Construction of semiclassical interatomic B–B pair potential to characterize all-boron nanomaterials

Levan Chkhartishvili

Article ID: 1852
Vol 6, Issue 1, 2023

VIEWS - 709 (Abstract) 107 (PDF)

Abstract


The semiclassical boron–boron interatomic pair potential is constructed in an integral form allowing its converting into the analytical one. It is an ab initio B–B potential free of any semiempirical adjusting parameters, which would serve as an effective tool for the theoretical characterization of all-boron and boron-rich nanomaterials.


Keywords


Interatomic Potential; Semiclassical Approach; Ground State Parameters; Nanomaterial; Boron

Full Text:

PDF


References


1. Becker R, Chkhartishvili L, Martin P. Boron, the new graphene? Vacuum Technology & Coating 2015; 16(4): 38–44.

2. Chkhartishvili L. All-boron nanostructures. In: Kharisov BI, Kharissova OV, Ortiz–Mendez U (editors). CRC concise encyclopedia of nanotechnology. Boca Raton: CRC Press; 2016. p. 53–69.

3. Li D, Gao J, Cheng P, et al. 2D boron sheets: Structure, growth, and electronic and thermal transport properties. Advanced Functional Materials 2019; 1904349: 1–32. doi: 10.1002/adfm.201904349.

4. Tian Y, Guo Z, Zhang T, et al. Inorganic boron-based nanostructures: Synthesis, optoelectronic properties, and prospective applications. Nanomaterials 2019; 9(538): 1–22. doi: 10.3390/nano9040538.

5. Boustani I. Molecular modeling and synthesis of nanomaterials. Applications in carbon- and boron-based nanotechnology. Cham: Springer Nature; 2020.

6. Matsuda I, Wu K (editors). 2D boron: Boraphene, borophene, boronene. Cham: Springer Nature; 2021.

7. Alexandrova AN, Boldyrev AI, Zhai HJ, et al. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coordination Chemistry Reviews 2006; 250(21–22): 2811–2866. doi: 10.1016/j.ccr.2006.03.032.

8. Chkhartishvili L. Quasi-planar elemental clusters in pair interactions approximation. Open Physics 2016; 14(1): 617–620. doi: 10.1515/phys-2016-0070.

9. Chkhartishvili L. Boron quasi-planar clusters. A mini-review on diatomic approach. In: 2017 IEEE 7th International Conference on Nanomaterials: Applications & Properties; 2017 Sep 10–15; Odessa. New York: IEEE; 2017. p. 1–5.

10. Chkhartishvili L. Relative stability of planar clusters B11, B12, and B13 in neutral- and charged-states. Characterization and Application of Nanomaterials 2020; 3(2): 73–80. doi: 10.24294/can.v3i2.761.

11. Chkhartishvili L. Relative stability of boron planar clusters in diatomic molecular model. Molecules 2022; 27(1469): 1–20. doi: 10.3390/molecules27051469.

12. Levitin V. Interatomic bonding in solids. Fundamentals, simulation, and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2014.

13. Gennes PG, Brochard–Wyart F, Quere D. Capillarity and wetting phenomena. Drops, bubbles, pearls, waves. New York: Springer; 2004.

14. Marques JMC, Prudente FV, Pirani F. Intermolecular forces: From atoms and molecules to nanostructures. Molecules 2022; 27(3072): 1–3. doi: 10.3390/molecules27103072.

15. Zhigilei LV. Course MSE 4270/6270: Introduction to atomistic simulations. Charlottesville: University Virginia; 2013.

16. Interatomic Potentials Repository. NIST; 2023.

17. Magomedov MN. Izucheniye mezhatomnogo vzaimodejstviya, obrazovaniya vakansij i samodiffuzii v kristallakh (Russian) [Study of interatomic interaction, formation of vacancies and self-diffusion in crystals]. Moscow: Physical-Mathematical Literature Press; 2010.

