Present scenario and futuristic applications of nanomaterial-based products in the industry—A review

C. J. Panchal, B. H. Patel

Article ID: 10834
Vol 8, Issue 2, 2025


Abstract


The article’s proposed engineering uses are based on theories presented in the reviewed research articles and on findings from online investigations into companies that claim to use nanoengineering in their wares. Several pre-existing online consumer inventories and nanotechnology news were examined as part of the internet inquiry. The data about the nanoparticles (NP), or nanostructure, used in commercially available products comes from the remarks made by the manufacturer. Nanoengineered coating agents and textile additives are examples of commercial items developed for industrial clients that fall under the aforementioned uses.


Keywords


automotive; chemical; construction; electronic; engineering; nanomaterial; textiles

Full Text:

PDF


References


1.

1.         Shah MA, Pirzada BM, Price G, et al. Applications of nanotechnology in smart textile industry: A critical review. Journal of Advanced Research. 2022; 38: 55–75. doi: 10.1016/j.jare.2022.01.008

2.

2.         Patel BH, Channiwala MZ. Metal Nanoparticles: Biosynthesis and Functional Application to Textiles. In: Bairagi S, Ahmed S, Ali SW (editors). Nanotechnology in Textile Finishing. Springer; 2024. pp. 49–77.

3.

3.         Presting H, König U. Future nanotechnology developments for automotive applications. Materials Science and Engineering: C. 2003; 23(6–8): 737–741. doi: 10.1016/j.msec.2003.09.120

4.

4.         Younes H, Mao M, Sohel Murshed SM, et al. Nanofluids: Key parameters to enhance thermal conductivity and its applications. Applied Thermal Engineering. 2022; 207: 118202. doi: 10.1016/j.applthermaleng.2022.118202

5.

5.         Okonkwo EC, Wole-Osho I, Almanassra IW, et al. An updated review of nanofluids in various heat transfer devices. Journal of Thermal Analysis and Calorimetry. 2021; 145: 2817–2872.

6.

6.         Ali N, Bahman AM, Aljuwayhel NF, et al. Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. Nanomaterials. 2021; 11(6): 1628. doi: 10.3390/nano11061628

7.

7.         de Souza Neto FN, Ferreira GR, Sequinel T, et al. Polymeric nanocomposites for automotive application. In: Ali N, Bilal M, Khan A, et al. (editors). Smart Polymer Nanocomposites. Elsevier; 2023. pp. 473–506.

8.

8.         Okamoto M. Polymer Nanocomposites. Eng. 2023; 4(1): 457–479. doi: 10.3390/eng4010028

9.

9.         Carroccio SC, Scarfato P, Bruno E, et al. Impact of nanoparticles on the environmental sustainability of polymer nanocomposites based on bioplastics or recycled plastics—A review of life-cycle assessment studies. Journal of Cleaner Production. 2022; 335: 130322. doi: 10.1016/j.jclepro.2021.130322

10.

10.      Gowrishankar S, Krishnasamy A. EmulsificationA promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine. Energy. 2023; 263. doi: 10.1016/j.energy.2022.125782

11.

11.      Gupta RM, Mohite A, Patel B. Potential application of graphene-based nanofluid for improving heat transfer characteristics: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2024; 46(8): 1–21. doi: 10.1007/s40430-024-05036-0

12.

12.      Chavan SS, Dubal SV. Nanotechnology Applications In Automobiles: Comprehensive Review Of Existing Data. International Journal of Modern Trends in Engineering and Science. 2020; 7(2): 18–22.

13.

13.      Emmanuel OA, Fayomi OSI, Agboola O, et al. Short review on nanocomposite coating advances in the industry. IOP Conference Series: Materials Science and Engineering. 2021; 1107(1): 012069. doi: 10.1088/1757-899x/1107/1/012069

14.

14.      Aktas OC, Puchert K, Vurucu EE, et al. A review on nanocomposite coatings in dentistry. Journal of Materials Science. 2024; 59(38): 17991–18008. doi: 10.1007/s10853-024-09915-8

15.

