Comparative analysis of mechanical properties of geopolymers incorporating SiC nanowhiskers and TiO2 nanoparticles

Madeleing Taborda-Barraza, Nagilla Huerb de Azevedo, Philippe Jean Paul Gleize, Natalia Prieto-Jimenez

Article ID: 1688
Vol 5, Issue 2, 2022

VIEWS - 162 (Abstract) 103 (PDF)


A metakaolin-based geopolymer was fabricated with 5 ratios of two different nanomaterials. On the one hand, silicon carbide nanowhiskers and, on the other hand, titanium dioxide nanoparticles. Both were placed in water and received ultrasonic energy to be dispersed. The effects on mechanical properties and reaction kinetics were analyzed. Compared to the reference matrix, the results showed a tendency to increase the flexural strength. Probably due to the geometry of the SiC nanowhiskers and the pore refinement by the nano-TiO2 particles. The calorimetry curves showed that incorporating TiO2 nanoparticles resulted in a 92% reduction in total heat, while SiC nanowhiskers produced a 25% reduction in total heat.


Geopolymers; Nanomaterials; Mechanical Strength

Full Text:



1. Duxson P, Provis JL, Lukey GC, et al. The role of inorganic polymer technology in the development of green concrete? Cement and Concrete Research 2007; 37(12): 1590–1597.

2. Correia EAS. Geopolymeric matrix composites reinforced with vegetable fibers of abacaxi and sisal (in Spanish) [thesis]. João Pessoa: Universidade Federal da Paraí­ba; 2011.

3. Rodriguez E, de Gutierrez RM, Bernal S, et al. Effect of the SiO2/Al2O3 and Na2O/SiO2 modules on the properties of geopolymeric systems based on a metakaolin (in Spanish). Revista Facultad de Ingeniería 2009; (49): 30–41.

4. Ohno MV, Li C. A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Construction and Building Materials 2014; 57: 163–168.

5. Van Jaarsveld J, Van Deventer J, Lorenzen L. The potential use of geopolymeric materials to immobilise toxic metals: Part ⅰ: Theory and applications. Minerals Engineering 1997; 10(7): 659–669.

6. Zhang Y, Sun W, Chen Q, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials 2007; 143(1–2): 206–213.

7. Li Q, Sun Z, Tao D, et al. Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. Journal of Hazardous Materials 2013; 262: 325–331.

8. Launey ME, Ritchie RO. On the fracture toughness of advanced materials. Advanced Materials 2009; 21(20): 2103–2110.

9. Saheb N, Qadir N, Siddiqui M, et al. Characterization of nanoreinforcement dispersion in inorganic nanocomposites: A review. Materials 2014; 7(6): 4148–4181.

10. Hammell JA. The influence of matrix composition and reinforcement type on the properties of polysialate composites [PhD thesis]. New Brunswick: Rutgers The State University of New Jersey; 2000.

11. Rahman AS. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance [PhD thesis]. Colorado: Colorado State University; 2015.

12. Osório PDL. Design of an anti-turned saferoom in geopolymer concrete (in Portuguese) [PhD thesis]. Minho: Universidade do Minho; 2007.

13. Gómez S, Ramón BB, Guzman R. Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with e-glass fibers. Revista UIS Ingenierías 2018; 17(1): 43–50.

14. Sanes Lagares DA. Influence of polypropylene microfibers and microsilica on the strength of concrete at 4000 and 3000 PSI (in Spanish) [MSc thesis]. Cartagena: Universidad Tecnológica De Bolívar; 2017.

15. Assaedi H, Shaikh F, Low IM. Effect of nano-clay on mechanical and thermal properties of geopolymer. Journal of Asian Ceramic Societies 2016; 4(1): 19–28.

16. Abbasi SM, Ahmadi H, Khalaj G, et al. Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes. Ceramics International 2016; 42(14): 15171–15176.

17. Gao K, Lin K, Wang D, et al. Cheng, Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Construction and Building Materials 2013; 48: 441–447.

18. Saafi M, Andrew K, Tang PL, et al. Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites. Construction and Building Materials 2013; 49: 46–55.

19. Khater HM. Physicomechanical properties of nano-silica effect on geopolymer composites. Journal of Building Materials and Structures 2016; 3(1): 1–14.

20. Khater H, El Gawaad HA. Characterization of alkali activated geopolymer mortar doped with MWCNT. Construction and Building Materials 2016; 102: 329–337.

21. Sumesh M, Alengaram UJ, Jumaat MZ, et al. Incorporation of nano-materials in cement composite and geopolymer based paste and mortar: A review. Construction and Building Materials 2017; 148: 62–84.

22. ParveenS, Rana S, Fangueiro R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. Journal of Nanomaterials 2013; 2013: 80.