18. Muser MH, Sukhomlinov SV, Pastewka L. Interatomic potentials: Achievements and challenges. Advances in Physics X 2023; 8(1): 2093129. doi: 10.1080/23746149.2022.2093129.

19. Magomedov MN. The energy of interatomic interaction for crystals of elements of the carbon subgroup. High Temperature 2005; 43(2): 192–202. doi: 10.1007/s10740-005-0060-1.

20. Magomedov MN. On the brittleness of elementary semiconductors. Physics of the Solid State 2023; 65(2): 205–210. doi: 10.21883/PSS.2023.02.55401.521.

21. Magomedov MN. A method for the parameterization of the pairwise interatomic potential. Physics of the Solid State 2020; 62(7): 1126–1131. doi: 10.1134/S1063783420070136.

22. Magomedov MN. Study of the fcc–bcc phase transition in an Au–Fe alloy. Physics of the Solid State 2022; 64(13): 2093–2101. doi: 10.21883/PSS.2022.13.52307.145.

23. Magomedov MN. Changing the parameters of vacancy formation and self-diffusion in various polymorphic modifications of iron. Technical Physics 2023; 68(2): 209–217. doi: 10.21883/TP.2023.02.55474.190-22.

24. Bjorkas C, Henriksson KOE, Probst M, et al. A Be–W interatomic potential. Journal of Physics: Condensed Matter 2010; 22(35): 352206. doi: 10.1088/0953-8984/22/35/352206.

25. Erokhin KM, Kalashnikov NP. Relationships of macroscopic characteristics of a solid with the binding energy of an ion in a metal lattice. Physics of the Solid State 2021; 63(7): 973–977. doi: 10.1134/S1063783421070064.

26. Poluektov YM. Dvukhatomnaya model’ kvantovogo kristalla (Russian) [The biatomic model of a quantum crystal]. Low Temperatures Physics 2008; 34(4–5): 459–469.

27. Sdobnyakov NY, Sokolov DN, Samsonov VM, et al. Gupta multiparticle potential study of the hysteresis of the melting and solidification of gold nanoclusters. Russian Metallurgy 2012; 2012(3): 209–214. doi: 10.1134/S0036029512030111.

28. Thomas SP, Dikundwar AG, Sarkar S, et al. The relevance of experimental charge density analysis in unraveling noncovalent interactions in molecular crystals. Molecules 2022; 27(12): 3690. doi: 10.3390/molecules27123690.

29. Rekhviashvili SSh, Bukhurova MM, Sokurov AA. Quantum crystal equation of state. Technical Physics Letters 2023; 49(2): 43–45. doi: 10.21883/TPL.2023.02.55369.19368.

30. Wu JJ. The interactions between spheres and between a sphere and a half-space, based on the Lennard–Jones potential. Journal of Adhesion Science and Technology 2012; 26(1–3): 251–269. doi: 10.1163/016942411X576130.

31. Opdam J, Schelling MPM, Tuinier R. Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions. The Journal of Chemical Physics 2021; 154(7): 074902. doi: 10.1063/5.0037963.

32. Magomedov MN. Interfullerene interaction and properties of fullerites. High Temperature 2005; 43(3): 379–390. doi: 10.1007/s10740-005-0076-6.

33. Nikonova RM, Lad’yanov VI, Rekhviashvili SSh, et al. Thermal stability of C60 and C70 fullerites. High Temperature 2021; 59(2–6): 179–183. doi: 10.1134/S0018151X21020103.

34. Bukhurova MM, Rekhviashvili SSh. Primenenie mezhatomnykh potentsialov vzaimodejstvia dlya modelirovaniya nanosistem (Russian) [Application of interatomic interaction potentials for the simulation of nanosystems]. Bulletin of the Kamchatka Regional Association Educational and Scientific Center (Physical and Mathematical Sciences) 2020; 33(4): 166–187. doi: 10.26117/2079-6641-2020-33-4-166-187.