15.      Shaikh I. Environmental, social, and governance (ESG) practice and firm performance: An international evidence. Journal of Business Economics and Management. 2022; 23(1): 218–237. doi: 10.3846/jbem.2022.16202

16.

16.      Alsayegh MF, Abdul Rahman R, Homayoun S. Corporate Economic, Environmental, and Social Sustainability Performance Transformation through ESG Disclosure. Sustainability. 2020; 12(9): 3910. doi: 10.3390/su12093910

17.

17.      Kumar V, Verma P, de Freitas FA, et al. A critical review on biofuels generation from pulp-paper mill sludge with emphasis on pretreatment methods: Renewable energy for environmental sustainability. BMC Environmental Science. 2025; 2(1): 2. doi: 10.1186/s44329-024-00016-0

18.

18.      Sadaf S, Kouzehkanan SMT, Oh TS, et al. Sustainable electrocoagulation for lignin valorization: Green synthesis of magnetic mesoporous activated carbon from pulp and paper industry black liquor and its application as an adsorbent for methylene blue. Journal of Water Process Engineering. 2024; 68: 106392. doi: 10.1016/j.jwpe.2024.106392

19.

19.      Galdames A, Ruiz-Rubio L, Orueta M, et al. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation. International Journal of Environmental Research and Public Health. 2020; 17(16): 5817. doi: 10.3390/ijerph17165817

20.

20.      Li J, Zeng J, Ye Z, et al. Are Clean Technologies More Effective Than End-of-Pipe Technologies? Evidence from Chinese Manufacturing. International Journal of Environmental Research and Public Health. 2021; 18(8): 4012. doi: 10.3390/ijerph18084012

21.

21.      Yam K, Guo N, Jiang Z, et al. Graphene-Based Heterogeneous Catalysis: Role of Graphene. Catalysts. 2020; 10(1): 53. doi: 10.3390/catal10010053

22.

22.      Kang Y, Ren X, Li Y, et al. Ni-Coated Diamond-like Carbon-Modified TiO2 Nanotube Composite Electrode for Electrocatalytic Glucose Oxidation. Molecules. 2022; 27(18): 5815. doi: 10.3390/molecules27185815

23.

23.      Silva MNT, Rocha RG, Richter EM, et al. Nickel Oxy-Hydroxy/Multi-Wall Carbon Nanotubes Film Coupled with a 3D-Printed Device as a Nonenzymatic Glucose Sensor. Biosensors. 2023; 13(6): 646. doi: 10.3390/bios13060646

24.

24.      Sun Y, Ahmadi Y, Kim KH. Facile synthesis of activated carbon/titanium dioxide composite and its application for adsorptive/photocatalytic removal of gaseous toluene. Chemosphere. 2024; 367: 143638. doi: 10.1016/j.chemosphere.2024.143638

25.

25.      Dey S, Mehta NS. Synthesis and applications of titanium oxide catalysts for lower temperature CO oxidation. Current Research in Green and Sustainable Chemistry. 2020; 3: 100022. doi: 10.1016/j.crgsc.2020.100022

26.

26.      Ansari A, Siddiqui VU, Rehman WU, et al. Green Synthesis of TiO2 Nanoparticles Using Acorus calamus Leaf Extract and Evaluating Its Photocatalytic and In Vitro Antimicrobial Activity. Catalysts. 2022; 12(2): 181. doi: 10.3390/catal12020181

27.

27.      Rozans SJ, Moghaddam AS, Wu Y, et al. Quantifying and Controlling the Proteolytic Degradation of Cell Adhesion Peptides. ACS Biomaterials Science & Engineering. 2024; 10(8): 4916–4926. doi: 10.1021/acsbiomaterials.4c00736

28.

28.      Nanografi. Nanostructured Epoxy Adhesives. Available online: https://nanografi.com/blog/nanostructured-epoxy-adhesives/#:~:text=Improved%20Bonding%20 Strength%3A%20One%20of,leading%20to%20stronger%20adhesive%20bonds (accessed on 4 June 2024).

29.

