Electrochemical properties of transition metal oxide-based nanocomposites for energy storage systems

Amna Khalid, Javed Iqbal, Sobia Jabeen, Muhammad Awais Qarni, Ming Xiao, Naeem Ahmad

Article ID: 11706
Vol 8, Issue 3, 2025

VIEWS - 63 (Abstract)

Abstract


The rapid growth of portable electronics and electric vehicles has intensified the global demand for high-performance energy storage devices with superior power density, energy density, and long cycle life. Among transition metal oxide-based electrode materials with potential for energy storage, we report the development of MnO2–V2O5 nanocomposite electrodes for supercapacitor applications. Pure MnO2 and V2O5 were successfully fabricated via a simple and economical sol–gel method, while (MnO2)x–(V2O5)1−x (x = 1, 0.75, 0.50, and 0) nanocomposites were fabricated through an ex situ method. Analytical techniques, including X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, were employed to investigate the structural, morphological, and optical properties of the electrodes. Furthermore, the electrochemical properties were systematically analysed using cyclic voltammetry, galvanostatic charge–discharge measurements, and electrochemical impedance spectroscopy. The (MnO2)0.75–(V2O5)0.25 nanocomposite demonstrated a remarkable specific capacitance of 666 F/g at a current density of 0.5 A/g in 1 M KOH electrolyte. Additionally, the electrode material exhibited an energy density of 23 Wh/kg and a power density of 450 W/kg, while maintaining a capacitance retention of 95% after 1,500 cycles. The incorporation of V2O5 boosted the conductivity and significantly optimised the number of lattice defects. This work substantially reinforces the importance of metal oxide-based nanocomposites for future energy storage devices.

Keywords


manganese dioxide; supercapacitor; vanadium pentoxide; electrochemical properties; nanocomposites

Full Text:

PDF


References

1. Strielkowski W, Civín L, Tarkhanova E, et al. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies. 2021; 14(24): 8240. doi: 10.3390/en14248240

2. Gielen D, Boshell F, Saygin D, et al. The role of renewable energy in the global energy transformation. Energy Strategy Reviews. 2019; 24: 38-50. doi: 10.1016/j.esr.2019.01.006

3. Kalyani NT, Dhoble SJ. Energy materials: Applications and propelling opportunities. Energy Materials. Published online 2021: 567-580. doi: 10.1016/b978-0-12-823710-6.00011-x

4. Ohsaki, T., et al., High performance thin lithium-ion battery using an aluminum-plastic laminated film bag, in Studies in Surface Science and Catalysis. 2001, Elsevier. p. 925-928. https://doi.org/10.1016/S0167-2991(01)82238-2 https://doi.org/10.1016/S0167-2991(01)82238-2

5. Shafiullah M, Refat AM, Haque ME, et al. Review of Recent Developments in Microgrid Energy Management Strategies. Sustainability. 2022; 14(22): 14794. doi: 10.3390/su142214794

6. Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology. Nano Energy. 2018; 52: 441-473. doi: 10.1016/j.nanoen.2018.08.013

7. Khedulkar AP, Dang VD, Thamilselvan A, et al. Sustainable high-energy supercapacitors: Metal oxide-agricultural waste biochar composites paving the way for a greener future. Journal of Energy Storage. 2024; 77: 109723. doi: 10.1016/j.est.2023.109723

8. Pathak M, Bhatt D, Bhatt RC, et al. High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication. The Chemical Record. 2023; 24(1). doi: 10.1002/tcr.202300236

9. Huang S, Zhu X, Sarkar S, et al. Challenges and opportunities for supercapacitors. APL Materials. 2019; 7(10). doi: 10.1063/1.5116146

10. Forouzandeh P, Kumaravel V, Pillai SC. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts. 2020; 10(9): 969. doi: 10.3390/catal10090969

11. Vadivel S, Hariganesh S, Paul B, et al. Bismuth Enriched Materials for Pseudo Capacitor Applications. Encyclopedia of Energy Storage. Published online 2022: 581-589. doi: 10.1016/b978-0-12-819723-3.00039-1

