References
Betzig E, Chichester RJ. Single Molecules Observed by Near-Field Scanning Optical Microscopy. Science. 1993; 262(5138): 1422-1425. doi: 10.1126/science.262.5138.1422
Macklin JJ, Trautman JK, Harris TD, et al. Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface. Science. 1996; 272(5259): 255-258. doi: 10.1126/science.272.5259.255
Qiu Y, Kuang C, Liu X, et al. Single-Molecule Surface-Enhanced Raman Spectroscopy. Sensors. 2022; 22(13): 4889. doi: 10.3390/s22134889
He S, Chua J, Tan EKM, et al. Optimizing the SERS enhancement of a facile gold nanostar immobilized paper-based SERS substrate. RSC Advances. 2017; 7(27): 16264-16272. doi: 10.1039/c6ra28450g
Szekeres GP, Kneipp J. SERS Probing of Proteins in Gold Nanoparticle Agglomerates. Frontiers in Chemistry. 2019; 7. doi: 10.3389/fchem.2019.00030
Hanna K, Krzoska E, Shaaban A, et al. Raman spectroscopy: Current applications in breast cancer diagnosis, challenges and future prospects. British Journal of Cancer. 2022; 126: 1125-1139. doi: 10.1038/s41416-021-01659-5
Khosroshahi ME, Chabok R, Chung N, et al. Optimization of immersion direction and time of covalently self-assembled monolayer gold nanourchins on glass as SERS substrate. Journal of Nanoparticle Research. 2023; 25(5). doi: 10.1007/s11051-023-05741-2
Shera EB, Seitzinger NK, Davis LM, et al. Detection of single fluorescent Molecules. Chemistry Physics Letter. 1990; 174(6): 553-557. doi: 10.1016/0009-2614(90)85485-U
Eigen M, Rigler R. Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proceedings of the National Academy of Sciences. 1994; 91(13): 5740-5747. doi: 10.1073/pnas.91.13.5740
Krug JT, Wang GD, Emory SR, et al. Efficient Raman Enhancement and Intermittent Light Emission Observed in Single Gold Nanocrystals. Journal of the American Chemical Society. 1999; 121(39): 9208-9214. doi: 10.1021/ja992058n
Kneipp K, Kneipp H, Manoharan R, et al. Extremely Large Enhancement Factors in Surface-Enhanced Raman Scattering for Molecules on Colloidal Gold Clusters. Applied Spectroscopy. 1998; 52(12): 1493-1497. doi: 10.1366/0003702981943059
Ambrose WP, Goodwin PM, Martin JC, et al. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science. 1994; 265(5170): 364-367. doi: 10.1126/science.265.5170.364
Ha T, Enderle T, Ogletree DF, et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proceedings of the National Academy of Sciences. 1996; 93(13): 6264-6268. doi: 10.1073/pnas.93.13.6264
Blackie EJ, Le Ru EC, Etchegoin PG. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. Journal of the American Chemical Society. 2009; 131(40): 14466-14472. doi: 10.1021/ja905319w
Lin J, Huang Z, Lin X, et al. Rapid and label-free urine test based on surface-enhanced Raman spectroscopy for the non-invasive detection of colorectal cancer at different stages. Biomedical Optics Express. 2020; 11(12): 7109. doi: 10.1364/boe.406097
Khosroshahi ME, Patel Y, Umashanker V, et al. Fabrication of and characterization of directional antibody-conjugated gold nanourchin colloid and effect of laser polarization on SERS detection of breast cancer biomarker in serum. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024; 694: 134035. doi: 10.1016/j.colsurfa.2024.134035
Willets KA, Van Duyne RP. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry. 2007; 58(1): 267-297. doi: 10.1146/annurev.physchem.58.032806.104607
Petryayeva E, Krull UJ. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Analytica Chimica Acta. 2011; 706(1): 8-24. doi: 10.1016/j.aca.2011.08.020
Jain PK, Lee KS, El-Sayed IH, et al. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B. 2006; 110(14): 7238-7248. doi: 10.1021/jp057170o
Noguez C. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment. The Journal of Physical Chemistry C. 2007; 111(10): 3806-3819. doi: 10.1021/jp066539m
