Mesoscale computational prediction of lightweight, thermally conductive polymer nanocomposites containing graphene-wrapped hollow particle fillers

Jian-Jun Wang, Zhong-Hui Shen, Wen-Ying Zhou, Yang Shen, Ce-Wen Nan, Qing Wang, Long-Qing Chen

Article ID: 1292
Vol 4, Issue 1, 2021

VIEWS - 739 (Abstract) 205 (PDF)

Abstract


Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.


Keywords


Thermal Conductivity; Polymer Nanocomposites; Materials Design; Graphene-Wrapped Hollow Nanoparticles

Full Text:

PDF


References


1. Gurrum SP, Suman SK, Joshi YK, et al. Thermal issues in next-generation integrated circuits. IEEE Transactions on Device and Materials Reliability 2004; 4 (4): 709–714.

2. Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters 2008; 92 (15): 151911.

3. Otiaba KC, Ekere NN, Bhatti R, et al. Thermal interface materials for automotive electronic control unit: trends, technology and R&D challenges. Microelectronics Reliability 2011; 51(12): 2031–2043.

4. Moore AL, Shi L. Emerging challenges and materials for thermal management of electronics. Ma-terials Today 2014; 17(4): 163–174.

5. Chen H, Ginzburg VV, Yang J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science 2016; 59: 41–85.

6. Tong XC. Advanced materials for thermal management of electronic packaging. New York: Springer Science & Business Media; 2011.

7. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in polymer science 2011; 36(7): 914–944.

8. T’Joen C, Park Y, Wang Q, et al. A review on polymer heat exchangers for HVAC&R applications. International Journal of Refrigeration 2009; 32(5): 763–779.

9. Gojny FH, Wichmann MH, Fiedler B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006; 47(6): 2036–2045.

10. Marconnet AM, Yamamoto N, Panzer MA, et al. Thermal conduction in aligned carbon nano-tube—Polymer nanocomposites with high packing density. ACS Nano 2011; 5(6): 4818–4825.

11. Rahmat M, Hubert P. Carbon nanotube—Polymer interactions in nanocomposites: A preview. Composites Science and Technology 2011; 72(1): 72–84.

12. Du Y, Shen SZ, Cai K, et al. Research progress on polymer–inorganic thermoelectric nanocomposite materials. Progress in Polymer Science 2012; 37(6): 820–841.

13. Liu Y, Kumar S. Polymer/carbon nanotube nano composite fibers—A review. ACS Applied Ma-terials & Interfaces 2014; 6(9): 6069–6087.

14. Das TK, Prusty S. Graphene-based polymer composites and their applications. Polymer-Plastics Technology and Engineering 2013; 52(4): 319–331.

15. Potts JR, Dreyer DR, Bielawski CW, et al. Graphene-based polymer nanocomposites. Polymer 2011; 52(1): 5–25.

16. Shahil KM, Balandin AA. Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters 2012: 12(2): 861–867.

17. Li B, Zhong WH. Review on polymer/graphite nanoplatelet nanocomposites. Journal of materials science 2011; 46(17): 5595–5614.

18. Wang M, Hu N, Zhou L, et al. Enhanced interfacial thermal transport across graphene–polymer interfaces by grafting polymer chains. Carbon 2015; 85: 414–421.

19. Zhou W, Qi S, Tu C, et al. Effect of the particle size of Al2O3 on the properties of filled heat‐conductive silicone rubber. Journal of Applied Polymer Science 2007; 104(2): 1312–1318.

20. Moreira D, Sphaier L, Reis J, et al. Experimental investigation of heat conduction in polyester–Al2O3 and polyester–CuO nanocomposites. Experimental Thermal and Fluid Science 2011; 35(7): 1458–1462.

21. Zhang S, Cao X, Ma Y, et al. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polymer Letters 2011; 5(7): 581–590.

22. Zhi C, Bando Y, Tang C, et al. Large‐scale fabrication of boron nitride nanosheets and their utili-zation in polymeric composites with improved thermal and mechanical properties. Advanced Ma-terials 2009; 21(28): 2889–2893.

23. Huang X, Zhi C, Jiang P, et al. Polyhedral oligosilsesquioxane‐modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Advanced Functional Materials 2013; 23(14): 1824–1831.

24. Song WL, Wang P, Cao L, et al. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angewandte Chemie International Edition 2012; 51(26): 6498–6501.