29.      Baik JS, Kim SA, Jung DW, et al. Colloidal supraballs of mesoporous silica nanoparticles as bioresorbable adhesives for hydrogels. Chemistry of Materials. 2022; 34(2): 584–593. doi: 10.1021/acs.chemmater.1c03072

30.

30.      Kausar A. High performance epoxy/polyester-based nanocomposite coatings for multipurpose applications: A review. Journal of Plastic Film & Sheeting. 2020; 36(4): 391–408. doi: 10.1177/8756087920910481

31.

31.      Kenig S, Dodiuk H, Otorgust G, et al. Nanocomposite polymer adhesives: A critical review. Reviews of Adhesion and Adhesives. 2019; 7(2): 93–168. doi: 10.7569/raa.2019.097306

32.

32.      Wang L, Kelly PV, Ozveren N, et al. Multifunctional polymer composite coatings and adhesives by incorporating cellulose nanomaterials. Matter. 2023.

33.

33.      Kausar A, Ahmad I. Leading-Edge Polymer/Carbonaceous Nano-Reinforcement Nanocomposites—Opportunities for Space Sector. Advances in Materials Science. 2023; 23(4): 99–122. doi: 10.2478/adms-2023-0025

34.

34.      Encyclopedia. Magnetic Fluids. Available online: https://encyclopedia.pub/entry/54325 (accessed on 4 June 2024).

35.

35.      Abbas K, Wang X, Rasool G, et al. Recent developments in the application of ferrofluids with an emphasis on thermal performance and energy harvesting. Journal of Magnetism and Magnetic Materials. 2023; 587: 171311. doi: 10.1016/j.jmmm.2023.171311

36.

36.      Tchaikovskaya ON, Bocharnikova EN, Lysak IA, et al. Functional Materials Based on Nanoparticle Modified Polypropylene Fibers. Micro and Nanosystems. 2021; 13(4): 393–404. doi: 10.2174/1876402912999201211194147

37.

37.      Karki D, Khanikar T, Mullurkara SV, et al. AC Magnetometry Using Nano-ferrofluid Cladded Multimode Interferometric Fiber Optic Sensors for Power Grid Monitoring Applications. ACS Applied Nano Materials. 2024; 7(23): 26894–26906. doi: 10.1021/acsanm.4c04912

38.

38.      Lin FC, van de Wouw HL, Campàs O, et al. Synthesis of Fluorous Ferrofluids and Effects of the Nanoparticle Coatings on Field- and Temperature-Dependent Magnetizations. Chemistry of Materials. 2023; 35(19): 7957–7966. doi: 10.1021/acs.chemmater.3c01172

39.

39.      Alexaner IB, Alexander AB, Vasilii GG, et al. Requirements to magnetic fluids applied in means of technological equipment, Materials Today: Proceedings, Volume 19, Part 5, 2019, Pages 2555-2558, https://doi.org/10.1016/j.matpr.2019.08.209.

40.

40.      Li D, Li Y, Li Z, et al. Theory analyses and applications of magnetic fluids in sealing. Friction. 2023; 11(10): 1771–1793. doi: 10.1007/s40544-022-0676-8

41.

41.      Li X, Yu Q, Zhou X, et al. Magnetic sensing technology of fiber optic interferometer based on magnetic fluid: A review. Measurement. 2023; 216: 112929. doi: 10.1016/j.measurement.2023.112929

42.

42.      Nagornyi AV, Socoliuc V, Petrenko VI, et al. Structural characterization of concentrated aqueous ferrofluids. Journal of Magnetism and Magnetic Materials. 2020; 501: 166445. doi: 10.1016/j.jmmm.2020.166445

43.

43.      Socoliuc V, Avdeev MV, Kuncser V, et al. Ferrofluids and bio-ferrofluids: Looking back and stepping forward. Nanoscale. 2022; 14(13): 4786–4886. doi: 10.1039/d1nr05841j

44.

44.      Hao R, Liu H, Wang S. Preparation and Parameters Measurement of Magnetic Fluid. Journal of Physics: Conference Series. 2020; 1637(1): 012016. doi: 10.1088/1742-6596/1637/1/012016

45.