Hassannejad Z, Khosroshahi ME. Synthesis and evaluation of time dependent optical properties of plasmonic–magnetic nanoparticles. Optical Materials. 2013; 35(3): 644-651. doi: 10.1016/j.optmat.2012.10.019
Khlebtsov B, Zharov V, Melnikov A, et al. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology. 2006; 17(20): 5167-5179. doi: 10.1088/0957-4484/17/20/022
Huang X, Jain PK, El-Sayed IH, et al. Gold Nanoparticles: Interesting Optical Properties and Recent Applications in Cancer Diagnostics and Therapy. Nanomedicine. 2007; 2(5): 681-693. doi: 10.2217/17435889.2.5.681
Otto A, Mrozek I, Grabhorn H, et al. Surface-enhanced Raman scattering. Journal of Physics: Condensed Matter. 1992; 4(5): 1143-1152. doi: 10.1088/0953-8984/4/5/001
Rodríguez-Oliveros R, Sánchez-Gil JA. Gold nanostars as thermoplasmonic nanoparticles for optical heating. Optics Express. 2011; 20(1): 621. doi: 10.1364/oe.20.000621
Hao F, Nehl CL, Hafner JH, et al. Plasmon Resonances of a Gold Nanostar. Nano Letters. 2007; 7(3): 729-732. doi: 10.1021/nl062969c
Pallavicini P, Donà A, Casu A, et al. Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chemical Communications. 2013; 49(56): 6265. doi: 10.1039/c3cc42999g
Khosroshahi ME, Patel Y. Reflective FT‐NIR and SERS studies of HER‐II breast cancer biomarker using plasmonic‐active nanostructured thin film immobilized oriented antibody. Journal of Biophotonics. 2022; 16(3). doi: 10.1002/jbio.202200252
Taylor AD, Lu C, Geyer S, et al. Thin film based plasmon nanorulers. Applied Physics Letters. 2016; 109(1). doi: 10.1063/1.4955036
Hutter T, Huang FM, Elliott SR, et al. Near-Field Plasmonics of an Individual Dielectric Nanoparticle above a Metallic Substrate. The Journal of Physical Chemistry C. 2013; 117(15): 7784-7790. doi: 10.1021/jp400963f
Baumberg JJ, Aizpurua J, Mikkelsen MH, et al. Extreme nanophotonics from ultrathin metallic gaps. Nature Materials. 2019; 18: 668-678. doi: 10.1038/s41563-019-0290-y
de Barros A, Shimizu FM, de Oliveira CS, et al. Dynamic Behavior of Surface-Enhanced Raman Spectra for Rhodamine 6G Interacting with Gold Nanorods: Implication for Analyses under Wet versus Dry Conditions. ACS Applied Nano Materials. 2020; 3(8): 8138-8147. doi: 10.1021/acsanm.0c01530
Burtsev V, Miliutina E, Ulbrich P, et al. Immobilization of Gold Nanoparticles in Localized Surface Plasmon Polariton-Coupled Hot Spots via Photolytic Dimerization of Aromatic Amine Groups for SERS Detection in a Microfluidic Regime. ACS Applied Nano Materials. 2022; 5(2): 1836-1844. doi: 10.1021/acsanm.1c03413
Ma H, Zhang S, Yuan G, et al. Surface-enhanced Raman spectroscopy (SERS) activity of gold nanoparticles Prepared using an automated loop flow reactor. Applied Spectroscopy. 2023; 77(10): 1163-1172. doi: 10.1177/00037028231196907
Kau J, Chen X, Chin C, et al. Silver Nanocube-Decorated PVDF Membranes for SERS Substrates. ACS Applied Nano Materials. 2023; 6(11): 9148-9158. doi: 10.1021/acsanm.3c00202
Fu J, Zhang H, Xiang Z, et al. Biologically Inspired Superwetting Surface Enhanced Raman Scattering (SERS) Substrates. ACS Applied Nano Materials. 2024; 7(20): 23337-23367. doi: 10.1021/acsanm.4c04342
Tang J, Hao J, Li Z, et al. Towards understanding hybrid influencing mechanisms of substrate microstructure on SERS effect. Applied Surface Science. 2024; 660: 159974. doi: 10.1016/j.apsusc.2024.159974
Suzuki M, Niidome Y, Kuwahara Y, et al. Surface-Enhanced Nonresonance Raman Scattering from Size- and Morphology-Controlled Gold Nanoparticle Films. The Journal of Physical Chemistry B. 2004; 108(31): 11660-11665. doi: 10.1021/jp0490150
Atta S, Canning AJ, Vo-Dinh T. A simple low-cost flexible plasmonic patch based on spiky gold nanostars for ultra-sensitive SERS sensing. The Analyst. 2024; 149(7): 2084-2096. doi: 10.1039/d3an02246c
Pal A, Varma MM. Study of Surface-enhanced Raman scattering of Rhodamine 6G from repeated dewetted gold thin film. In: Proceedings of 2024 IEEE Applied Sensing Conference (APSCON); 22–24 January 2024; Goa, India.
