Content-based medical image retrieval system based on gradient orientation and edge information


Article ID: 969
Vol 6, Issue 1, 2023

VIEWS - 1899 (Abstract) 454 (PDF)


Retrieval of biomedical pictures is a significant side of computer based diagnosis. It helps the radiologist and restorative authority to spot and analyze the particular disease. This paper proposes a Content Based Medical Image Retrieval (CBMIR) approach for retrieving similar biomedical images. The extraction of retrieving features is based on histogram of oriented gradients (HOG) and canny edge detection. To reduce the dimensionality, principal component analysis(PCA) is employed over the feature vector. The experiments are conducted on high-resolution computed tomography medical images of lungs. With the average retrieval rate (ARR) and average retrieval precision (ARP), the performance of the proposed approach is analyzed and compared with other existing methods viz. Local Binary Pattern (LBP), LBP with uniform patterns (LBPu2), Local Mesh Pattern with uniform patterns (LMePu2) and LMeP with gabor transform (GLMeP).


biomedical, image retrieval, HOG, PCA.

Full Text:



1. W.G. Bradley, “History of medical imaging”, Proc Am Philos Soc, 2008, 152(3), pp. 349–361.

2. "History of the AIUM". Archived from the original on November 3, 2005. Retrieved November 15, 2005.

3. “The History of Ultrasound: A collection of recollections, articles, interviews and images". Archived from the original on 5 August 2006. Retrieved 2006-05-11

4. H.K. Huang, S.J. Dwyer, W. M. Angus, M.P. Capp, R.L. Arenson and H. Kangarloo, “Picture archiving and communications systems (PACS)”. In: Radiological Society of North America 73rd scientific assembly and annual meeting (Abstracts),1987.

5. H.D. Fisher, K.M. McNeil, R. Vercillo and R.D. Lamoreaux, U.S. Patent No. 4,833,625. U.S. Patent and Trademark Office, Washington, DC, 1989.

6. P. Archiving P, Communication system. Fijifilm Medical Systems, USA, 1991.

7. C.R. Shyu, C. E. Brodley, A. C. Kak, A. Kosaka, A.M. Aisen and L.S. Broderick, “ASSERT: a physician-in-the-loop content-based retrieval system for HRCT image databases”, Comput Vis Image Underst, Vol. 75(1–2), 1999, pp. 111–132.

8. D. Keysers, H. Ney, B.B. Wein and T.M. Lehmann, “Statistical framework for model-based image retrieval in medical applications. J Electron Imaging, Vol. 12(1),2003, pp. 59–68

9. M.O. Lam, T. Disney, D.S Raicu, J. Furst and D. S. Channin, “BRISC—an open source pulmonary nodule image retrieval framework”, J Digit Imaging, Vol. 20(1), 2007, pp. 63–71.

10. T. Deselaers, D. Keysers and H. Ney, “FIRE-flexible image retrieval engine: ImageCLEF 2004 evaluation”, In CLEF, 2004, pp 688–698.

11. H. Müller, N. Michoux and D. Bandon, A. Geissbuhler, “A review of content-based image retrieval systems in medical applications—clinical benefits and future directions”, Int J Med Inform, Vol. 73(1), 2003, pp. 1–23.

12. K. H. Hwang, H. Lee and D. Choi, “Medical image retrieval: past and present”, Healthcare Inform Res, Vol. 18(1), 2012, pp. 3–9.

13. P. Das and A. Neelima, “An overview of approaches for content-based medical image retrieval”, Int J Multimed Info Retr, Vol. 6(4), 2017, pp. 271-280.

14. P. Ghosh, S. Antani, L.R. Long and G.R. Thoma, “Review of medical image retrieval systems and future directions”, In: 2011 24th international symposium on computer-based medical systems (CBMS), IEEE, 2011, pp 1–6.

15. X.S. Zhou and T.S. Huang, “Relevance feedback in image retrieval: a comprehensive review”, Multimed Syst, vol. 8(6), 2003, pp. 536–544.

16. C.B. Akgül, D.L.Rubin, S. Napel, C.F. Beaulieu, H. Greenspan and B. Acar, “Content-based image retrieval in radiology: current status and future directions”, J Digit Imaging, Vol. 24(2),2011, pp. 208–222.

17. A. Kumar, J. Kim, W. Cai, M. Fulham and D. Feng, “Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data”, J Digit Imaging, Vol. 26(6), 2013, pp. 1025–1039.

18. M. Rehman, M. Iqbal, M. Sharif and M. Raza, “Content based image retrieval: survey”, World Appl Sci J, Vol. 19(3), 2012, pp. 404–12.