12. Zhang G, Xiao X, Li B, et al. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. Journal of Materials Chemistry A. 2017; 5(18): 8155-8186. doi: 10.1039/c7ta02454a

13. Tatrari G, Ahmed M, Shah FU. Synthesis, thermoelectric and energy storage performance of transition metal oxides composites. Coordination Chemistry Reviews. 2024; 498: 215470. doi: 10.1016/j.ccr.2023.215470

14. Dubal DP, Jayaramulu K, Sunil J, et al. Metal–Organic Framework (MOF) Derived Electrodes with Robust and Fast Lithium Storage for Li‐Ion Hybrid Capacitors. Advanced Functional Materials. 2019; 29(19). doi: 10.1002/adfm.201900532

15. Kebabsa L, Kim J, Lee D, et al. Highly porous cobalt oxide-decorated carbon nanofibers fabricated from starch as free-standing electrodes for supercapacitors. Applied Surface Science. 2020; 511: 145313. doi: 10.1016/j.apsusc.2020.145313

16. Wolf S, Roschger M, Genorio B, et al. Mixed Transition-Metal Oxides on Reduced Graphene Oxide as a Selective Catalyst for Alkaline Oxygen Reduction. ACS Omega. 2023; 8(12): 11536-11543. doi: 10.1021/acsomega.3c00615

17. Shaheen I, Hussain I, Zahra T, et al. Recent advancements in metal oxides for energy storage materials: Design, classification, and electrodes configuration of supercapacitor. Journal of Energy Storage. 2023; 72: 108719. doi: 10.1016/j.est.2023.108719

18. Goswami M, Kumar S, Siddiqui H, et al. Hybrid energy storage devices: Li-ion and Na-ion capacitors. Emerging Trends in Energy Storage Systems and Industrial Applications. Published online 2023: 223-258. doi: 10.1016/b978-0-323-90521-3.00016-8

19. Kumar A, Rathore HK, Sarkar D, et al. Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochemical Science Advances. 2021; 2(6). doi: 10.1002/elsa.202100187

20. Cao Y, He Y, Gang H, et al. Stability study of transition metal oxide electrode materials. Journal of Power Sources. 2023; 560: 232710. doi: 10.1016/j.jpowsour.2023.232710

21. Barbieri O, Hahn M, Foelske A, et al. Effect of Electronic Resistance and Water Content on the Performance of RuO[sub 2] for Supercapacitors. Journal of The Electrochemical Society. 2006; 153(11): A2049. doi: 10.1149/1.2338633

22. Revathi P, Krishnasamy K. A facile synthesis of RGO/HfO2 nanocomposite for high-performance supercapacitor. Materials Today: Proceedings. 2021; 47: 1-7. doi: 10.1016/j.matpr.2021.03.460

23. Nithya VD, Arul NS. Review on α-Fe2O3 based negative electrode for high performance supercapacitors. Journal of Power Sources. 2016; 327: 297-318. doi: 10.1016/j.jpowsour.2016.07.033

24. Jabeen S, Iqbal J, Samarin S, et al. Electrochemical characterization and structural analysis of (In2O3)/(Fe2O3) nanocomposites for high-performance supercapacitors. Ceramics International. 2024; 50(9): 16228-16240. doi: 10.1016/j.ceramint.2024.02.103

25. Majumdar D, Mandal M, Bhattacharya SK. V2O5 and its Carbon‐Based Nanocomposites for Supercapacitor Applications. ChemElectroChem. 2019; 6(6): 1623-1648. doi: 10.1002/celc.201801761

26. Yao S, Qu F, Wang G, et al. Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors. Journal of Alloys and Compounds. 2017; 724: 695-702. doi: 10.1016/j.jallcom.2017.07.123

27. Gopika. S, Shyju. S. Performance Evaluation of Symmetric Supercapacitors based on Pelletized MnO2 and MnO2 doped V2O5 Electrodes. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). Published online November 5, 2020: 281-288. doi: 10.1109/iceca49313.2020.9297616

