References
Gaurav C, Saurav B, Goutam R, et al. Nano-systems for advanced therapeutics and diagnosis of atherosclerosis. Current Pharmaceutical Design 2015; 21(30): 4498–4508. doi: 10.2174/1381612821666150917094215.
Quan X, Rang L, Yin X, et al. Synthesis of PEGylated hyaluronic acid for loading dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt) in nanoparticles for cancer treatment. Chinese Chemical Letters 2015; 26(6): 695–699. doi: 10.1016/j.cclet.2015.04.024.
Landesman-Milo D, Goldsmith M, Leviatan BS, et al. Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells. Cancer Letters 2013; 334(2): 221–227. doi: 10.1016/j.canlet.2012.08.024.
Chandrasekaran S, King MR. Microenvironment of tumor-draining lymph nodes: Opportunities for liposome-based targeted therapy. International Journal of Molecular Sciences 2014; 15(11): 20209–20239. doi: 10.3390/ijms151120209.
Fan Y, Chen C, Huang Y, et al. Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids and Surfaces B: Biointerfaces 2017; 151: 19–25. doi: 10.1016/j.colsurfb.2016.11.042.
Li Z, Ding J, Xiao C, et al. Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. Journal of Materials Chemistry 2012; 22(24): 12319–12328. doi: 10.1039/c2jm31040f.
Afsharzadeh M, Hashemi M, Mokhtarzadeh A, et al. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artificial Cells, Nanomedicine, and Biotechnology 2018; 46(6): 1095–1110. doi: 10.1080/21691401.2017.1376675.
Wang W, Ding J, Xiao C, et al. Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery. Biomacromolecules 2011; 12(7): 2466–2474. doi: 10.1021/bm200668n.
Ping S, Wei H, Lin K, et al. siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. International Journal of Nanomedicine 2017; 12: 3221–3234. doi: 10.2147/IJN.S129436.
Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials 2012; 33(29): 7138–7150. doi: 10.1016/j.biomaterials.2012.06.068.
Baeza A, Ruiz-Molina D, Vallet-Regi M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opinion on Drug Delivery 2017; 14(6): 783–796. doi: 10.1080/17425247.2016.1229298
Liang JJ, Zhou YY, Wu J, et al. Gold nanoparticle-based drug delivery platform for antineoplastic chemotherapy. Current Drug Metabolism 2014; 15(6): 620–631. doi: 10.2174/1389200215666140605131427.
Khafaji M, Zamani M, Golizadeh M, et al. Inorganic nanomaterials for chemo/photothermal therapy: A promising horizon on effective cancer treatment. Biophysical Reviews 2019; 11(3): 335–352. doi: 10.1007/s12551-019-00532-3
Perioli L, Pagano C, Ceccarini MR. Current highlights about the safety of inorganic nanomaterials in healthcare. Current Medicinal Chemistry 2019; 26(12): 2147–2165. doi: 10.2174/0929867325666180723121804.
Zhang Z, Runa A, Wu J, et al. Bioresponsive nanogated ensemble based on structure-switchable aptamer directed assembly and disassembly of gold nanoparticles from mesoporous silica supports. Chinese Chemical Letters 2019; 30(3): 267–270. doi: 10.1016/j.cclet.2018.10.019.
Holback H, Yeo Y. Intratumoral drug delivery with nanoparticulate carriers. Pharmaceutical Research 2011; 28(8): 1819–1830. doi: 10.1007/s11095-010-0360-y.
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Advanced Drug Delivery Reviews 2013; 65(1): 71–79. doi: 10.1016/j.addr.2012.10.002.
Flogel U, Ding Z, Hardung H, et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 2008; 118(2): 140–148. doi: 10.1161/CIRCULATIONAHA.107.737890.
Hemmati K, Ghaemy M. Synthesis of new thermo/pH sensitive drug delivery systems based on tragacanth gum polysaccharide. International Journal of Biological Macromolecules 2016; 87: 415–425. doi: 10.1016/j.ijbiomac.2016.03.005.
Korin N, Kanapathipillai M, Matthews BD, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012; 337(6095): 738–742. doi: 10.1126/science.1217815.
Tan J, Thomas A, Liu Y. Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 2011; 8: 1934–1946. doi: 10.1039/C2SM06391C.
Alam SR, Stirrat C, Richards J, et al. Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide. Journal of Cardiovascular Magnetic Resonance 2015; 17: 83. doi: 10.1186/s12968-015-0183-4.