19. G. Deep, L. Kaur and S. Gupta, “Biomedical image indexing and retrieval descriptors: a comparative study”, Procedia Comput Sci, Vol. 85, 2016, pp. 954–961.

20. H.R. Tizhoosh, “Barcode annotations for medical image retrieval: a preliminary investigation”, In: 2015 IEEE international conference on image processing (ICIP), IEEE, 2015, pp 818–822.

21. H.R. Tizhoosh, M. Gangeh, H. Tadayyon and G. J. Czarnota, “Tumour ROI estimation in ultrasound images via radon barcodes in patients with locally advanced breast cancer”, In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, 2016, pp 1185–1189.

22. H.R. Tizhoosh, S. Zhu, H. Lo, V. Chaudhari and T. Mehdi, “MinMax radon barcodes for medical image retrieval”, In: International symposium on visual computing. Springer International Publishing, 2016, pp 617–627.

23. H.R. Tizhoosh, C. Mitcheltree, S. Zhu and S. Dutta, “Barcodes for medical image retrieval using autoencoded radon transform”, In: 2016 23rd international conference on pattern recognition (ICPR), IEEE, 2016, pp 3150–3155.

24. M. Nouredanesh, H.R. Tizhoosh, E. Banijamali and J. Tung, “Radon-Gabor barcodes for medical image retrieval”, In: 2016 23rd international conference on pattern recognition (ICPR), IEEE, 2016, pp 1309–1314.

25. M. Babaie, H.R. Tizhoosh, S. Zhu and M.E. Shiri, “Retrieving similar x-ray images from big image data using radon barcodes with single projections”, 2017, arXiv preprint arXiv:1701.00449.

26. M.K. Kundu, M. Chowdhury, S. Das, “Interactive radiographic image retrieval system”, Comput Methods Programs Biomed, Vol. 139, 2017, pp. 209–220.

27. L.Ma, X. Liu, Y. Gao, Y. Zhao, X. Zhao and C. Zhou, “A new method of content based medical image retrieval and its applications to CT imaging sign retrieval”, J Biomed Inform, Vol. 66, 2017, pp.148–158.

28. J. Nowaková, M. Prílepok and V. Snášel, “Medical image retrieval using vector quantization and fuzzy S-tree”, J Med Syst, Vol. 41(2), 2017, pp. 18.

29. Chatzichristofis SA, Boutalis YS (2010) Content based radiology image retrieval using a fuzzy rule based scalable composite descriptor. Multimed Tools Appl 46(2–3):493–519

30. G. Zhang, Z.M. Ma, “Texture feature extraction and description using Gabor wavelet in content-based medical image retrieval”, In: ICWAPR’07, International conference on wavelet analysis and pattern recognition, IEEE, Vol. 1., 2007, pp 169–173.

31. K. Fukushima, “Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position”, BiolCybern, Vol. 36(4), 1980, pp. 93–202.

32. K. Fukushima and S. Miyake, “Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition”, In: van Hemmen JL (ed) Competition and cooperation in neural nets. Springer, Berlin, 1982, pp 267–285.

33. K. Fukushima and S. Miyake, “Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position”, Pattern Recognit, Vol. 15(6), 1982, pp. 455–469.

34. K. Fukushima, S. Miyake and T. Ito, “Neocognitron: a neuralnetwork model for a mechanism of visual pattern recognition”, IEEE Trans Syst Man Cybern, Vol. 5, 1983, pp. 826–834.

35. K. Fukushima, “A neural network model for selective attention in visual pattern recognition”, Biol Cybern, Vol. 55(1), 1986, pp. 5–15.

36. K. Fukushima, “Neural network model for selective attention in visual pattern recognition and associative recall”, Appl Opt, Vol. 26(23), 1987, 4985–92.

37. K. Fukushima, “Neocognitron: a hierarchical neural network capable of visual pattern recognition”, Neural Netw, Vol. 1(2), 1988, pp. 119–130.

38. Fukushima K, “A neural network for visual pattern recognition”, Computer, Vol. 21(3), 1988, pp. 65–75.

39. S.C. Lo, S.L. Lou, J.S. Lin, M.T. Freedman, M.V. Chien and S.K. Mun, “Artificial convolution neural network techniques and applications for lung nodule detection”, IEEE, Trans Med Imaging, Vol. 14(4), 1995, pp.711–718.

40. A.G. Ivakhnenko and V.G. Lap, “Cybernetic predicting devices”, CCM Information Corporation, 1965.

41. R.H. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R.J. Douglas and H.S. Seung, “Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit”, Nature, Vol. 405(6789), pp. 947.

42. X. Glorot, A. Bordes and Y. Bengio, “Deep sparse rectifier neural networks”, In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011, pp 315–323.

43. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks”, In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010, pp. 249–256.

44. J. Wan, D. Wang, S.C.H. Hoi, P. Wu, J. Zhu, Y. Zhang and J. Li, “Deep learning for content-based image retrieval: a comprehensive study”, In: Proceedings of the 22nd ACM international conference on multimedia, 2014, pp 157–166.

45. A. Babenko and V. Lempitsky, “Aggregating local deep features for image retrieval”, In: Proceedings of the IEEE international conference on computer vision, 2015, pp 1269–1277.

46. K. Lin, H.F. Yang, J.H. Hsiao and C.S. Chen, “Deep learning of binary hash codes for fast image retrieval”, In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2015, pp 27–35.

47. M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe and S. Mougiakakou, “Lung pattern classification for interstitial lung diseases using a deep convolutional neural network”, IEEE Trans Med Imaging, Vol. 35(5), 2016, pp. 1207–1216.

48. G. Van Tulder and M. de Bruijne, “Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines”, IEEE Trans Med Imaging, Vol. 35(5), 2016, pp. 1262–1272.

49. P. Moeskops, M.A Viergever, A.M. Mendrik, L.S. de Vries, M.J. Benders and I. Išgum, “Automatic segmentation of MR brain images with a convolutional neural network”, IEEE Trans Med Imaging, Vol. 35(5), 2016, pp. 1252–1261.

50. A. Esteva, B. Kuprel, R.A Novoa, J. Ko, S.M. Swetter, H.M. Blau and S. Thrun, “Dermatologist-level classification of skin cancer with deep neural networks”, Nature, Vol. 542(7639), 2017, pp. 115–118.

51. Y. Cao, S. Steffey, J. He, D. Xiao, C. Tao, P. Chen and H. Müller, “Medical image retrieval: a multimodal approach”, Cancer Inform 13(Suppl 3), 2014, pp.125.

52. Q. Sun, Y. Yang, J. Sun, Z. Yang and J. Zhang, “Using deep learning for content-based medical image retrieval”, In: SPIE medical imaging. International Society for Optics and Photonics, 2017, pp 1013812–1013812.

53. A. Qayyum, S.M. Anwar, M. Awais and M. Majid, “Medical image retrieval using deep convolutional neural network”, Neurocomputing, Vol. 266, 2017, pp. 8–20.

54. T. Ojala, M. Pietikäinen and D. Harwood, “A comparative study of texture measures with classification based on featured distributions”, Pattern Recognit, Vol. 29(1), 1996, pp. 51–59.

55. X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions”, IEEE Trans Image Process, Vol. 19(6), 2010, pp. 1635–1650.

56. S. ul Hussain and B. Triggs, “Visual recognition using local quantized patterns”, In: Computer vision—ECCV 2012, Springer, Berlin, 2012, pp 716–729.

57. S. Murala, R.P. Maheshwari and R. Balasubramanian, “Directional local extrema patterns: a new descriptor for content based image retrieval”, Int J Multimed Inf Retr, Vol. 1(3), 2012, pp. 191–203.

58. L.K. Rao and D.V. Rao, “Local quantized extrema patterns for content-based natural and texture image retrieval”, Hum Centric Comput Inf Sci, Vol. 5(1), 2015, pp. 26.

59. L.K. Rao, D.V. Rao and L.P. Reddy, “Local mesh quantized extrema patterns for image retrieval”, SpringerPlus, Vol. 5(1), 2016, pp. 1–15.

60. G. Deep, L. Kaur and S. Gupta, “Directional local ternary quantized extrema pattern: a new descriptor for biomedical image indexing and retrieval”, Eng Sci Technol Int J, Vol. 19(4), 2016, pp.1895–1909.

61. S. Murala, R.P. Maheshwari and R. Balasubramanian, “Directional binary wavelet patterns for biomedical image indexing and retrieval”, J Med Syst, Vol. 36(5), 2012, pp. 2865–2879.

62. M.D. Swanson and A.H Tewfik, “A binary wavelet decomposition of binary images”, IEEE Trans Image Process, Vol. 5(12), pp.1637–1650.

63. L. Kamstra, “The design of linear binary wavelet transforms and their application to binary image compression”, In: 2003 Proceedings International conference on image processing, IEEE, Vol 3., pp III–241.

64. H. Pan, L.Z. Jin, X.H. Yuan, S.Y. S Xia and L.Z. Xia, “Context-based embedded image compression using binary wavelet transform”, Image Vis Comput, Vol. 28(6), 2010, pp. 991–1002.