25. Li TL, Hsu SLC. Preparation and properties of thermally conductive photosensitive polyi-mide/boron nitride nanocomposites. Journal of Applied Polymer Science 2011; 121(2): 916–922.

26. Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015; 523(7562): 576.

27. Mamunya YP, Davydenko V, Pissis P, et al. Electrical and thermal conductivity of polymers filled with metal powders. European Polymer Journal 2002; 38(9): 1887–1897.

28. Chung D. Materials for thermal conduction. Applied Thermal Engineering 2001; 21(16): 1593–1605.

29. Wang S, Cheng Y, Wang R, et al. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Applied Materials & In-terfaces 2014; 6(9): 6481–6486.

30. Bjorneklett A, Halbo L, Kristiansen H. Thermal conductivity of epoxy adhesives filled with silver particles. International Journal of Adhesion and Adhesives 1992; 12(2): 99–104.

31. Pashayi K, Fard HR, Lai F, et al. High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. Journal of Applied Physics 2012; 111(10): 104310.

32. Burger N. Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science 2016; 61: 1–28.

33. King JA, Tucker KW, Vogt BD, et al. Electrically and thermally conductive nylon 6, 6. Polymer Composites 1999; 20(5): 643–654.

34. Fan L, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews 2011; 15(1): 24–46.

35. Wang JJ, Wang Y, Ihlefeld JF, et al. Tunable thermal conductivity via domain structure engineering in ferroelectric thin films: A phase-field simulation. Acta Materialia 2016; 111: 220–231.

36. Wang, J, Ma X, Li Q, et al. Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Materialia 2013; 61(20): 7591–7603.

37. Wang J, Song Y, Ma X, et al. Static magnetic solution in magnetic composites with arbitrary sus-ceptibility inhomogeneity and anisotropy. Journal of Applied Physics 2015; 117(4): 043907.

38. Parker W, Jenkins R, Butler C, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of Applied Physics 1961; 32(9): 1679–1684.

39. Lee W, Han I, Yu J, et al. Thermal characterization of thermally conductive underfill for a flip-chip package using novel temperature sensing technique. Thermochimica Acta 2007; 455(1-2): 148–155.

40. Zhou W, Qi S, An Q, et al. Thermal conductivity of boron nitride reinforced polyethylene com-posites. Materials Research Bulletin 2007; 42(10): 1863–1873.

41. Stankovich S, Dikin DA, Dommett GHA, et al. Graphene-based composite materials. Nature 2006; 442(7100): 282.

42. Kim SY, Noh YJ, Yu J. Thermal conductivity of graphene nanoplatelets filled composites fabricated by solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized fillers. Composites Part A: Applied Science and Manufac-turing 2015; 69: 219–225.

43. Tu W, Zhou Y, Liu Q, et al. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Advanced Functional Materials 2012; 22(6): 1215–1221.

44. Wang H, Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Letters 2011; 11(7): 2644–2647.

45. Wu P, Wang H, Tang Y, et al. Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: In situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities. ACS Applied Materials & Interfaces 2014; 6(5): 3546–3552.

46. Dasari A, Yu ZZ, Mai YW. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering: R: Reports 2009; 63(2): 31–80.

47. Li F, Hu K, Li J, et al. The friction and wear characteristics of nanometer ZnO filled polytetraflu-oroethylene. Wear 2001; 249(10–11): 877–882.

48. Ding H, Guo Y, Leung SN. Development of thermally conductive polymer matrix composites by foaming‐assisted networking of micron‐and submicron‐scale hexagonal boron nitride. Journal of Applied Polymer Science 2016; 133(4): 42910.

49. Woltornist SJ, Varghese D, Massucci D, et al. Controlled 3D assembly of graphene sheets to build conductive, chemically selective and shape‐responsive materials. Advanced Materials 2017; 29(18): 1604947.

50. Okamoto M, Nam PH, Maiti P, et al. Biaxial flow-induced alignment of silicate layers in polypro-pylene/clay nanocomposite foam. Nano Letters 2001; 1(9): 503–505.

51. Zhong H, Lukes JR. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Physical Review B 2006; 74(12): 125403.

52. Diao J, Srivastava D, Menon M. Molecular dynamics simulations of carbon nanotube/silicon in-terfacial thermal conductance. The Journal of Chemical Physics 2008; 128(16): 164708.

53. Stevens RJ, Zhigilei LV, Norris PM. Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations. International Journal of Heat and Mass Transfer 2007; 50(19–20): 3977–3989.




DOI: https://doi.org/10.24294/can.v4i1.1292

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.