35. Alosious S, Kannam SK, Sathian SP, et al. Effects of electrostatic interactions on Kapitza resistance in hexagonal boron nitride−water interfaces. Langmuir 2022; 38(29): 8783–8793. doi: 10.1021/acs.langmuir.2c00637.

36. Hassani N, Hassani MR, Neek-Amal M. Boron-based cluster modeling and simulations: Application point of view. In: Wongchoosuk C (editor). Characteristics and applications of boron. London: IntechOpen; 2022. p. 1–16.

37. Drukarev G. The zero-range potential model and its application in atomic and molecular physics. Advances Quantum Chemistry 1978; 11: 251–274. doi: 10.1016/S0065-3276(08)60239-7.

38. Demkov YN, Ostrovskii VN. Zero-range potentials and their applications in atomic physics. New York, London: Plenum Press; 1988.

39. Dolgonosov AM. Model’ elektronnogo gaza i teorya obobshchennykh zaryadov dlya opisaniya adsorbtsii (Russian) [Electron gas model and generalized charges theory for describing interatomic forces and adsorption]. Moscow: Librokom Book House; 2009.

40. Shukla PK, Eliasson B. Novel attractive force between ions in quantum plasmas. Physical Review Letters 2012; 108: 165007. doi: 10.1103/PhysRevLett.108.165007.

41. Shukla PK, Eliasson B. Erratum: Novel attractive force between ions in quantum plasmas. Physical Review Letters 2012; 108: 219902. doi: 10.1103/PhysRevLett.108.219902.

42. Shukla PK, Eliasson B. Erratum: Novel attractive force between ions in quantum plasmas. Physical Review Letters 2012; 109: 019901. doi: 10.1103/PhysRevLett.109.019901.

43. Furudate MA, Hagebaum–Reignier D, Kim JT, et al. Resonant ionic, covalent bond, and steric characteristics present in 1Σu+ states of Li2. Molecules 2022; 27(11): 3514. doi: 10.3390/molecules27113514.

44. Wang Y, Walker BD, Liu C, et al. An efficient approach to large-scale ab initio conformational energy profiles of small molecules. Molecules 2022; 27(23): 8567. doi: 10.3390/molecules27238567.

45. Kaya S, Putz MV. Atoms-in-molecules’ faces of chemical hardness by conceptual density functional theory. Molecules 2022; 27(24): 8825. doi: 10.3390/molecules27248825.

46. Liu Y, An C, Liu N, et al. Noncovalent interactions and crystal structure prediction of energetic materials. Molecules 2022; 27(12): 3755. doi: 10.3390/molecules27123755.

47. Silva MC, Lorke M, Aradi B, et al. Self-consistent potential correction for charged periodic systems. Physical Review Letters 2021; 126: 076401. doi: 10.1103/PhysRevLett.126.076401.

48. Rekhviashvili SSh, Bukhurova MM, Sokurov AA. Determination of pairwise interaction of atoms from the interaction of an adatom with graphene. Russian Journal of Inorganic Chemistry 2020; 65(9): 1373–1377. doi: 10.1134/S0036023620090132.

49. Dolgirev PE, Kruglov IA, Oganov AR. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials. AIP Advances 2016; 6(8): 085318. doi: 10.1063/1.4961886.

50. Smith JS, Nebgen B, Mathew N, et al. Automated discovery of a robust interatomic potential for aluminum. Nature Communications 2021; 12: 1257. doi: 10.1038/s41467-021-21376-0.

51. Mortazavi B, Podryabinkinc EV, Roched S, et al. Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures. Materials Horizons 2020; 9: 1–25. doi: 10.1039/D0MH00787K.

52. Kaya O, Colombo L, Antidormi A, et al. Revealing improved stability of amorphous boron-nitride upon carbon doping. Nanoscale Horizons 2023; 8(3): 1–7. doi: 10.1039/d2nh00520d.

53. Fedik N, Zubatyuk R, Kulichenko M, et al. Extending machine learning beyond interatomic potentials for predicting molecular properties. Nature Reviews Chemistry 2022; 6: 653–657. doi: 10.1038/s41570-022-00416-3.

