
Kojima C, Suehiro T, Watanabe K, et al. Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems. Acta Biomaterialia. 2013; 9(3): 5673-5780. doi: 10.1016/j.actbio.2012.11.013
Scialabba C, Licciardi M, Mauro N, et al. Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics. 2014; 88(3): 695-705. doi: 10.1016/j.ejpb.2014.09.008
Watanabe K, Nishio Y, Makiura R, et al. Paclitaxel-loaded hydroxyapatite/collagen hybrid gels as drug delivery systems for metastatic cancer cells. International Journal of Pharmaceutics. 2013; 446(1-2): 81-86. doi: 10.1016/j.ijpharm.2013.02.002
Liu Z, Robinson JT, Tabakman SM, et al. Carbon materials for drug delivery & cancer therapy. Materials Today. 2011; 14(7-8): 316-323. doi: 10.1016/S1369-7021(11)70161-4
Health Quality Ontario. Intrathecal drug delivery systems for cancer pain: A health technology assessment. Ontario Health Technology Assessment Series. 2016; 16(1): 1-51.
Sutradhar KB, Amin L. Nanotechnology in cancer drug delivery and selective targeting. International Scholarly Research Notices. 2014; 2014: 939378. doi: 10.1155/2014/939378
Zhao G, Rodriguez BL. Molecular targeting of liposomal nanoparticles to tumor microenvironment. International Journal of Nanomedicine. 2013; 8: 61-71. doi: 10.2147/IJN.S37859
Coates A, Abraham S, Kaye SB, et al. On the receiving end-patient perception of the side-effects of cancer chemotherapy. European Journal of Cancer& Clinical Oncology. 1983; 19(2): 203-308. doi: 10.1016/0277-5379(83)90418-2
Tannock IF, Lee CM, Tunggal JK, et al. Limited penetration of anticancer drugs through tumor tissue: A potential cause of resistance of solid tumors to chemotherapy. Clinical Cancer Research. 2002; 8(3): 878-884.
Mousa SA, Bharali DJ. Nanotechnology-based detection and targeted therapy in cancer: Nano-bio paradigms and applications. Cancers. 2011; 3(3): 2888-2903. doi: 10.3390/cancers3032888
Links M, Brown R. Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Reviews in Molecular Medicine. 1999; 1(15):1-21. doi: 10.1017/S1462399499001099X
World Health Organization. Cancer. Available online: http://www.who.int/cancer/en/ (accessed on 3 February 2022).
Mutoh K, Tsukahara S, Mitsuhashi J, et al. Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1-transduced human breast cancer cells. Cancer Science. 2006; 97(11): 1198-1204. doi: 10.1111/j.1349-7006.2006.00300.x
Lagzi I. Chemical robotics—Chemotactic drug carriers. Central European Journal of Medicine. 2013; 8(4): 377-382. doi: 10.2478/s11536-012-0130-9
Xu X, Kim K, Fan D. Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angewandte Chemie (International Edition). 2015; 54(8): 2525-2529. doi: 10.1002/anie.201410754
Couvreur P, Gref R, Andrieux K, Malvy C. Nanotechnologies for drug delivery: Application to cancer and autoimmune diseases. Progress in Solid State Chemistry. 2006; 34(2-4): 231-235. doi: 10.1016/j.progsolidstchem.2005.11.009
Janda E, Nevolo M, Lehmann K, et al. Raf plus TGFβ-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene. 2006; 25(54): 7117-7130. doi: 10.1038/sj.onc.1209701
Osterlind K. Chemotherapy in small cell lung cancer. European Respiratory Journal. 2001; 18(6): 1026-1043. doi: 10.1183/09031936.01.00266101
Artemov D, Solaiyappan M, Bhujwalla ZM. Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors. Cancer Research. 2001; 61(7): 3039-3044.
Cavalcanti A, Shirinzadeh B, Freitas RA, Hogg T. Nanorobot architecture for medical target identification. Nanotechnology. 2007; 19(1): 015103. doi: 10.1088/0957-4484/19/01/015103
Sharma NN, Mittal RK. Nanorobot movement: Challenges and biologically inspired solutions. International Journal on Smart Sensing and Intelligent Systems2008; 1(1): 87-109. doi: 10.21307/ijssis-2017-280
Wang W, Li S, Mair L, et al. Acoustic propulsion of nanorod motors inside living cells. Angewandte Chemie (International Edition). 2014; 53(12): 3201-3204. doi: 10.1002/anie.201309629
Gao W, Dong R, Thamphiwatana S, et al. Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors. ACS Nano. 2015; 9(1): 117-123. doi: 10.1021/nn507097k
Juul S, Iacovelli F, Falconi M, et al. Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage. ACS Nano. 2013; 7(11): 9724-9734. doi: 10.1021/nn4030543
Ahmad A, Kamal A, Ashraf F, Ansari AF. A review on current scenario in the field of nanorobotics. International Journal of Engineering Sciences & Research Technology (IJESRT). 2014; 3(6): 578-584.
Fisher B. Biological research in the evolution of cancer surgery: A personal perspective. Cancer Research. 2008; 68(24): 10007-10020. doi: 10.1158/0008-5472
Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC. Nanorobot hardware architecture for medical defense. Sensors. 2008; 8(5): 2932-2958. doi: 10.3390/s8052932
Wong PC, Wong K, Foote H. Organic data memory using the DNA approach. Communications of the ACM. 2003; 46(1): 95-98. doi: 10.1145/602421.602426
Seeman NC. From genes to machines: DNA nanomechanical devices. Trends in Biochemical Sciences. 2005; 30(3): 119-125. doi: 10.1016/j.tibs.2005.01.007
Drexler KE. Nanosystems: Molecular Machinery, Manufacturing, and Computation, 1st ed. Wiley; 1992.