45.      Ryapolov P, Vasilyeva A, Kalyuzhnaya D, et al. Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences. Nanomaterials. 2024; 14(2): 222. doi: 10.3390/nano14020222

46.

46.      Camp PJ. Dynamic magnetic properties of magnetosomes. Smart Materials and Structures. 2023; 32(9): 095030. doi: 10.1088/1361-665x/aceed8

47.

47.      Shendre YR, Bhakare RV, Gadhawe KS, et.al. 5 Emerging Trends in Electrical Engineering: What to Expect in the Future. International Journal of Advanced Research in Science, Communication and Technology. 2023; 3(1): 859–862.

48.

48.      Dikansky YI, Ispiryan AG, Arefyev IM, et al. Effective fields in magnetic colloids and features of their magnetization kinetics. The European Physical Journal E. 2021; 44(1): 113. doi: 10.1140/epje/s10189-021-00015-y

49.

49.      Liu X, Tian Y, Jiang L. Manipulating dispersions of magnetic nanoparticles. Nano Letters. 2021; 21(7): 2699–2708. doi: 10.1021/acs.nanolett.0c04757

50.

50.      Vinod S, Philip J. Thermal and rheological properties of magnetic nanofluids: Recent advances and future directions. Advances in Colloid and Interface Science. 2022; 307: 102729. doi: 10.1016/j.cis.2022.102729

51.

51.      Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules. 2023; 28(2): 661. doi: 10.3390/molecules28020661

52.

52.      Pyanzina ES, Novak EV, Kuznetsov AA, et al. Dynamic magnetic response of multicore particles: The role of grain magnetic anisotropy and intergrain interactions. Journal of Molecular Liquids. 2025; 421: 126842. doi: 10.1016/j.molliq.2024.126842

53.

53.      Petrov K, Chubarov A. Magnetite Nanoparticles for Biomedical Applications. Encyclopedia. 2022; 2(4): 1811–1828. doi: 10.3390/encyclopedia2040125

54.

54.      Shasha C, Krishnan KM. Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine. Advanced Materials. 2020; 33(23). doi: 10.1002/adma.201904131

55.

55.      Oehlsen O, Cervantes-Ramírez SI, Cervantes-Avilés P, et al. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. ACS Omega. 2022; 7(4): 31343150.

56.

56.      Chandrasekharan P, Tay ZW, Hensley D, et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: Tracers, hardware, and future medical applications. Theranostics. 2020; 10(7): 2965–2981. doi: 10.7150/thno.40858

57.

57.      Safarik I, Pospiskova K. Magnetic Fluids in Biosciences, Biotechnology and Environmental Technology. In: Bulavin L, Lebovka N (editors). Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics. Springer, Cham; 2022. doi: 10.1007/978-3-030-80924-9_13

58.

58.      Sokolsky SA, Solovyova AY, Zverev VS, et al. Analysis of the ferrofluid microstructure based on the static magnetic measurements. Journal of Magnetism and Magnetic Materials. 2021; 537: 168169. doi: 10.1016/j.jmmm.2021.168169

59.

59.      Sharma S, Sharma H, Sharma R. A review on functionalization and potential application spectrum of magnetic nanoparticles (MNPs) based systems. Chemistry of Inorganic Materials. 2024; 2: 100035. doi: 10.1016/j.cinorg.2024.100035

60.

60.      Materón EM, Miyazaki CM, Carr O, et al. Magnetic nanoparticles in biomedical applications: A review. Applied Surface Science Advances. 2021; 6: 100163. doi: 10.1016/j.apsadv.2021.100163

61.

61.      Philip J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Adv Colloid Interface Sci. 2023; 311:102810. doi: 10.1016/j.cis.2022.102810

62.

62.      Ma L, Ma X, Xue J, et al. Study of the Tribological Properties of Nano-TiO2 Additive Water-Based Lubricants in Microrolling of Ultrathin Stainless Steel Strips. Tribology Transactions. 2023; 66(3): 466–476. doi: 10.1080/10402004.2023.2183916

63.