28. Khawula TNY, Raju K, Franklyn PJ, et al. Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage. Journal of Materials Chemistry A. 2016; 4(17): 6411-6425. doi: 10.1039/c6ta00114a

29. P. MS, Vishal JK, Chandra Bose A. Graphene oxide-MnO2 nanocomposite for supercapacitor application. Razeghi M, Ghazinejad M, Bayram C, Yu JS, eds. Carbon Nanotubes, Graphene, and Emerging 2D Materials for Electronic and Photonic Devices IX. 2016; 9932: 99320I. doi: 10.1117/12.2237578

30. Patil PH, Jadhav SA. Manganese dioxide (MnO2) and biomass-derived carbon-based electroactive composite materials for supercapacitor applications. RSC Applied Interfaces. 2024; 1(4): 624-647. doi: 10.1039/d4lf00085d

31. Zhao W, Rubio SJB, Dang Y, et al. Green Electrochemical Energy Storage Devices Based on Sustainable Manganese Dioxides. ACS ES&T Engineering. 2021; 2(1): 20-42. doi: 10.1021/acsestengg.1c00317

32. Gao M. Synthesis of Manganese-Based Electrode Materials Prepared by a Novel Dynamic Floating Electrodeposition (DFE) Method for Energy Storage Devices. Published online 2017. doi: 10.7939/R3S46HJ6X

33. Wu D, Xie X, Zhang Y, et al. MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance. Frontiers in Materials. 2020; 7. doi: 10.3389/fmats.2020.00002

34. Tatrari G, Tewari C, Pathak M, et al. 3D-graphene hydrogel and tungsten trioxide-MnO2 composite for ultra-high-capacity asymmetric supercapacitors: A comparative study. Journal of Energy Storage. 2023; 68: 107830. doi: 10.1016/j.est.2023.107830

35. Shen H, Kong X, Zhang P, et al. In-situ hydrothermal synthesis of δ-MnO2/soybean pod carbon and its high performance application on supercapacitor. Journal of Alloys and Compounds. 2021; 853: 157357. doi: 10.1016/j.jallcom.2020.157357

36. Yan Y, Li B, Guo W, et al. Vanadium based materials as electrode materials for high performance supercapacitors. Journal of Power Sources. 2016; 329: 148-169. doi: 10.1016/j.jpowsour.2016.08.039

37. Alcántara R, Lavela P, Edström K, et al. Metal-Ion Intercalation Mechanisms in Vanadium Pentoxide and Its New Perspectives. Nanomaterials. 2023; 13(24): 3149. doi: 10.3390/nano13243149

38. Yang G, Li Q, Ma K, et al. The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. Journal of Materials Chemistry A. 2020; 8(16): 8084-8095. doi: 10.1039/d0ta00615g

39. Delbari SA, Ghadimi LS, Hadi R, et al. Transition metal oxide-based electrode materials for flexible supercapacitors: A review. Journal of Alloys and Compounds. 2021; 857: 158281. doi: 10.1016/j.jallcom.2020.158281

40. Temam AG, Alshoaibi A, Getaneh SA, et al. Recent progress on V2O5 based electroactive materials: Synthesis, properties, and supercapacitor application. Current Opinion in Electrochemistry. 2023; 38: 101239. doi: 10.1016/j.coelec.2023.101239

41. Ran F, Hu M, Deng S, et al. Designing transition metal-based porous architectures for supercapacitor electrodes: a review. RSC Advances. 2024; 14(16): 11482-11512. doi: 10.1039/d4ra01320d

42. Xu Y, Yu S, Johnson HM, et al. Recent progress in electrode materials for micro-supercapacitors. iScience. 2024; 27(2): 108786. doi: 10.1016/j.isci.2024.108786

43. Jia D, Zheng F, Niu Y, et al. Preparation of V2O5 nanobelt arrays/NiO nanosheet arrays composite as supercapacitor electrode material. Journal of Alloys and Compounds. 2023; 969: 172283. doi: 10.1016/j.jallcom.2023.172283