Ujihara M, Dang N, Imae T. Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors. 2017; 17(11): 2563. doi: 10.3390/s17112563
Cheong Y, Kim YJ, Kang H, et al. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017; 183: 53-59. doi: 10.1016/j.saa.2017.04.044
Payne EK, Rosi NL, Xue C, et al. Sacrificial Biological Templates for the Formation of Nanostructured Metallic Microshells. Angewandte Chemie International Edition. 2005; 44(32): 5064-5067. doi: 10.1002/anie.200500988
Hrelescu C, Sau TK, Rogach AL, et al. Selective Excitation of Individual Plasmonic Hotspots at the Tips of Single Gold Nanostars. Nano Letters. 2011; 11(2): 402-407. doi: 10.1021/nl103007m
Indrasekara ASDS, Meyers S, Shubeita S, et al. Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale. 2014; 6(15): 8891-8899. doi: 10.1039/c4nr02513j
Su KH, Wei QH, Zhang X, et al. Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles. Nano Letters. 2003; 3(8): 1087-1090. doi: 10.1021/nl034197f
Li R, Li H, Pan S, et al. Surface-enhanced Raman scattering from rhodamine 6G on gold-coated self-organized silicon nanopyramidal array. Journal of Materials Research. 2013; 28(24): 3401-3407. doi: 10.1557/jmr.2013.352
Sil S, Kuhar N, Acharya S, et al. Is Chemically Synthesized Graphene ‘Really’ a Unique Substrate for SERS and Fluorescence Quenching? Scientific Reports. 2013; 3(1). doi: 10.1038/srep03336
Wahadoszamen Md, Rahaman A, Hoque NMdR, et al. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy. Journal of Spectroscopy. 2015; 2015: 1-8. doi: 10.1155/2015/895317
Zhang Y, Zheng, guo, et al. Biosynthesis of gold nanoparticles using chloroplasts. International Journal of Nanomedicine. 2011: 2899. doi: 10.2147/ijn.s24785
Huang D, Cui J, Chen X. A morpholinium surfactant crystallization induced formation of Au nanoparticle sheet-like assemblies with uniform SERS activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014; 456: 100-107. doi: 10.1016/j.colsurfa.2014.05.027
Zhong F, Wu Z, Guo J, et al. Porous Silicon Photonic Crystals Coated with Ag Nanoparticles as Efficient Substrates for Detecting Trace Explosives Using SERS. Nanomaterials. 2018; 8(11): 872. doi: 10.3390/nano8110872
Wu CY, Huang CC, Jhang JS, et al. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: Maneuverability and uniformity of Raman spectra. Optics Express. 2009; 17(24): 21522. doi: 10.1364/oe.17.021522
Basche T, Moerner WE, Orrite M, et al. Single-molecule optical detection, imaging and spectroscopy. Wiley-VCH; 1996.
