References
Njoku D B. Drug-induced hepatotoxicity: metabolic, genetic and immunological basis. International Journal of Molecular Science 2014; 15(4): 6990-7003.
Abboud G, Kaplowitz N. Drug-induced liver injury. Drug Safety 2007; 30: 277-94.
Boelsterli UA, Lim PL. Mitochondrial abnormalities--a link to idiosyncratic drug hepatotoxicity. Toxicology and Applied Pharmacology 2007; 220: 92-107
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357: 539-545
Fattovich G, Stroffolini T, Zagni I et al. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004; 127: 35-50.
Ganem D, Prince A M. Hepatitis B virus infection—natural history and clinical consequences. The New England Journal of Medicine 2004; 350: 1118-1129.
Björnsson E, Angulo P: Non-alcoholic fatty liver disease. The Scandinavian Journal of Gastroenterology 2007; 42:1023-1030.
Angulo P. Nonalcoholic Fatty Liver Disease. Mexican Journal of Gastroenterology 2005; 70: 52-56.
Farrell G C, Larter C Z. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006; 43: 99-112.
Samuel V T, Liu Z X, Qu X et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. The Journal of Biological Chemistry 2014; 279: 32345-32353.
Hirschfield G M, Chapman R W, Karlsen T H et al. Reviews in basic and clinical gastroenterology and hepatology. Gastroenterology 2013; 144: 1357–1374.
Katarey D, Verma S. Drug_induced liver injury. Clinical Medicine 2016; 16: 104-109.
Saadeh S. Nonalcoholic Fatty Liver Disease and Obesity. Nutrition in Clinical Practice 2007; 22: 1-10.
Powell E E, Jonsson J R, Clouston A D. Steatosis: co-factor in other liver diseases. Hepatology 2005; 42: 5-13.
Björnsson ES, Bergmann O M, Björnsson H et al. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology 2013; 144: 1419-1425.
Lucena M I, Andrade R J, Kaplowitz N et al. Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex. Hepatology 2009; 49: 2001-2009.
Fernandez-Liz E, Modamio P, Catalan A et al. Identifying how age and gender influence prescription drug use in a primary healthcare environment in Catalonia, Spain. The British Journal of Clinical Pharmacology 2008; 65:407-417.
Devarbhavi H, Dierkhising R, Kremers W K. Anti-tuberculosis therapy drug-induced liver injury and acute liver failure. Hepatology 2010: 52: 798-799.
Michikawa T, Inoue M, Sawada N et al. Development of a prediction model for 10-year risk of hepatocellular carcinoma in middle-aged Japanese: the Japan Public Health Center-based Prospective Study Cohort II. Preventive Medicine 2012; 55:137-143.
Turati F, Galeone C, Rota M et al. Alcohol and liver cancer: a systematic review and meta-analysis of prospective studies. The Annals of Oncology 2014; 25: 1526-1535.
Thomson C A, Wertheim B C, Hingle M et al. Alcohol consumption and body weight change in post menopausal women: results from the Women's Health Initiative. International Journal of Obesity (London) 2012; 36: 1158-1164.
Chamorro J G, Castagnino J P, Musella R M et al. Sex, ethnicity, and slow acetylator profile are the major causes of hepatotoxicity induced by antituberculosis drugs. The European Journal of Gastroenterology & Hepatology 2013; 28: 323-328.
FDA: Guidance for Industry Drug Interaction Studies — Study Design, Data Analysis, Implications for Dosing, and Labeling. Recommendations http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm
Zaccara G, and Perucca E. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disorder 2014; 16:409-31.
Holecek, M: Ammonia and amino acid profiles in liver cirrhosis: Effects of variables leading to hepatic encephalopathy Nutrition. 2015; 31: 14-20.
Singla R, Sharma SK, Mohan A et al. Evaluation of risk factors for antituberculosis treatment induced hepatotoxicity. The Indian Journal of Medical Research 2010; 132: 81-86.
Neafsey P, Ginsberg G, Hattis D et al. Genetic polymorphism in CYP2E1: Population distribution of CYP2E1activity. Journal of Toxicology and Environmental Health, Part B 2009; 12: 362-388.
Vuilleumier N, Rossier M F, Chiappe A et al. CYP2E1genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. The European Journal of Clinical Pharmacology 2006; 62: 423-429.
