Surface grafting of cellulose triacetate hollow fiber membranes with Ag@ZnO-hyperbranched polyglycerols nanoparticles for constructing antifouling and antibacterial surfaces

Xiujing Huang, Yingbo Chen

Article ID: 2538
Vol 6, Issue 1, 2023

VIEWS - 706 (Abstract) 103 (PDF)

Abstract


In recent years, using novel nanomaterials to improve the antifouling and antibacterial performance of reverse osmosis membranes has received much attention. In this study, hydrophilic Ag@ZnO-hyperbranched polyglycerols nanoparticles were fabricated by ring-opening multibranched polymerization of glycidyl acid with the core-shell Ag@ZnO nanoparticles. The cellulose triacetate composite membranes were prepared by grafting Ag@ZnO-HPGs nanoparticles on the surface of cellulose triacetate membranes. The surface of the nanoparticles with active functional group –OH was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Surface morphology, charge, and hydrophilicity of the composite membranes were characterized by scanning electron microscope, zeta potential, and contact angle analysis. The results showed that grafting the Ag@ZnO-HPGs nanoparticles onto the cellulose triacetate membrane surface improved the physical and chemical properties of the cellulose triacetate composite membranes. The water flux of cellulose triacetate composite membranes increased while the salt rejection rate to NaCl slightly decreased. Meanwhile, the cellulose triacetate composite membranes showed excellent antifouling properties of having a high flux recovery. The antibacterial performance of the cellulose triacetate composite membrane against E. coli and S. aureus was prominent that the antibacterial rates were 99.50% and 92.38%, and bacterial adhesion rates were as low as 19.12% and 21.35%, respectively.


Keywords


Core-shell Nanoparticles; Hyperbranched Polyglycerol; Cellulose Triacetate; Reverse Osmosis Membrane; Antifouling

Full Text:

PDF


References


1. Elimelech M, Phillip WA. The future of seawater desalination: Energy, technology, and the environment. Science 2011; 333(6043): 712–717. doi: 10.1126/science.120048.

2. Greenlee LF, Lawler DF, Freeman BD, et al. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research 2009; 43(9): 2317–2348. doi: 10.1016/j.watres.2009.03.010.

3. Tang CY, Zhao Y, Wang R, et al. Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination 2013; 308: 34–40. doi: 10.1016/j.desal.2012.07.007.

4. Kang G, Cao Y. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Research 2012; 46(3): 584–600. doi: 10.1016/j.watres.2011.11.041.

5. Kochkodan V, Johnson DJ, Hilal N. Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling. Advances in Colloid and Interface Science 2014; 206: 116–140. doi: 10.1016/j.cis.2013.05.005.

6. Shafi HZ, Matin A, Akhtar S, et al. Organic fouling in surface modified reverse osmosis membranes: Filtration studies and subsequent morphological and compositional characterization. Journal of Membrane Science 2017; 527: 152–163. doi: 10.1016/j.memsci.2017.01.017.

7. Wang Y, Wang Z, Wang J, Wang S. Triple antifouling strategies for reverse osmosis membrane biofouling control. Journal of Membrane Science 2018; 549: 495–506. doi: 10.1016/j.memsci.2017.12.047.

8. Yuan S, Li J, Zhu J, et al. Hydrophilic nanofiltration membranes with reduced humic acid fouling fabricated from copolymers designed by introducing carboxyl groups in the pendant benzene ring. Journal of Membrane Science 2018; 563: 655–663. doi: 10.1016/j.memsci.2018.06.038.

9. Jiang S, Li Y, Ladewig BP. A review of reverse osmosis membrane fouling and control strategies. Science of The Total Environment 2017; 595: 567–583. doi: 10.1016/j.scitotenv.2017.03.235.

10. Choudhury RR, Gohil JM, Mohanty S, Nayak SK. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. Journal of Materials Chemistry A 2018; 6(2): 313–333. doi: 10.1039/C7TA08627J.

11. Otitoju TA, Saari RA, Ahmad AL. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance. Journal of Industrial and Engineering Chemistry 2018; 67: 52–71. doi: 10.1016/j.jiec.2018.07.010.

12. Park SH, Kim SH, Park SJ, et al. Direct incorporation of silver nanoparticles onto thin-film composite membranes via arc plasma deposition for enhanced antibacterial and permeation performance. Journal of Membrane Science 513: 226–235. doi: 10.1016/j.memsci.2016.04.013.

13. Zhang A, Zhang Y, Pan G, et al. In situ formation of copper nanoparticles in carboxylated chitosan layer: Preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties. Separation and Purification Technology 176: 164–172. doi: 10.1016/j.seppur.2016.12.006.

14. Zhang T, Li Z, Wang W, et al. Enhanced antifouling and antimicrobial thin film nanocomposite membranes with incorporation of Palygorskite/titanium dioxide hybrid material. Journal of Colloid and Interface Science 2019; 537: 1–10. doi: 10.1016/j.jcis.2018.10.092.

15. Zargar M, Hartanto Y, Jin B, Dai S. Polyethylenimine modified silica nanoparticles enhance interfacial interactions and desalination performance of thin film nanocomposite membranes. Journal of Membrane Science 2017; 541: 19–28. doi: 10.1016/j.memsci.2017.06.085.

16. Kim HJ, Choi YS, Lim MY, et al. Reverse osmosis nanocomposite membranes containing graphene oxides coated by tannic acid with chlorine-tolerant and antimicrobial properties. Journal of Membrane Science 2016; 514: 25–34. doi: 10.1016/j.memsci.2016.04.026.