Donhauser ZJ, Mantooth BA, Kelly KF, et al. Conductance Switching in Single Molecules Through Conformational Changes. Science. 2001; 292(5525): 2303-2307. doi: 10.1126/science.1060294
Xu H, Bjerneld EJ, Käll M, et al. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Physical Review Letters. 1999; 83(21): 4357-4360. doi: 10.1103/physrevlett.83.4357
Weiss A, Haran G. Time-Dependent Single-Molecule Raman Scattering as a Probe of Surface Dynamics. The Journal of Physical Chemistry B. 2001; 105(49): 12348-12354. doi: 10.1021/jp0126863
Galloway CM, Le Ru EC, Etchegoin PG. Single-molecule vibrational pumping in SERS. Physical Chemistry Chemical Physics. 2009; 11(34): 7372. doi: 10.1039/b904638k
Emory SR, Jensen RA, Wenda T, et al. Re-examining the origins of spectral blinking in single-molecule and single-nanoparticleSERS. Faraday Discuss. 2006; 132: 249-259. doi: 10.1039/b509223j
Miranda AM, Castilho-Almeida EW, Martins Ferreira EH, et al. Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds. Fuel. 2014; 115: 118-125. doi: 10.1016/j.fuel.2013.06.038
He XN, Gao Y, Mahjouri-Samani M, et al. Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology. 2012; 23(20): 205702. doi: 10.1088/0957-4484/23/20/205702
Jiang, Bosnick K, Maillard M, et al. Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals. The Journal of Physical Chemistry B. 2003; 107(37): 9964-9972. doi: 10.1021/jp034632u
Bizzarri AR, Cannistraro S. Lévy Statistics of Vibrational Mode Fluctuations of Single Molecules from Surface-Enhanced Raman Scattering. Physical Review Letters. 2005; 94(6). doi: 10.1103/physrevlett.94.068303
Ruan C, Wang W, Gu B. Single‐molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering. Journal of Raman Spectroscopy. 2007; 38(5): 568-573. doi: 10.1002/jrs.1691
Sotelo J, Ederth J, Niklasson G. Optical properties of polycrystalline metallic films. Physical Review B. 2003; 67(19). doi: 10.1103/physrevb.67.195106
Qian H, Xiao Y, Lepage D, et al. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films. Nanophotonics. 2015; 4(4): 413-418. doi: 10.1515/nanoph-2015-0022
Zhang Z, Yang P, Xu H, et al. Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers. Journal of Applied Physics. 2013; 113(3). doi: 10.1063/1.4776227
Fan X, Zheng W, Singh DJ. Light scattering and surface plasmons on small spherical particles. Light: Science & Applications. 2014; 3(6): e179-e179. doi: 10.1038/lsa.2014.60
Nie S, Emory SR. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997; 275(5303): 1102-1106. doi: 10.1126/science.275.5303.1102
Canovi M, Lucchetti J, Stravalaci M, et al. Applications of Surface Plasmon Resonance (SPR) for the Characterization of Nanoparticles Developed for Biomedical Purposes. Sensors. 2012; 12(12): 16420-16432. doi: 10.3390/s121216420
Pyrak E, Jaworska A, Kudelski A. SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments. Molecules. 2019; 24(21): 3921. doi: 10.3390/molecules24213921
Lévêque G, Martin OJF. Optical interactions in a plasmonic particle coupled to a metallic film. Optics Express. 2006; 14(21): 9971. doi: 10.1364/oe.14.009971
Mock JJ, Hill RT, Degiron A, et al. Distance-Dependent Plasmon Resonant Coupling between a Gold Nanoparticle and Gold Film. Nano Letters. 2008; 8(8): 2245-2252. doi: 10.1021/nl080872f
Le Ru EC, Etchegoin PG, Meyer M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. The Journal of Chemical Physics. 2006; 125(20). doi: 10.1063/1.2390694
Zhang K, Zeng T, Tan X, et al. A facile surface-enhanced Raman scattering (SERS) detection of rhodamine 6G and crystal violet using Au nanoparticle substrates. Applied Surface Science. 2015; 347: 569-573. doi: 10.1016/j.apsusc.2015.04.152
Sun S, Wu P. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets. Physical Chemistry Chemical Physics. 2011; 13(47): 21116. doi: 10.1039/c1cp22727k
Zhang XF, Liu SP, Shao XN. Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: The effect of the molecular structure revealed by a photophysical study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013; 113: 92-99. doi: 10.1016/j.saa.2013.04.066
Dieringer JA, Lettan RB, Scheidt KA, et al. A Frequency Domain Existence Proof of Single-Molecule Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society. 2007; 129(51): 16249-16256. doi: 10.1021/ja077243c
Zrimsek AB, Chiang N, Mattei M, et al. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chemical Reviews. 2016; 117(11): 7583-7613. doi: 10.1021/acs.chemrev.6b00552
Marshall ARL, Stokes J, Viscomi FN, et al. Determining molecular orientation via single molecule SERS in a plasmonic nano-gap. Nanoscale. 2017; 9(44): 17415-17421. doi: 10.1039/c7nr05107g
Rai VN, Srivastava AK. Correlation between optical and morphological properties of nanostructured gold thin film. JSM Nanotechnology & Nanomedicine. 2016; 4(1).