63.      Wang P, Liang H, Jiang L, et al. Effect of nanoscale surface roughness on sliding friction and wear in mixed lubrication. Wear. 2023; 530–531: 204995. doi: 10.1016/j.wear.2023.204995

64.

64.      Thimons LA, Gujrati A, Sanner A, et al. Hard-material Adhesion: Which Scales of Roughness Matter? Experimental Mechanics. 2021; 61(7): 1109–1120. doi: 10.1007/s11340-021-00733-6

65.

65.      Kuti R, Szabó ÁI, Tóth ÁD. Experimental Investigation of Tribological Properties of Two Fully Formulated Engine Oils with Additional Nanoscale Spherical Zirconia Particles. Lubricants. 2022; 10(10): 246. doi: 10.3390/lubricants10100246

66.

66.      Ranjan N, Shende RC, Kamaraj M, et al. Utilization of TiO2/gC3N4 nanoadditive to boost oxidative properties of vegetable oil for tribological application. Friction. 2021; 9(2): 273–287. doi: 10.1007/s40544-019-0336-9

67.

67.      Fahad MR, Abdulmajeed BA. Surface Modification of TiO2-Al2O3 Nanoparticles for the Enhancement of the Rheological Properties of Base Lubricating Oil. Journal of Applied Research and Technology. 2022; 20(1): 37–47. doi: 10.22201/icat.24486736e.2022.20.1.1556

68.

68.      Tang X, Li J. Tribological Characteristics of Nano-Lubricated High-Speed Rolling Bearings Considering Interaction between Nanoparticles and Rough Surface. Lubricants. 2022; 10(6): 117. doi: 10.3390/lubricants10060117

69.

69.      Marlinda AR, Thien GSH, Shahid M, et al. Graphene as a Lubricant Additive for Reducing Friction and Wear in Its Liquid-Based Form. Lubricants. 2023; 11(1): 29. doi: 10.3390/lubricants11010029

70.

70.      Zhao X, Zhang Y. Tribological and dynamic performance analysis of rolling bearings with varied surface textures operating under lubricant contamination. Wear. 2023; 532–533: 205109. doi: 10.1016/j.wear.2023.205109

71.

71.      Xu X, Jiao S, Liu Z, et al. Synergistic lubrication of a porous MoS2-POSS nanohybrid. RSC Advances. 2020; 10(35): 20579–20587. doi: 10.1039/d0ra02014a

72.

72.      Zhong C, Hu K, Xu Y, et al. Lubrication antagonism mechanism of nano-MoS2 and soot particles in ester base oil. Friction. 2024; 12(12): 2692–2706. doi: 10.1007/s40544-024-0904-5

73.

73.      Lu Z, Lin Q, Cao Z, et al. MoS2 Nanomaterials as Lubricant Additives: A Review. Lubricants. 2023; 11(12): 527. doi: 10.3390/lubricants11120527

74.

74.      Liu Z, Wang Y, Glatzel T, et al. Low Friction at the Nanoscale of Hydrogenated Fullerene-Like Carbon Films. Coatings. 2020; 10(7): 643. doi: 10.3390/coatings10070643

75.

75.      Li T, Chen X, Wang J, et al. Research progress of nano lubricating additives. IOP Conference Series: Earth and Environmental Science. 2021; 680(1): 012084. doi: 10.1088/1755-1315/680/1/012084

76.

76.      Hao L, Wang Z, Zhang G, et al. Tribological evaluation and lubrication mechanisms of nanoparticles enhanced lubricants in cold rolling. Mechanics & Industry. 2020; 21(1): 108. doi: 10.1051/meca/2019085

77.

77.      Garcia Tobar M, Contreras Urgiles RW, Jimenez Cordero B, et al. Nanotechnology in Lubricants: A Systematic Review of the Use of Nanoparticles to Reduce the Friction Coefficient. Lubricants. 2024; 12(5): 166. doi: 10.3390/lubricants12050166

78.

78.      Wang B, Zhong Z, Qiu H, et al. Nano Serpentine Powders as Lubricant Additive: Tribological Behaviors and Self-Repairing Performance on Worn Surface. Nanomaterials. 2020; 10(5): 922. doi: 10.3390/nano10050922

79.