Chalasani N, Fontana R J, Bonkovsky HL et al. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology 2008; 135: 1924-1934.
Lammert C, Einarsson S, Saha C et al. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals. Hepatology 2008; 47: 2003-2009.
Pari L, Karthikesan K. Protective role of caffeic acid against alcohol-induced biochemical changes in rats. Fundamental & Clinical Pharmacology 2007; 21: 355-361.
Testino G, Leone S, Borro P. Alcohol and hepatocellular carcinoma: A review and a point of view. World Journal of Gastroenterology 2014; 20:15943-15954.
Sheron N, Hawkey C, Gilmore I. Projections of alcohol deaths--a wake-up call. Lancet 2011; 377: 1297-1299.
Saravanan S, Pandikumar P, Pazhanivel N et al. Hepatoprotective role of Abelmoschus esculentus (Linn.) Moench, on carbon tetrachloride-induced liver injury. Toxicology Mechanisms and Methods 2013; 23: 528-536.
Manibusan M K, Odin M, Eastmond D A. Postulated carbon tetrachloride mode of action: a review. The Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews 2007; 25: 185-209.
Feng Y, Wang N, Ye X et al. Hepatoprotective effect and its possible mechanism of Coptidis rhizoma aqueous extract on carbon tetrachloride-induced chronic liver hepatotoxicity in rats.The Journal of Ethno pharmacology2011; 138: 683-690.
Debnath S, Ghosh S, Hazra B. Inhibitory effect of Nymphea pubescens Wild flower extract on carrageenan-induced inflammation and CCl4-induced hepatotoxicity in rats. Food and Chemical Toxicology 2013; 59: 485-491.
Bissoli F. Nimesulide-induced hepatotoxicity and fatal hepatic failure. 2008; 49: 436-437.
Hussaini S H, Farrington EA. Idiosyncratic drug-induced liver injury: an update on the 2007 overview. Expert Opinion on Drug Safety 2014; 13: 67-81.
Unzueta A, Vargas HE. Nonsteroidal anti-inflammatory drug-induced hepatoxicity. Clinical liver Disease 2013; 17: 643-56.
Cover C, Liu J, Farhood A et al. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicology and Applied Pharmacology 2006; 216: 98-107.
Graham G G, Scott K F, Day R O. Tolerability of paracetamol. Drug Safety 2005; 28: 227-40.
Lee T Y, Chang H H, Wen C K et al. Modulation of thioacetamide induced hepatic inflammation, angiogenesis and fibrosis by andrographolide in mice. Journal of Ethnopharmacology 2014; 158: 423-430.
Jang Y O, Kim M Y, Cho M Y et al. Effect of bone marrow-derived mesenchymal stem cells on hepatic fibrosis in a thioacetamide-induced cirrhotic rat mode. BMC Gastroenterology 2014; 14: 1-12.
Hajovsky H, Hu G, Koen Y et al. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rathepatocytes.Chemical Research in Toxicology 2012; 25: 1955-1963.
Petit E, Langouet S, Akhdar H et al. Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes. Toxicology In Vitro 2008; 22: 632-642.
El-Beshbishy H A, Tork O M, El-Bab M F et al. Antioxidant and antiapoptotic effects of green tea polyphenols against azathioprine-induced liver injury in rats. Pathophysiology 2011; 18: 125-135.
Suarez J, Ranguelova K, Jarzecki AA et al. An oxyferrousheme/protein-based radical intermediate is catalytic ally competent in the catalasereaction of Mycobacterium tuberculosis catalase-peroxidase. The Journal of Biological Chemistry 2009; 284: 7017-7029.
Saad E I, El-Gowilly S M, Sherhaa M O et al. Role of oxidative stress and nitric oxide in the protective effects of alpha-lipoic acid and aminoguanidine against isoniazid-rifampicin-induced hepatotoxicity in rats. Food and Chemical Toxicology 2010; 48: 1869-1875.
Huang Y S, Chern H D, Su W J et al. Cytochrome P450 2E1genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 2003; 37: 924-930.
Strautnieks S S, Bull L N, Knisely A S, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nature Genetics 1998; 20: 233–238.
Faubion W A, Gores GJ. Death receptors in liver biology and pathobiology Hepatology 1999; 29: 1–4.