54. Chkhartishvili L. On semi-classical approach to materials electronic structure. Journal of Material Science and Technology Research 2021; 8: 41–49. doi: 10.31875/2410-4701.2021.08.6.

55. Chkhartishvili L. How to calculate condensed matter electronic structure based on multi-electron atom semi-classical model. Condensed Matter 2021; 6(4): 46. doi: 10.3390/condmat6040046.

56. Maass B, Huther T, Konig K, et al. Nuclear charge radii of 10,11B. Physical Review Letters 2019; 122: 182501. doi: 10.1103/PhysRevLett.122.182501.

57. Dupuis M, Liu B. The ground electronic state of B2. The Journal of Chemical Physics 1978; 68(2): 2902–2910. doi: 10.1063/1.436088.

58. Bruna PJ, Wright JS. Strongly bound multiply excited states of B2+ and B2. The Journal of Chemical Physics 1989; 91(2): 1126–1136. doi: 10.1063/1.457185.

59. Bruna PJ, Wright JS. Theoretical study of the ionization potentials of boron dimer. The Journal of Physical Chemistry 1990; 94(5): 1774–1781. doi: 10.1021/j100368a014.

60. Langhoff SR, Bauschlicher CW. Theoretical study of the spectroscopy of B2. The Journal of Chemical Physics 1991; 95(8): 5882–5888. doi: 10.1063/1.461609.

61. Yang CL, Zhu ZH, Wang R, et al. Analytical potential energy functions of the neutral and cationic B2. Journal of Molecular Structure 2001; 548(1–3): 47–52. doi: 10.1016/S0166-1280(01)00372-4.

62. Widany J, Frauenheim T, Kohler T, et al. Density-functional-based construction of transferable nonorthogonal tight-binding potentials for B, N, BN, BH, and NH. Physical Review B 1996; 53(8): 4443–4452. doi: 10.1103/PhysRevB.53.4443.

63. Chkhartishvili L, Lezhava D, Tsagareishvili O, et al. Parametry osnovnogo sostoyanya diatomicheskikh molekul B2, BC, BN i BO (Russian) [Ground-state parameters of diatomic molecules B2, BC, BN and BO]. Proceedings of the Georgian Police Academy 1999; 1: 195–300.

64. Chkhartishvili L, Lezhava D, Tsagareishvili O. Quasi-classical determination of electronic energies and vibration frequencies in boron compounds. Journal of Solid State Chemistry 2000; 154(1): 148–152. doi: 10.1006/jssc.2000.8826.

65. Elliott RS. Efficient ‘universal’ shifted Lennard-Jones model for all KIM API supported species developed by Elliott and Akerson (2015) v003. OpenKIM; 2018. doi: 10.25950/962b4967.

66. Mierzwa G, Gordon AJ, Berski S. The nature of the triple B≡B, double B=B, single B–B, and one-electron B∙B boron-boron bonds from the topological analysis of Electron Localization Function (ELF) perspective. Journal of Molecular Structure 2020; 1221: 128530. doi: 10.1016/j.molstruc.2020.128530.

67. Huber KP, Herzberg H. Molecular spectra and molecular structure. IV. Constants of diatomic molecules. New York: Van Nostrand Reinhold Compay; 1979.

68. Tilley RJD. Understanding solids. The science of materials. New York: John Wiley & Sons; 2021.

69. Noei M, Ahmadaghaei N, Salari AA. Ethyl benzene detection by BN nanotube: DFT studies. Journal of Saudi Chemical Society 2017; 21(1): S12–S16. doi: 10.1016/j.jscs.2013.09.008.

70. Mohajeri S, Noei M, Salari AA, et al. Adsorption of phosphine on a BN nanosurface. Iranian Journal of Chemistry and Chemical Engineering 2018; 37(1): 39–45. doi: 10.30492/IJCCE.2018.26372.




DOI: https://doi.org/10.24294/can.v6i1.1852

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.