79.      Dhanasekar K, Krishnan AM, Kaliyaperumal G, et al. Influences of Nanosilica Particles on Density, Mechanical, and Tribological Properties of Sisal/Hemp Hybrid Nanocomposite. Advances in Polymer Technology. 2023; 2023: 1–7. doi: 10.1155/2023/3684253

80.

80.      Zhu Y, Chen L, Zhang C, et al. Preparation of hydrophobic antireflective SiO2 coating with deposition of PDMS from water-based SiO2-PEG sol. Applied Surface Science. 2018; 457: 522–528. doi: 10.1016/j.apsusc.2018.06.177

81.

81.      Rastogi PM, Kumar R, Kumar N. Effect of SiO2 nanoparticles on the tribological characteristics of jatropha oil. Materials Today: Proceedings. 2021; 46: 10109–10112. doi: 10.1016/j.matpr.2020.09.377

82.

82.      Pretzl K. Cryogenic Detectors. In: Fabjan C, Schopper H (editors). Particle Physics Reference Library. Springer; 2020.

83.

83.      Ferreira MT, Soldado E, Borsoi G, et al. Nanomaterials Applied in the Construction Sector: Environmental, Human Health, and Economic Indicators. Applied Sciences. 2023; 13(23): 12896. doi: 10.3390/app132312896

84.

84.      Frith JT, Lacey MJ, Ulissi U. A non-academic perspective on the future of lithium-based batteries. Nature Communications. 2023; 14(1). doi: 10.1038/s41467-023-35933-2

85.

85.      Mohajerani A, Burnett L, Smith JV, et al. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials. 2019; 12(19): 3052. doi: 10.3390/ma12193052

86.

86.      Jones W, Gibb A, Goodier C, et al. Nanomaterials in construction—what is being used, and where? Proceedings of the Institution of Civil Engineers—Construction Materials. 2019; 172(2): 49–62. doi: 10.1680/jcoma.16.00011

87.

87.      Gibb A, Jones W, Goodier C, et al. Nanotechnology in Construction And Demolition: What We Know, What We Don’t. Construction Research and Innovation. 2018; 9(2): 55–58. doi: 10.1080/20450249.2018.1470405

88.

88.      Papadaki D, Kiriakidis G, Tsoutsos T. Applications of nanotechnology in construction industry. Fundamentals of Nanoparticles. 2018: 343–370. doi: 10.1016/b978-0-323-51255-8.00011-2

89.

89.      Macías-Silva MA, Cedeño-Muñoz JS, Morales-Paredes CA, et al. Nanomaterials in construction industry: An overview of their properties and contributions in building house. Case Studies in Chemical and Environmental Engineering. 2024; 10: 100863. doi: 10.1016/j.cscee.2024.100863

90.

90.      Ming X, Cao M, Lv X, et al. Effects of high temperature and post-fire-curing on compressive strength and microstructure of calcium carbonate whisker-fly ash-cement system. Construction and Building Materials. 2020; 244: 118333. doi: 10.1016/j.conbuildmat.2020.118333

91.

91.      Nalon GH, Ribeiro JCL, de Araújo END, et al. Effects of post-fire curing on the mechanical properties of cement composites containing carbon black nanoparticles and multi-walled carbon nanotubes. Construction and Building Materials. 2021; 310: 125118. doi: 10.1016/j.conbuildmat.2021.125118

92.

92.      Dong W, Li W, Wang K, et al. Investigation on physicochemical and piezoresistive properties of smart MWCNT/cementitious composite exposed to elevated temperatures. Cement and Concrete Composites. 2020; 112: 103675. doi: 10.1016/j.cemconcomp.2020.103675

93.

93.      Nalon GH, Lopes Ribeiro JC, Pedroti LG, et al. Residual piezoresistive properties of mortars containing carbon nanomaterials exposed to high temperatures. Cement and Concrete Composites. 2021; 121: 104104. doi: 10.1016/j.cemconcomp.2021.104104

94.