Faubion W A, Guicciardi M E, Miyoshi H et al. Toxic bile salts induce rodent hepatocyte apoptosis via directs activation of Fas. The Journal of Clinical Investigation 1999; 103: 137–145.
Miyoshi H, Rust C, Roberts PJ et al. Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas.Gastroenterology1999; 117: 669–677.
Amacher D E. Toxicologist's guide to biomarkers of hepatic response. Human & Experimental Toxicology; 2002: 21: 253-262.
Ozer J, Ratner M, Shaw M et al. The current state of serum biomarkers of hepatotoxicity. Toxicology 2008; 245: 194-205.
Shi L, Wu L L, Yang J R et al. Serum peroxiredoxin3 is a useful biomarker for early diagnosis and assessemnt of prognosis of hepatocellular carcinoma in Chinese patients. The Asian Pacific Journal of Cancer Prevention 2014; 15: 2979-2986.
Kim H C, Nam C M, Jee S H et al. Normal serum aminotransferase concentration and risk of mortality from liver disease: prospective cohort study. BMJ 2004; 328: 1-6.
Zhao P, Liu W W, Li J F et al. Predictors of liver failure in primary biliary cirrhosis. Upsala Journal of Medical Sciences 2015; 28: 1-5.
Wintrobe M M, Greer J P. Wintrobe’s Clinical hematology. Lippincott Williams and Wilkins, 12th edition 2009.
Targher G. Elevated serum gamma-glutamyltransferase activity is associated with increased risk of mortality, incident type 2 diabetes, cardiovascular events, chronic kidney disease and cancer - a narrative review. Clinical Chemistry and Laboratory Medicine 2010; 48: 147-157.
Geuken E, Visser D, Kuipers F et al. Rapid increase of bile salt secretion is associated with bile duct injury after human liver transplantation. Journal of Hepatology 2004; 41: 1017–1025.
Zollner G, Marschall H U, Wagner M et al. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Molecular Pharmaceutics2006; 3: 231–251.
Ji C, Wu H, Wei L et al. Proteomic and metabolomic analysis reveal gender-specific responses of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47).Aquatic Toxicology 2013; 15: 449-457.
Mendrick D L, Schnackenberg L.: Genomic and metabolomic advances in the identification of disease and adverse event biomarkers. Biomarkers in Medicine 2009; 3: 605-615.
Fitzpatrick E, Dhawan A. Noninvasive biomarkers in non-alcoholic fatty liver disease: current status and a glimpse of the future. World Journal of Gastroenterology 2014; 20: 10851-10863.
Gupta N, Benhamida J, Bhargava Vang J et al. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Research 2008; 18: 1133-1142.
Coen M. Metabolic phenotyping applied to pre-clinical and clinical studies of acetaminophen metabolism and hepatotoxicity. Drug Metabolism Reviews 2015; 23:1-16.
Filipowicz W, Bhattacharyya S N, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics 2008; 9: 102-114.
Gori M, Arciello M, Balsano C. MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. BioMed Research International 2014; 1-14.
Zhang Y, Jia Y, Zheng R et al. Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clinical Chemistry 2010; 56: 1830-1838.
Baraniskin A, Kuhnhenn J, Schlegel U et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood 2011; 117: 3140-3146.
Cermelli S, Ruggieri, A, Marrero J A et al. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 2011; 6: 1-8.
Roderburg C, Mollnow T, Bongaerts B et al. Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS One 2012; 7: 1-11.
Tan Y, Ge G, Pan T et al. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One 2014; 9: 1-12.
Bosetti C, Levi F, Lucchini F et al. Worldwide mortality from cirrhosis: an update to 2002. Journal of Hepatology 2007; 46: 827-839.
Mokdad A A, Lopez A D, Shahraz S et al. Liver cirrhosis mortality in 187countries between 1980 and 2010: a systematic analysis. BMC Medicine 2014; 18: 1-24.
Vitins A P, Kienhuis A S, Speksnijder E N et al. Mechanisms of amiodarone and valproic acid induced liver steatosis in mouse in vivo act as a template for other hepatotoxicity models. Archives of Toxicology 2014; 88: 1573-1588.
Slim R, Fathallah N, Aounallah A et al. Paracetamol-induced Stevens Johnson syndrome and cholestatic hepatitis.Current drug safety 2015; 10: 187-189.