Hogg T, Kuekes PJ. Mobile microscopic sensors for high resolution in vivo diagnostics. Nanomedicine: Nanotechnology, Biology, and Medicine. 2006; 2(4): 239-247. doi: 10.1016/j.nano.2006.10.004
Bogaerts W, Baets R, Dumon P, et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. Journal of Lightwave Technology. 2005; 23(1): 401-412. doi: 10.1109/JLT.2004.834471
Kubista PB. Creating Standard VHDL Test Environments. U.S. Patent 6,813,751, 2 November 2004.
Curtis ASG, Dalby M, Gadegaard N. Cell signaling arising from nanotopography: Implications for nanomedical devices. Nanomedicine. 2006; 1(1): 67-72. doi: 10.2217/17435889.1.1.67
Ahuja SP, Myers JR. A survey on wireless grid computing. Journal of Supercomputing. 2006; 37(1): 3-21. doi:10.1007/s11227-006-3845-z
Hanada E, Antoku Y, Tani S, et al. Electromagnetic interference on medical equipment by low-power mobile telecommunication systems. IEEE Transactions on Electromagnetic Compatibility. 2000; 42(4): 470-476. doi: 10.1109/15.902316
Sauer C, Stanacevic M, Cauwenberghs G, Thakor N. Power harvesting and telemetry in CMOS for implanted devices. IEEE Transactions on Circuits and Systems I: Regular Papers. 2005; 52(12): 2605-2613. doi: 10.1109/TCSI.2005.858183
Bernstein K, Chuang CT, Joshi R, Puri R. Design and CAD challenges in sub-90nm CMOS technologies. In: Proceedings of the International Conference on Computer Aided Design (ICCAD 2003); 9-13 November 2003; San Jose, CA, USA. pp. 129-136.
Mohseni P, Najafi K. Wireless multichannel biopotential recording using an integrated FM telemetry circuit. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1-5 September 2004; San Francisco, CA, USA.
Eggers T, Marscher C, Marschner U, et al. Advanced hybrid integrated low-power telemetric pressure monitoring system for biomedical application. In: Proceedings of the IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS 2000); 23-27 January 2000; Miyazaki, Japan. pp. 23-37.
Ricciardi L, Pitz I, AI-Sarawi S, et al. Investigation into the future of RFID in biomedical applications. In: Proceedings of the Microtechnologies for the New Millenium 2003; 19-21 May 2003; Maspalomas, Gran Canaria, Spain.
Cavalcanti B, Shirinzadeh B, Freitas RA, Kretly LC. Medical nanorobot architecture based on nanobioelectronics. Recent Patents on Nanotechnology. 2007; 1(1): 1-10. doi: 10.2174/187221007779814745
Hogg T. Coordinating microscopic robots in viscous fluids. Autonomous Agents and Multi-Agent Systems. 2007; 14(3): 271-305. doi: 10.1007/s10458-006-9004-3
Horiuchi TK, Etienne-Cummings R. A time-series novelty detection chip for sonar. International Journal of Robotics and Automation. 2004; 19: 171-177.
Hamad-Schifferli K, Schwartz JJ, Santos AT, et al. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature. 2002; 415(6868): 152-155. doi: 10.1038/415152a
Cavalcanti A, Shirinzadeh B, Zhang M. Nanorobot hardware architecture for medical defense. Sensors. 2008; 8: 2932-2958. doi: 10.3390/s8052932
Kharwade M, Nijhawan M, Modani S. Nanorobots: A future medical device in diagnosis and treatment. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2013; 4(2): 1299-1307.
Venkatesan M, Jolad B. Nanorobots in cancer treatment. In: Proceedings of the International Conference on Emerging Trends in Robotics and Communication Technologies (INTERACT 2010); 3-5 November 2010; Chennai, India. pp. 258-264.
Cavalcanti A, Shirinzadeh B, Kretly LC. Medical nanorobotics for diabetes control. Nanomedicine: Nanotechnology, Biology and Medicine. 2008; 4(2): 127-138. doi: 10.1016/j.nano.2008.03.001
Freitas RA. Nanotechnology, nanomedicine and nanosurgery. International Journal of Surgery. 2005; 3(4): 243-246. doi: 10.1016/j.ijsu.2005.10.007
Diez‐Sampedro A, Wright EM, Hirayama BA. Residue 457 controls sugar binding in the Na+/glucose cotransporter*. Journal of Biological Chemistry. 2001; 276(52): 49188-49194. doi: 10.1074/jbc.M108286200
Patil M, Mehta DS, Guvva S. Future impact of nanotechnology on medicine and dentistry. Journal of Indian Society of Periodontology. 2008; 12(2): 34-40. doi: 10.4103/0972-124X.44088
Cavalcanti A, Rosen L, Kretly LC, et al. Nanorobotic challenges in biomedical applications, design and control. In: Proceedings of the 11th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2004); 13-15 December 2004; Tel Aviv, Israel.
Freitas RA. Computational tasks in medical nanorobotics. In: Eshaghian-Wilner MM (editor). Bio-Inspired and Nanoscale Integrated Computing. Wiley; 2009
Gupta J. Nanotechnology applications in medicine and dentistry. Journal of Investigative and Clinical Dentistry. 2011; 2: 81-88. doi: 10.1111/j.2041-1626.2011.00046.x
Copyright (c) 2024 Mudavath Hanuma Naik, Jala Satyanarayana, Raj Kumar Kudari