65. S. Murala, R.P. Maheshwari and R. Balasubramanian, “Local tetra patterns: a new feature descriptor for content-based image retrieval”, IEEE Trans Image Process, Vol. 21(5), 2012, pp. 2874–2886.

66. S. Murala and Q. J. Wu, “Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval”, IEEE J Biomed Health Inform, Vol. 18(3), 2014, pp. 929–938.

67. A. Lumini, L. Nanni and S. Brahnam, “Multilayer descriptors for medical image classification”, Comput Biol Med, Vol. 72, 2016, pp. 239–247.

68. V. Ojansivu and J. Heikkilä, “Blur insensitive texture classification using local phase quantization”, In: International conference on image and signal processing, Springer, Berlin, 2008, pp. 236–243.

69. S. Murala and Q. J. Wu, “Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval”, Neurocomputing, Vol. 149, 2015, pp. 1502–1514.

70. H. Greenspan and A.T. Pinhas, “Medical image categorization and retrieval for PACS using the GMM-KL framework”, IEEE Trans Inf Technol Biomed, Vol. 11(2), 2007, pp. 190–202.

71. A. Oberoi and M. Singh, “Content based image retrieval system for medical databases (CBIR-MD)-lucratively tested on endoscopy, dental and skull images”, IJCSI Int J Comput Sci Issues 9(3), 2012, pp. 1694–1814.

72. A.N. Krishna and B.G Prasad BG, “Automated image annotation for semantic indexing and retrieval of medical images”, Int J Comput Appl,Vol. 55(3), 2012, pp.26–33.

73. G. Quellec, M. Lamard, G. Cazuguel, B. Cochener and C. Roux, “Wavelet optimization for content-based image retrieval in medical databases”, Med Image Anal, Vol. 14(2), 2010, pp. 227–241.

74. M.R. Zare and H. Müller, “A medical X-ray image classification and retrieval system”, In: PACIS, 2016, pp. 13.

75. M.M. Rahman, S.K. Antani and G.R. Thoma, “A learning-based similarity fusion and filtering approach for biomedical image retrieval using SVM classification and relevance feedback”, IEEE Trans Inf Technol Biomed, Vol. 15(4), 2011, pp. 640–646.

76. M.M. Rahman, S.K. Antani and G.R. Thoma, “A medical image retrieval framework in correlation enhanced visual concept feature space”, In: 22nd IEEE international symposium on computer-based medical systems, CBMS 2009, 2009, IEEE, pp. 1–4.

77. M.M. Rahman, P. Bhattacharya and B.C Desai, “A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback”, IEEE Trans Inf Technol Biomed, Vol. 11(1), 2007, pp. 58–69.

78. M.R. Nazari, E. Fatemizadeh, “A CBIR system for human brain magnetic resonance image indexing”, Int J Comput Appl, Vol. 7(14), 2010, pp. 33–37.

79. I.F. Amaral, F. Coelho, J.F.P. da Costa and J.S. Cardoso, “Hierarchical medical image annotation using SVM-based approaches”, In: 2010 10th IEEE international conference on information technology and applications in biomedicine (ITAB). IEEE, 2010, pp. 1–5.

80. C. Lacoste, J.P. Chevallet, J.H. Lim, X. Wei, D. Racoceanu, DTH Le and N. Vuillenemot, IPAL knowledge-based medical image retrieval in ImageCLEFmed 2006. In: CLEF (Working Notes).

81. C. Lacoste, J.P. Chevallet, J.H Lim, DTH Le, W. Xiong, D. Racoceanu and N. Vuillenemot, “Inter-media concept-based medical image indexing and retrieval with umls at IPAL”, In: Workshop of the cross-language evaluation forum for European languages. Springer, Berlin, pp 694–701.

82. J.H. Lim and J.P. Chevallet JP, Vismed: a visual vocabulary approach for medical image indexing and retrieval, Inf Retr Technol, Part of Lecture Notes in Computer Science book series LNCS, vol 3689, 2005, pp 84–96.

83. C. Lacoste, J.H Lim, J.P Chevallet and DTH Le, “Medical-image retrieval based on knowledge-assisted text and image indexing”, IEEE Trans Circuits Syst Video Technol, 17(7), 2007, 889–900.

84. J.H. Lim, J.P. Chevallet, DTM Le, H Goh, “Bi-modal conceptual indexing for medical image retrieval. In: International conference on multimedia modeling”, Springer Berlin, 2008, pp. 456–465.

85. A. Depeursinge, A. Vargas, A. Platon, A. Geissbuhler, P.A. Poletti and H. Müller, “Building a reference multimedia database for interstitial lung diseases”, In: Computerized Medical Imaging and Graphics, Vol. 36, 2011, pp. 3(227-238).



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.