23. Mishra S, Mishra A, Krause R, et al. Growth of silicon carbide nanorods from the hybrid of lignin and polysiloxane using sol-gel process and polymer blend technique. Materials Letters 2009; 63(88): 2449–2451.

24. Rincon-Joya M, Barba-Ortega JJ, Paris E. Obtaining oxide samples at low cost. Revista UIS Ingenierías 2019; 18(3): 33–38.

25. Meng S, Jin G, Wang Y, et al. Tailoring and application of sic nanowires in composites. Materials Science and Engineering: A 2010; 527(21–22): 5761–5765.

26. Akpinar S, Kusoglu I, Ertugrul O, et al. Silicon carbide particle reinforced mullite composite foams. Ceramics International 2012; 38(8): 6163–6169.

27. Diamanti MV, Ormellese M, Pedeferri M. Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cement and Concrete Research 2008; 38(11): 1349–1353.

28. Cárdenas Ramírez C. Evaluation of the physical and photocatalytic properties of cement added with nanoparticles of titanium dioxide (in Spanish) [PhD thesis]. Sede Medellín: Universidad Nacional de Colombia; 2012.

29. Meng T, Yu Y, Qian X, et al. Effect of nano-TiO2 on the mechanical properties of cement mortar. Construction and Building Materials 2012; 29: 241–245.

30. Casagrande CA. Study of the incorporation of titania particles in photocatalytic mortars (in Portuguese) [MSc thesis]. Florianópolis: Universidade Federal de Santa Catarina; 2012.

31. Rocha T. The influence of nano-TiO2 on geopolymeric pastes (in Portuguese) [BSc thesis]. Florianópolis, Brazil: Universidade Federal de Santa Catarina; 2016.

32. Leite J. The influence of vermiculite on geopolymeric mortar with addition of nanotitania (in Portuguese) [BSc thesis]. Florianópolis: Universidade Federal de Santa Catarina; 2017.

33. Yang L, Jia Z, Zhang Y, et al. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cement and Concrete Composites 2015; 57: 1–7.

34. Duan P, Yan C, Luo W, et al. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Construction and Building Materials 2016; 106: 115–125.

35. Llano Guerrero EA. Synthesis and characterization of alkaline activated cements metakaolin/granulated blast furnace slag base with additions of TiO2 nanoparticles [PhD thesis]. San Nicolas: Universidad Autónoma de Nuevo León; 2017.

36. Azevedo NH, Gleize PJ. Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a portland cement paste. Construction and Building Materials 2018; 169: 388–395.

37. Taborda Barraza M. Mechanical performance of a geopolymer matrix composite based on metakaolin and silicon carbide nanorods (in Portuguese) [MSc thesis]. Florianópolis: Universidade Federal de Santa Catarina; 2016.

38. Coelho LL. Incorporation of lanthanum and graphene oxide to modulate photoactivity in TiO2 nanoparticles (in Portuguese) [MSc thesis]. Florianópolis: Universidade Federal de Santa Catarina; 2017.

39. Bigno I, Oliveira F, Silva F, et al. Reaction heat of geopolymer cements (in Spanish). Congresso Brasileiro de Cerâmica; 2005 Jun 6–9; São Pedro. 2005. p. 1–5.

40. Rahier H, Wastiels J, Biesemans M, et al. Reaction mechanism, kinetics and high temperature transformations of geopolymers. Journal of Materials Science 2007; 42(9): 2982–2996.

41. Ma B, Li H, Li X, et al. Influence of nano-TiO2 on physical and hydration characteristics of fly ash-cement systems. Construction and Building Materials 2016; 122: 242–253.

42. Lee BY, Kurtis KE. Influence of TiO2 nanoparticles on early C3S hydration. Journal of the American Ceramic Society 2010; 93(10): 3399–3405.

43. Zhang R, Cheng X, Hou P, et al. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construction and Building Materials 2015; 81: 35–41, 2015.

44. Chen J, Kou S, Poon C. Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites 2012; 34(5): 642–649.

45. Yuan J, He P, Jia D, et al. SiC fiber reinforced geopolymer composites, part 1: Short SiC fiber. Ceramics International 2016; 42(4): 5345–5352.

46. Du F, Xie S, Zhang F, et al. Microstructure and compressive properties of silicon carbide reinforced geopolymer. Composites Part B: Engineering 2016; 105: 93–100.

47. Kantel T, Slosarczyk A. Influence of silicon carbide and electrocorundum on the thermal resistance of cement binders with granulated blast-furnace slag. Procedia Engineering 2017; 172: 497–504.

48. Nazari A, Riahi S. The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete. Composites Part B: Engineering 2011; 42(2): 167–175.

49. Mueller R, Kammler HK, Wegner K, et al. OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 2003; 19(1): 160–165.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.