17. Wang J, Wang Y, Zhang Y, et al. Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance. ACS Applied Materials & Interfaces 2016; 8(38): 25508–25519. doi: 10.1021/acsami.6b06992.

18. Bi R, Zhang Q, Zhang R, et al. Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. Journal of Membrane Science 2018; 553: 17–24. doi: 10.1016/j.memsci.2018.02.010.

19. Ali FAA, Alam J, Shukla AK, et al. Graphene oxide-silver nanosheet-incorporated polyamide thin-film composite membranes for antifouling and antibacterial action against Escherichia coli and bovine serum albumin. Journal of Industrial and Engineering Chemistry 2019; 80: 227–238. doi: 10.1016/j.jiec.2019.07.052.

20. Wang W, Li Y, Wang W, et al. Palygorskite/silver nanoparticles incorporated polyamide thin film nanocomposite membranes with enhanced water permeating, antifouling and antimicrobial performance. Chemosphere 2019; 236: 124396. doi: 10.1016/j.chemosphere.2019.124396.

21. Li N, Yu L, Xiao Z, et al. Biofouling mitigation effect of thin film nanocomposite membranes immobilized with laponite mediated metal ions. Desalination 2020; 473: 114162. doi: 10.1016/j.desal.2019.114162.

22. Khan AS, Muhammad S, Ambreen J, et al. Fabrication of manganese oxide-silica based functional polymer composite membranes and their environmental application. Polymer-Plastics Technology and Materials 2021; 60(13): 1420–1432. doi: 10.1080/25740881.2021.1904985.

23. Ambreen J, Haleem A, Shah AA, et al. Facile synthesis and fabrication of NIPAM-based cryogels for environmental remediation. Gels 2023; 9(1): 64. doi: 10.3390/gels9010064.

24. Haleem A, Chen SQ, Ullah M, et al. Highly porous cryogels loaded with bimetallic nanoparticles as an efficient antimicrobial agent and catalyst for rapid reduction of water-soluble organic contaminants. Journal of Environmental Chemical Engineering 2021; 9(6): 106510. doi: 10.1016/j.jece.2021.106510.

25. Ilyas H, Haleem A, Iqbal M, Siddiq M. Influence of GO-Ag nano-filler on the antibacterial, antifouling and hydrophilic characteristics of polyvinyl chloride membrane. Journal of Water Process Engineering 2021; 44: 102336. doi: 10.1016/j.jwpe.2021.102336.

26. Vossen LI, Wedepohl S, Calderón M. A facile, one-pot, surfactant-free nanoprecipitation method for the preparation of nanogels from polyglycerol–drug conjugates that can be freely assembled for combination therapy applications. Polymers 2018; 10(4): 398. doi: 10.3390/polym10040398.

27. Wilms D, Stiriba SE, Frey H. Hyperbranched polyglycerols: From the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Accounts of Chemical Research 2010; 43(1): 129–141. doi: 10.1021/ar900158p.

28. Abbina S, Vappala S, Kumar P, et al. Hyperbranched polyglycerols: Recent advances in synthesis, biocompatibility and biomedical applications. Journal of Materials Chemistry B 2017; 5(47): 9249–9277. doi: 10.1039/C7TB02515G.

29. Hasan A, Pandey LM. Review: Polymers, surface-modified polymers, and self assembled monolayers as surface-modifying agents for biomaterials. Polymer-Plastics Technology and Engineering 2015; 54(13): 1358–1378. doi: 10.1080/03602559.2015.1021488.

30. Huang X, Chen Y, Feng X, et al. Incorporation of oleic acid-modified Ag@ZnO core-shell nanoparticles into thin film composite membranes for enhanced antifouling and antibacterial properties. Journal of Membrane Science 2020; 602: 117956. doi: 10.1016/j.memsci.2020.117956.

31. Li XC, Hu CS, Li HJ, et al. Ring-opening cryo-polymerization of N-carboxy-α-amino acid anhydride of γ-benzyl L-Glutamate. Polymer 2018; 151: 1–5. doi: 10.1016/j.polymer.2018.07.053.

32. Aguirre ME, Rodríguez HB, Román ES, et al. Ag@ZnO core-shell nanoparticles formed by the timely reduction of Ag+ ions and zinc acetate hydrolysis in N,N-dimethylformamide: Mechanism of growth and photocatalytic properties. The Journal of Physical Chemistry C 2011; 115(50): 24967–24974. doi: 10.1021/jp209117s.

33. Chen Y, Gao N, Jiang J. Surface matters: Enhanced bactericidal property of core-shell Ag-Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis. Small 2013; 9(19): 3242–3246. doi: 10.1002/smll.201300543.

34. Zhou L, Gao C, Xu W. Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir 2010; 26(13): 11217–11225. doi: 10.1021/la100556p.

35. Akesson B. Triethylamine. In: Corn M (editor). Handbook of hazardous materials. 1st ed. Cambridge, MA: Academic Press; 1993. p. 701–703.

36. Dadi R, Azouani R, Traore M, et al. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Materials Science and Engineering: C 2019; 104: 109968. doi: 10.1016/j.msec.2019.109968.

37. Gao N, Chen Y, Jiang J. Ag@Fe2O3-GO nanocomposites prepared by a phase transfer method with long-term antibacterial property. ACS Applied Materials & Interfaces 2013; 5(21): 11307–11314. doi: 10.1021/am403538j.

38. GB5749-2006. Standards for drinking water quality (Chinese). Ministry of Health of the People’s Republic of China; 2006.




DOI: https://doi.org/10.24294/can.v6i1.2538

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Xiujing Huang, Yingbo Chen

License URL: https://creativecommons.org/licenses/by-nc/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.