Enhancement of anticancer effect of azurin using polymeric nanoparticles
Vol 6, Issue 1, 2023
VIEWS - 3371 (Abstract)
Abstract
According to the World Health Organization (WHO), breast cancer is among the most common cancers worldwide. Most of the anticancer agents have been showing a variety of side effects. Recently, bacterial proteins have been investigated as promising anticancer agents. Azurin is a bacterial cupredoxin protein secreted from Pseudomonas aeruginosa and has been reported as a potent multi-targeting anticancer agent, which makes it an appropriate candidate for drug delivery. Azurin may be delivered to cancer cells using different carriers like polymeric micro and nanoparticles. In the present study, azurin was extracted from the bacterial host and loaded into chitosan particles. Then its effect on MCF-7 cell line was investigated. Chitosan-azurin particles were made using the ion gelation method. Results showed that chitosan-azurin particles are about 200 nm, and the loading of the protein in particles did not affect its integrity. The MTT assay showed a significant reduction in cell viability in azurin and chitosan-azurin-treated cells. The toxicity level after 5 days was 63.78% and 82.53% for free azurin and chitosan-azurin-treated cells, respectively. It seems using an appropriate carrier system for anticancer proteins like azurin is a promising tool for developing low side effect anticancer agents.
Keywords
Full Text:
PDFReferences
1. Bernardes N, Chakrabarty AM, Fialho AM. Engineering of bacterial strains and their products for cancer therapy. Applied Microbiology and Biotechnology 2013; 97(12): 5189–5199. doi: 10.1007/s00253-013-4926-6.
2. Ramachandran S, Singh M, Mandal M. Purification of azurin from Pseudomonas aeuroginosa. In: de Azevedo Calderon L (editor). Chromatography: The most versatile method of chemical analysis. London: IntechOpen; 2012;
3. Keyhanian K, Mansoori GA, Rahimpour M. Prospects for cancer nanotechnology treatment by azurin. Dynamic Biochemistry, Process Biotechnology and Molecular Biology 2010; 4(1): 48–66.
4. Sereena MC, Sebastian D. Molecular detection of azurin: A powerful anticancer protein from native Pseudomonas isolates. Journal of Advances in Medical and Pharmaceutical Sciences 2016; 5(1): 1–7. doi: 10.9734/JAMPS/2016/20557.
5. Punj V, Bhattacharyya S, Saint-Dic D, et al. Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene 2004; 23(13): 2367–2378. doi: 10.1038/sj.onc.1207376.
6. Yamada T, Goto M, Punj V, et al. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proceedings of the National Academy of Sciences 2002; 99(22): 14098–14103. doi: 10.1073/pnas.222539699.
7. Yang DS, Miao XD, Ye ZM, et al. Bacterial redox protein azurin induce apoptosis in human osteosarcoma U2OS cells. Pharmacological Research 2005; 52(5): 413–421. doi: 10.1016/j.phrs.2005.06.002.
8. Kwan JM, Fialho AM, Kundu M, et al. Bacterial proteins as potential drugs in the treatment of leukemia. Leukemia Research 2009; 33(10): 1392–1399. doi: 10.1016/j.leukres.2009.01.024.
9. Hong CS, Yamada T, Fialho AM, et al. Disrupting the entry barrier and attacking brain tumors: The role of the Neisseria lipobox-containing H.8 epitope and the Laz protein. Cell Cycle 2006; 5(15): 1633–1641. doi: 10.4161/cc.5.15.2991.
10. Mohamed MS, Fattah SA, Mostafa HM. Azurin as antitumor protein and its effect on the cancer cell lines. Current Research Journal of Biological Sciences 2010; 2(6): 396–401.
11. Choi JH, Lee MH, Cho YJ, et al. The bacterial protein azurin enhances sensitivity of oral squamous carcinoma cells to anticancer drugs. Yonsei Medical Journal 2011; 52(5): 773–778. doi: 10.3349/ymj.2011.52.5.773.
12. Warso MA, Richards JM, Mehta D, et al. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. British Journal of Cancer 2013; 108(5): 1061–1070. doi: 10.1038/bjc.2013.74.
13. Bernardes N, Ribeiro AS, Abreu S, et al. The bacterial protein azurin impairs invasion and FAK/Src signaling in P-cadherin-overexpressing breast cancer cell models. PloS One 2013; 8(7): e69023. doi: 10.1371/journal.pone.0069023.
14. Chaudhari A, Mahfouz M, Fialho AM, et al. Cupredoxin-cancer interrelationship: Azurin binding with EphB2, interference in EphB2 tyrosine phosphorylation, and inhibition of cancer growth. Biochemistry 2007; 46(7): 1799–1810. doi: 10.1021/bi061661x.
15. Krajewska B. Application of chitin-and chitosan-based materials for enzyme immobilizations: A review. Enzyme and Microbial Technology 2004; 35(2–3): 126–139. doi: 10.1016/j.enzmictec.2003.12.013.
16. Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers. International Journal of Nanomedicine 2011; 6: 765. doi: 10.2147/IJN.S17296.
17. Kadam RS, Bourne DW, Kompella UB. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: Contribution of reduced clearance. Drug Metabolism and Disposition 2012; 40(7): 1380–1388. doi: 10.1124/dmd.112.044925.
18. Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research 2008; 14(5): 1310–1316. doi: 10.1158/1078-0432.CCR-07-1441.
19. Ohya Y, Shiratani M, Kobayashi H, Ouchi T. Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Journal of Macromolecular Science, Part A 1994; 31(5): 629–642. doi: 10.1080/10601329409349743.