Qin L, Zou S, Xue C, et al. Designing, fabricating, and imaging Raman hot spots. Proceedings of the National Academy of Sciences. 2006; 103(36): 13300-13303. doi: 10.1073/pnas.0605889103
Ortega MA, Rodriguez L, Castillo J, et al. Thermo-optical properties of gold nanoparticles in colloidal systems. Journal of Optics A: Pure and Applied Optics. 2008; 10(10): 104024. doi: 10.1088/1464-4258/10/10/104024
Seol Y, Carpenter AE, Perkins TT. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Optics Letters. 2006; 31(16): 2429. doi: 10.1364/ol.31.002429
Phuoc T, Massoudi M, Wang P. Laser-Induced Motion of a Nanofluid in a Micro-Channel. Fluids. 2016; 1(4): 35. doi: 10.3390/fluids1040035
Zhao BS, Koo YM, Chung DS. Separations based on the mechanical forces of light. Analytica Chimica Acta. 2006; 556(1): 97-103. doi: 10.1016/j.aca.2005.06.065
Shakib S, Rogez B, Khadir S, et al. Microscale Thermophoresis in Liquids Induced by Plasmonic Heating and Characterized by Phase and Fluorescence Microscopies. The Journal of Physical Chemistry C. 2021; 125(39): 21533-21542. doi: 10.1021/acs.jpcc.1c06299
Hrelescu C, Sau TK, Rogach AL, et al. Single gold nanostars enhance Raman scattering. Applied Physics Letters. 2009; 94(15). doi: 10.1063/1.3119642
Giannini V, Sánchez-Gil JA. Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form. Journal of the Optical Society of America A. 2007; 24(9): 2822. doi: 10.1364/josaa.24.002822
Xu H. Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy. Applied Physics Letters. 2004; 85(24): 5980-5982. doi: 10.1063/1.1833570
Yu M, Huang Z, Liu Z, et al. Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates. Sensors and Actuators B: Chemical. 2018; 262: 845-851. doi: 10.1016/j.snb.2018.02.048
Lai CH, Wang GA, Ling TK, et al. Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial. Scientific Reports. 2017; 7(1). doi: 10.1038/s41598-017-05939-0
Heinzmann U, Holloway S, Kleyn AW, et al. Orientation in molecule—surface interactions. Journal of Physics: Condensed Matter. 1996; 8(19): 3245-3269. doi: 10.1088/0953-8984/8/19/002
Canfield BK, Kujala S, Kauranen M, et al. Remarkable polarization sensitivity of gold nanoparticle arrays. Applied Physics Letters. 2005; 86(18). doi: 10.1063/1.1924886
Kim GW, Ha JW. Polarization-Sensitive Single Dipoles Generated from Multiple Sharp Branches on the Surfaces of Single Gold Nanourchins. The Journal of Physical Chemistry C. 2017; 121(36): 19975-19982. doi: 10.1021/acs.jpcc.7b06823