94.      Jang D, Yoon HN, Seo J, et al. Effects of exposure temperature on the piezoresistive sensing performances of MWCNT-embedded cementitious sensor. Journal of Building Engineering. 2022; 47: 103816. doi: 10.1016/j.jobe.2021.103816

95.

95.      Lamy-Mendes A, Pontinha ADR, Alves P, et al. Progress in silica aerogel-containing materials for buildings’ thermal insulation. Construction and Building Materials. 2021; 286: 122815. doi: 10.1016/j.conbuildmat.2021.122815

96.

96.      Datta SD, Tayeh BA, Hakeem IY, et al. Benefits and Barriers of Implementing Building Information Modeling Techniques for Sustainable Practices in the Construction Industry—A Comprehensive Review. Sustainability. 2023; 15(16): 12466. doi: 10.3390/su151612466

97.

97.      Kačíková D, Kubovský I, Eštoková A, et al. The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood. Nanomaterials. 2021; 11(12): 3405. doi: 10.3390/nano11123405

98.

98.      Mullins-Jaime C, Smith TD. Nanotechnology in Residential Building Materials for Better Fire Protection and Life Safety Outcomes. Fire. 2022; 5(6): 174. doi: 10.3390/fire5060174

99.

99.      Hill C, Altgen M, Rautkari L. Thermal modification of wood—a review: Chemical changes and hygroscopicity. Journal of Materials Science. 2021; 56(11): 6581–6614. doi: 10.1007/s10853-020-05722-z

100.

100.   Vakhitova LN. Fire retardant nanocoating for wood protection. In: Nanotechnology in Eco-efficient Construction: Materials, Processes and Applications, 2nd ed. Woodhead Publishing; 2019. pp. 361–391.

101.

101.   Jasmani L, Rusli R, Khadiran T, et al. Application of Nanotechnology in Wood-Based Products Industry: A Review. Nanoscale Research Letters. 2020; 15(1): 207. doi: 10.1186/s11671-020-03438-2

102.

102.   Troitzsch JH. Fire performance durability of flame retardants in polymers and coatings. Advanced Industrial and Engineering Polymer Research. 2024; 7(3): 263–272. doi: 10.1016/j.aiepr.2023.05.002

103.

103.   Turku I, Rohumaa A, Tirri T, et al. Progress in Achieving Fire-Retarding Cellulose-Derived Nano/Micromaterial-Based Thin Films/Coatings and Aerogels: A Review. Fire. 2024; 7(1): 31. doi: 10.3390/fire7010031

104.

104.   Zhou X, Fu Q, Zhang Z, et al. Efficient flame-retardant hybrid coatings on wood plastic composites by layer-by-layer assembly. Journal of Cleaner Production. 2021; 321: 128949. doi: 10.1016/j.jclepro.2021.128949

105.

105.   Fang Y, Xue A, Wang F, et al. The influence of zinc compounds on thermal stability and flame retardancy of wood flour polyvinyl chloride composites. Construction and Building Materials. 2022; 320: 126203. doi: 10.1016/j.conbuildmat.2021.126203

106.

106.   Lee SH, Lee SG, Lee JS, et al. Understanding the Flame Retardant Mechanism of Intumescent Flame Retardant on Improving the Fire Safety of Rigid Polyurethane Foam. Polymers. 2022; 14(22): 4904. doi: 10.3390/polym14224904

107.

107.   Guo B, Liu Y, Zhang Q, et al. Efficient Flame-Retardant and Smoke-Suppression Properties of Mg-Al-Layered Double-Hydroxide Nanostructures on Wood Substrate. ACS Applied Materials & Interfaces. 2017; 9(27): 23039–23047. doi: 10.1021/acsami.7b06803

108.

108.   Wang H, Yao Q, Wang C, et al. Hydrothermal Synthesis of nanooctahedra MnFe2O4 onto the wood surface with soft magnetism, fire resistance and electromagnetic wave absorption. Nanomaterials. 2017; 7(6): 118. doi: 10.3390/nano7060118

109.