20. Janes KA, Fresneau MP, Marazuela A, et al. Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release 2001; 73(2–3): 255–267. doi: 10.1016/S0168-3659(01)00294-2.
21. Nguyen KT, Le DV, Do DH, Le QH. Development of chitosan graft pluronic®F127 copolymer nanoparticles containing DNA aptamer for paclitaxel delivery to treat breast cancer cells. Advances in Natural Sciences: Nanoscience and Nanotechnology 2016; 7(2): 025018. doi: 10.1088/2043-6262/7/2/025018.
22. Rudzinski WE, Palacios A, Ahmed A, et al. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydrate Polymers 2016; 147: 323–332. doi: 10.1016/j.carbpol.2016.04.041.
23. Soleimani N, Mohabati-Mobarez A, Atyabi F, et al. Preparation of chitosan nanoparticles carrying recombinant Helicobacter pylori neutrophil-activating protein. Journal of Mazandaran University of Medical Sciences 2014; 23(2): 134–144.
24. Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 2016; 6(1): 153–160. doi: 10.1016/j.nano.2009.05.009.
25. Grenha A. Chitosan nanoparticles: A survey of preparation methods. Journal of Drug Targeting 2012; 20(4): 291–300. doi: 10.3109/1061186X.2011.654121.
26. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of Controlled Release 2004; 100(1): 5–28. doi: 10.1016/j.jconrel.2004.08.010.
27. Xu JH, Li SW, Tostado C, et al. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device. Biomedical Microdevices 2009; 11(1): 243–249. doi: 10.1007/s10544-008-9230-3.
28. Estevinho BN, Rocha F, Santos L. Microencapsulation with chitosan by spray drying for industry applications—A review. Trends in Food Science & Technology 2013; 31(2): 138–155. doi: 10.1016/j.tifs.2013.04.001.
29. Parr SR, Barber D, Greenwood C. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa. Biochemical Journal 1976; 157(2): 423–430. doi: 10.1042/bj1570423.
30. Ramachandran S, Sarkar S, Mazumadar A, Mandal M. Azurin synthesis from Pseudomonas aeruginosa MTCC 2453, properties, induction of reactive oxygen species, and p53 stimulated apoptosis in breast carcinoma cells. Journal of Cancer Science and Therapy 2011; 3(5): 104–111. doi: 10.4172/1948-5956.1000069.
31. Osman YA, El-Deep DR, Younis SA. Azurin: A powerful anticancer from “A” local Pseudomonas aeruginosa isolate. The Journal of American Science 2013; 9(12): 755–764.
32. Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: Theoretical and experimental studies. Analytical Biochemistry 1996; 236(2): 302–308. doi: 10.1006/abio.1996.0171.
33. Calvo P, Remuñán-López C, Vila‐Jato JL, Alonso MJ. Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science 1997; 63(1): 125–132. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.
34. Qi L, Xu Z. Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004; 251(1–3): 183–190. doi: 10.1016/j.colsurfa.2004.10.010.
35. Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science 2011; 36(7): 887–913. doi: 10.1016/j.progpolymsci.2011.01.001.
36. Taylor BN, Mehta RR, Yamada T, et al. Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Research 2009; 69(2): 537–546. doi: 10.1158/0008-5472.CAN-08-2932.
37. Mehta RR, Hawthorne M, Peng X, et al. A 28-amino-acid peptide fragment of the cupredoxin azurin prevents carcinogen-induced mouse mammary lesions. Cancer Prevention Research 2010; 3(10): 1351–1360. doi: 10.1158/1940-6207.CAPR-10-0024.
38. Bernardes N, Ribeiro AS, Abreu S, et al. High-throughput molecular profiling of a P-cadherin overexpressing breast cancer model reveals new targets for the anti-cancer bacterial protein azurin. The International Journal of Biochemistry & Cell Biology 2014; 50: 1–9. doi: 10.1016/j.biocel.2014.01.023.
39. Bernardes N, Abreu S, Carvalho FA, et al. Modulation of membrane properties of lung cancer cells by azurin enhances the sensitivity to EGFR-targeted therapy and decreased β1 integrin-mediated adhesion. Cell Cycle 2016; 15(11): 1415–1424. doi: 10.1080/15384101.2016.1172147.
40. Sutherland IW. The production of azurin and similar proteins. Archiv Für Mikrobiologie 1966; 54(4): 350–357. doi: 10.1007/BF00406717.
41. Yang X, Zhang X, Liu Z, et al. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. The Journal of Physical Chemistry C 2008; 112(45): 17554–17558. doi: 10.1021/jp806751k.
42. Abd Elgadir M, Uddin MS, Ferdosh S, et al. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Journal of Food and Drug Analysis 2015; 23(4): 619–629. doi: 10.1016/j.jfda.2014.10.008.
43. Massia SP, Stark J, Letbetter DS. Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials 2000; 21(22): 2253–2261. doi: 10.1016/S0142-9612(00)00151-4.
44. Salata OV. Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology 2004; 2(1): 3. doi: 10.1186/1477-3155-2-3.
45. Ghasemi-Dehkordi P, Doosti A, Jami MS. The concurrent effects of azurin and Mammaglobin-A genes in inhibition of breast cancer progression and immune system stimulation in cancerous BALB/c mice. 3 Biotech 2019; 9(7): 271. doi: 10.1007/s13205-019-1804-7.
46. Fialho AM, Chakrabarty AM. Recent patents on bacterial proteins as potential anticancer agents. Recent Patents on Anti-Cancer Drug Discovery 2007; 2(3): 224–234. doi: 10.2174/157489207782497163.
DOI: https://doi.org/10.24294/can.v6i1.2306
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Sara Bahramifar, Hadi Baharifar, Parvaneh Maghami
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.