Freund B, Shapiro B. Transport of particles by magnetic forces and cellular blood flow in a model microvessel. Physics of Fluids 2012; 24(5). doi: 10.1063/1.4718752.
Matoba T, Egashira K. Nanoparticle-mediated drug delivery system for cardiovascular disease. International Heart Journal 2014; 55: 281–286. doi: 10.1536/ihj.14-150.
Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001; 104(4): 503–516. doi: 10.1016/s0092-8674(01)00238-0.
Hood ED, Greineder CF, Shuvaeva T, et al. Vascular targeting of radiolabeled liposomes with bio-orthogonally conjugated ligands: Single chain fragments provide higher specificity than antibodies. Bioconjugate Chemistry 29(11): 3626–3637. doi: 10.1021/acs.bioconjchem.8b00564.
Paulis LE, Jacobs I, van den Akker NM, et al. Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent. Journal of Nanobiotechnology 2012; 10: 25. doi: 10.1186/1477-3155-10-25.
Ma S, Tian XY, Zhang Y, et al. E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Scientific Reports 2016; 6: 22910. doi: 10.1038/srep22910.
Flaht-Zabost A, Gula G, Ciszek B, et al. Cardiac mouse lymphatics: Developmental and anatomical update. Anatomical Record 2014; 297(6): 1115–1130. doi: 10.1002/ar.22912.
Dvir T, Bauer M, Schroeder A, et al. Nanoparticles targeting the infarcted heart. Nano Letters 2011; 11(10): 4411–4414.doi: 10.1021/nl2025882.
Lee GY, Kim JH, Choi KY, et al. Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials 2015; 53: 341–348. doi: 10.1016/j.biomaterials.2015.02.089.
Kamaly N, Fredman G, Fojas JJ, et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 2016; 10(5): 5280–5292. doi: 10.1021/acsnano.6b01114.
Anselmo AC, Modery-Pawlowski CL, Menegatti S, et al. Platelet-like nanoparticles: Mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 2014; 8(11): 11243–11253. doi: 10.1021/nn503732m.
Charoenphol P, Mocherla S, Bouis D, et al. Targeting therapeutics to the vascular wall in atherosclerosis—Carrier size matters. Atherosclerosis 2011; 217(2): 364–370. doi: 10.1016/j.atherosclerosis.2011.04.016.
Corot C, Robert P, Idee JM, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced Drug Delivery Reviews 2006; 58(14): 1471–1504. doi: 10.1016/j.addr.2006.09.013.
Yoo SP, Pineda F, Barrett JC, et al. Gadolinium-functionalized peptide amphiphile micelles for multimodal imaging of atherosclerotic lesions. ACS Omega 2016; 1(5): 996–1003. doi: 10.1021/acsomega.6b00210.
Winter PM, Caruthers SD, Zhang H, et al. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC: Cardiovascular Imaging 2008; 1(5): 624–634. doi: 10.1016/j.jcmg.2008.06.003.
Mottu F, Rüfenacht DA, Laurent A, et al. Iodine-containing cellulose mixed esters as radiopaque polymers for direct embolization of cerebral aneurysms and arteriovenous malformations. Biomaterials 2002; 23(1): 121–131. doi: 10.1016/s0142-9612(01)00087-4.
Alie N, Eldib M, Fayad ZA, et al. Inflammation, atherosclerosis, and coronary artery disease: PET/CT for the evaluation of atherosclerosis and inflammation. Clinical Medicine Insights: Cardiology 2015; 8(Suppl 3): 13–21. doi: 10.4137/CMC.S17063.
Chhour P, Naha PC, O’Neill SM, et al. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials 2016; 87: 93–103. doi: 10.1016/j.biomaterials.2016.02.009.
Wang Y, Chen J, Yang B, et al. In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles. Theranostics 2016; 6(2): 272–286. doi: 10.7150/thno.13350.
Marsh JN, Senpan A, Hu G, et al. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine 2007; 2(4): 533–543. doi: 10.2217/17435889.2.4.533.
Yang X, Hong H, Grailer JJ, et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 2011; 32(17): 4151–4160. doi: 10.1016/j.biomaterials.2011.02.006.