109.   Akhtar K, Javed Y, Muhammad F, et al. Biotransformation and toxicity evaluation of functionalized manganese doped iron oxide nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2021; 109(10): 1563–1577. doi: 10.1002/jbm.b.34815

110.

110.   Kolibaba TJ, Grunlan JC. Environmentally benign polyelectrolyte complex that renders wood flame retardant and mechanically strengthened. Macromolecular Materials and Engineering. 2019; 304(8). doi: 10.1002/mame.201900179

111.

111.   Ahmad F, Zulkurnain ESB, Ullah S, et al. Improved fire resistance of boron nitride/epoxy intumescent coating upon minor addition of nano-alumina. Materials Chemistry and Physics. 2020; 256: 123634. doi: 10.1016/j.matchemphys.2020.123634

112.

112.   Stoycheva S, Zabeo A, Pizzol L, et al. Socio-Economic Life Cycle-Based Framework for Safe and Sustainable Design of Engineered Nanomaterials and Nano-Enabled Products. Sustainability. 2022; 14(9): 5734. doi: 10.3390/su14095734

113.

113.   Thammadi SPD, Pisini SK. Nanotechnology and building construction: Towards effective stakeholder engagement. IOP Conference Series: Earth and Environmental Science. 2022; 1084(1): 012074. doi: 10.1088/1755-1315/1084/1/012074

114.

114.   Burlec AF, Corciova A, Boev M, et al. Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals. 2023; 16(10): 1410. doi: 10.3390/ph16101410

115.

115.   Sreeraj PR, Mishra SK, Singh PK. Characteristic features and functions of nanocellulose for its feasible application in textile industry. In: Oraon R, Rawtani D, Singh P (editors). Nanocellulose Materials: Fabrication and Industrial Applications (Micro and Nano Technologies). Elsevier; 2022. pp. 105–122.

116.

116.   Sbai SJ, boukhriss A, El Bouchti M, et al. Electrical Conductivity of Cotton Fabrics Treated by Silica-Based Ionic Liquids. Silicon. 2022; 14(18): 12815–12822. doi: 10.1007/s12633-022-01964-5

117.

117.   Crisan MC, Teodora M, Lucian M. Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. Applied Sciences. 2021; 12(1): 141. doi: 10.3390/app12010141

118.

118.   Channiwala MZ, Gandhi P, Patel B. Synergizing Elegance and Innovation: Biosynthesis of Copper Nano Particles via Nucleation Technique for Enhanced Applications on Silk Fabric. In: Proceedings of the International conference on Global Scenario and Sustainable Solutions in Silk Industry; 28 February 2024; New Delhi, India.

119.

119.   Patel BH. Nanotechnology and Textile. In: Textiles & 21st Century. ABS Books; 2023. pp. 53–69.

120.

120.   Shaikh TN, Patel BH. Evolution Shift in Silver Nanoparticles Synthesis Techniques and Their Application Provinces. In: Applications of Silver Nanoparticles. Nova Science Publishers; 2023. pp. 101–127.

121.

121.   Shaikh TN, Patel BH. Nanotechnology in Hospital Clothing and Odor Control of Medical Textiles. In: Sharma P, Singh D, Pant S, Dave V (editors). Nanotechnology Based Advanced Medical Textiles and Biotextiles for Healthcare. CRC Press; 2024. pp. 177194.

122.

122.   Rambaran T, Schirhagl R. Nanotechnology from lab to industry—a look at current trends. Nanoscale Advances. 2022; 4(18): 3664–3675. doi: 10.1039/d2na00439a

123.

123.   Kim J, Kang SH, Choi Y, et al. Antibacterial and biofilm-inhibiting cotton fabrics decorated with copper nanoparticles grown on graphene nanosheets. Scientific Reports. 2023; 13(1): 11947. doi: 10.1038/s41598-023-38723-4

124.

124.   Asmat-Campos D, Delfín-Narciso D, Juárez-Cortijo L. Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation. Fibers. 2021; 9(2): 10. doi: 10.3390/fib9020010




DOI: https://doi.org/10.24294/can10834

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.