44. Jyothibasu J, Chen MZ, Tien YC, et al. V2O5/Carbon Nanotube/Polypyrrole Based Freestanding Negative Electrodes for High-Performance Supercapacitors. Catalysts. 2021; 11(8): 980. doi: 10.3390/catal11080980

45. Devaraj S, Munichandraiah N. Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties. The Journal of Physical Chemistry C. 2008; 112(11): 4406-4417. doi: 10.1021/jp7108785

46. Jia J, Yang W, Zhang P, et al. Facile synthesis of Fe-modified manganese oxide with high content of oxygen vacancies for efficient airborne ozone destruction. Applied Catalysis A: General. 2017; 546: 79-86. doi: 10.1016/j.apcata.2017.08.013

47. Filonenko VP, Sundberg M, Werner PE, et al. Structure of a high-pressure phase of vanadium pentoxide, β-V2O5. Acta Crystallographica Section B Structural Science. 2004; 60(4): 375-381. doi: 10.1107/s0108768104012881

48. Rosyara YR, Pathak I, Muthurasu A, et al. Anion-modulated bifunctional electrocatalytic activity of nickel telluride/cobalt telluride mesoporous nanosheets for high-efficiency and stable overall water splitting. Journal of Materials Chemistry A. Published online 2025. doi: 10.1039/d5ta03463a

49. Nabavi M, Sanchez C, Livage J. Structure and properties of amorphous V2O5. Philosophical Magazine B. 1991; 63(4): 941-953. doi: 10.1080/13642819108205549

50. Das AS, Dipankar Biswas, Roy M, et al. Effect of V2O5 concentration on the structural and optical properties and DC electrical conductivity of ternary semiconducting glassy nanocomposites. Journal of Physics and Chemistry of Solids. 2019; 124: 44-53. doi: 10.1016/j.jpcs.2018.08.026

51. Shireesha K, Chidurala SC. Impact of hybridization on specific capacitance in hybrid NiO/V2O5@graphene composites as advanced supercapacitor electrode materials. Applied Surface Science Advances. 2022; 12: 100329. doi: 10.1016/j.apsadv.2022.100329

52. Abdullah O, Tahir D, Saber D. Optical Properties of the Synthesized Cr2S3 Nanoparticles Embedded in Polyvinyl Alcohol. Aro, The Scientific Journal of Koya University. 2015; 3(1): 45-49. doi: 10.14500/aro.10067

53. Taranu BO, Novaconi SD, Ivanovici M, et al. α-MnO2 Nanowire Structure Obtained at Low Temperature with Aspects in Environmental Remediation and Sustainable Energy Applications. Applied Sciences. 2022; 12(13): 6821. doi: 10.3390/app12136821

54. Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews. 2016; 45(21): 5925-5950. doi: 10.1039/c5cs00580a

55. Sharma S, Chand P. Supercapacitor and electrochemical techniques: A brief review. Results in Chemistry. 2023; 5: 100885. doi: 10.1016/j.rechem.2023.100885

56. Decaux C, Matei Ghimbeu C, Dahbi M, et al. Influence of electrolyte ion–solvent interactions on the performances of supercapacitors porous carbon electrodes. Journal of Power Sources. 2014; 263: 130-140. doi: 10.1016/j.jpowsour.2014.04.024

57. Dong R, Ye Q, Kuang L, et al. Enhanced Supercapacitor Performance of Mn3O4 Nanocrystals by Doping Transition-Metal Ions. ACS Applied Materials & Interfaces. 2013; 5(19): 9508-9516. doi: 10.1021/am402257y

58. Dhillon S, Kant R. Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance. Journal of Chemical Sciences. 2017; 129(8): 1277-1292. doi: 10.1007/s12039-017-1335-x

59. Vinodhini SP, Xavier JR. Electrochemical evaluation and structural characterization of polythiophene surfaces modified with PbO/PbS for energy storage applications. Materials Chemistry and Physics. 2024; 318: 129233. doi: 10.1016/j.matchemphys.2024.129233



DOI: https://doi.org/10.24294/can11706

Refbacks

  • There are currently no refbacks.


Copyright (c) Author(s) 2025

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.