Chen J, Sun Y, Chen Q, et al. Multifunctional gold nanocomposites designed for targeted CT/MR/optical trimodal imaging of human non-small cell lung cancer cells. Nanoscale 2016; 8(28): 13568–13573. doi: 10.1039/c6nr03143a.
Bejarano J, Navarro-Marquez M, Morales-Zavala F, et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: Evolution toward prospective theranostic approaches. Theranostics 2018; 8(17): 4710–4732. doi: 10.7150/thno.26284.
Sharma M, Sharma R, Jain DK. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs. Scientifica 2016; 2016: 8525679. doi: 10.1155/2016/8525679.
Alam T, Khan S, Gaba B, et al. Nanocarriers as treatment modalities for hypertension. Drug Delivery 2017; 24(1): 358–369. doi: 10.1080/10717544.2016.12 55999.
Ghasemian E, Motaghian P, Vatanara A. D-optimal design for preparation and optimization of fast dissolving Bosentan nanosuspension. Advanced Pharmaceutical Bulletin 2016; 6(2): 211. doi: 10.15171/apb.2016.029.
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: A neglected therapeutic target. Journal of Clinical Investigation 2013; 123(1): 92–100. doi: 10.1172/JCI62874.
Barbieri LR, Lourenço-Filho DD, Tavares ER, et al. Influence of drugs carried in lipid nanoparticles in coronary disease of rabbit transplanted heart. Annals of Thoracic Surgery 2017; 104(2): 577–583. doi: 10.1016/j.athoracsur.2016.12.044.
Zhou X, Luo YC, Ji WJ, et al. Modulation of mononuclear phagocyte inflammatory response by liposome-encapsulated voltage gated sodium channel inhibitor ameliorates myocardial ischemia/reperfusion injury in rats. PLoS ONE 2013; 8(9): e0074390. doi: 10.1371/journal.pone.00 74390.
Wu T, Ding M, Shi C, et al. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chinese Chemical Letters 2020; 31(3): 617–625. doi: 10.1016/j.cclet.2019.07.033.
Braukmann F, Jordan D, Miska E. Artificial and natural RNA interactions between bacteria and C. elegans. RNA Biology 2017; 14(4): 415–420. doi: 10.1080/15476286.2017.1297912.
Katyayani T, Samaresh S, Sushil K, et al. siRNA delivery strategies: A comprehensive review of recent developments. Nanomaterials 2017; 7(4): 77. doi: 10.3390/nano7040077.
Cotten M, Wagner E, Zatloukal K, et al. High-efficiency receptor-mediated delivery of small and large (48 kilobase gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proceedings of the National Academy of Sciences of the United States of America 1992; 89(13): 6094–6098. doi: 10.1073/pnas.89.13.6094.
Zimmermann TS, Lee ACH, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006; 441(7089): 111–114. doi: 10.1038/nature04688.
Somasuntharam I, Boopathy AV, Khan RS, et al. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials 2013; 34(31): 7790–7798. doi: 10.1016/j.biomaterials.2013.06.051.
Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: A randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 2014; 383(9911): 60–68. doi: 10.1016/S0140-6736(13)61914-5.
Gatoo MA, Naseem S, Arfat MY, et al. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Research International 2014; 2014: 498420. doi: 10.1155/2014/498420.
Donnini D, Perrella G, Stel G, et al. A new model of human aortic endothelial cells in vitro. Biochimie 2000; 82(12): 1107–1114. doi: 10.1016/s0300-9084(00)01195-0.
Suwa T, Hogg JC, Quinlan KB, et al. Particulate air pollution induces progression of atherosclerosis. Journal of the American College of Cardiology 2002; 39(6): 935–942. doi: 10.1016/s0735-1097(02)01715-1.
Chen M, Von MA. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Experimental Cell Research 2005; 305(1): 51–62. doi: 10.1016/j.yexcr.2004.12.021.
Han W, Li H, Yu X, et al. In vivo toxicity evaluation of a nano-drug delivery system using a Caenorhabditis elegans model system. Chemical Research in Chinese Universities 2021; 38: 1018–1024.
Tedla N, Jose R, Vicky M, et al. Synthesis, Pharmacokinetics, and toxicity of nano-drug carriers. In: Nanocarriers: Drug delivery system. Singapore: Springer; 2021. p. 63–106.
Patnaik S, Gorain B, Padhi S, et al. Recent update of toxicity aspects of nanoparticulate systems for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 2021; 161: 100–119.