Xie Y, Wang G, Wang H. Cytochrome P450 dysregulations in thioacetamide-induced liver cirrhosis in rats and the counteracting effects of hepatoprotective agents. Drug Metabolism and Disposition 2012; 40: 796-802.
Dawwas M F, Aithal G P. End-stage methotrexate-related liver disease is rare and associated with features of the metabolic syndrome. Alimentary Pharmacology & Therapeutics 2014; 40: 938-948.
Yuan L, Kaplowitz N. Mechanisms of drug-induced liver injury. Clinical Liver Disease 2013;17: 507-518.
Al-Halawani M Z, Thawabi M, Asslo F et al. Losartan-induced Ischemic Hepatocellular Hepatotoxicity: A Case Report and Literature Review. Journal of Family Medicine and Prime Care 2014; 3: 272-274.
Poli G, Biasi F, Leonarduzzi G. 4-Hydroxynonenal-proteinadducts: A reliable biomarker of lipid oxidation in liver diseases. Molecular Aspects of Medicine 2008; 29: 67-71.
Poynard T, Ratziu V, Naveau S et al. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. See comment in PubMed Commons belowComp. Hepatol 2005; 23: 4-10.
Wang X, Zhang A, Han Y et al. Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Mol. Cell Proteomics 2012; 11: 370-380.
Wang J, Chen, R., Tang, S et al. Interleukin-4 and interleukin-10 polymorphisms and antituberculosis drug-induced hepatotoxicity in Chinese population. Journal of Clinical Pharm Ther 2014; 1-6.
El-Meghawry, El-Kenawy A, Osman H E et al. The effect of vitamin C administration on monosodium glutamate induced liver injury. An experimental study. Exp Toxicol Pathol 2013; 65: 513-521.
Yang S L, Fang X, Huang Z Z et al. Can serum glypican-3 be a biomarker for effective diagnosis of hepatocellular carcinoma? A meta-analysis of the literature. Dis. Markers 2014; 1-11.
Chen R, Wang J, Tang S et al. Association of polymorphisms in drug transporter genes (SLCO1B1 and SLC10A1) and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. Tuberculosis (Edinb). 2014; 1-7.
Chen X, Ba Y, Ma L et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research 2008; 18: 997-1006.
Wang Y, Lee A T, Ma JZ et al. Profiling microRNAexpression in hepatocellular carcinoma reveals microRNA-224up-regulation and apoptosis inhibitor-5 as a microRNA-224-specifictarget. J. Biol. Chem 2008; 283: 13205-13215.
Yang Y, Fan Y C, Gao S et al. Methylated cysteine dioxygenase-1 gene promoter in the serum is a potential biomarker for hepatitis B virus-related hepatocellular carcinoma. Tohoku J. Exp. Med. 2014; 232: 187-194.
Manosuthi W, Sukasem C, Lueangniyomkul A et al. CYP2B6 haplotype and biological factors responsible for hepatotoxicity in HIV-infected patients receiving efavirenz-based antiretroviral therapy. International Journal of Antimicrobial Agents 2014; 43: 292-296.
Chen Y J, Zhu J M, Wu H et al. Circulating microRNAs as a Fingerprint for Liver Cirrhosis. PLoS One 2013; 8: 1-9.
Mishra S, Daschakraborty S, Shukla P et al. N-acetyltransferase and cytochrome P450 2E1 gene polymorphisms and susceptibility to antituberculosis drug hepatotoxicity in an Indian population. Natl. Med. J. India 2013; 26: 260-265.
Li L M, Chen L, Deng G H et al. SLCO1B1 15 haplotype is associated with rifampin-induced liver injury. Molecular Medicine Rep 2012; 6: 75-82.
Targher G. Relationship between high-sensitivityC-reactive proteinlevels and liverhistology in subjects with non-alcoholic fatty liver disease. Journal of Hepatology 2006; 45: 879-881
Kumar R, Prakash S, Chhabra S et al. Association of pro-inflammatory cytokines, adipokines & oxidative stress with insulin resistance &non-alcoholic fatty liver disease. Indian Journal of Medicinal Research 2012; 136: 229-236.
Wang Y, Lee A T, Ma J Z et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224up-regulation and apoptosis inhibitor-5 as a microRNA-224-specifictarget. Journal of Biological Chemistry 2008; 283: 13205-13215.
Yamamoto Y, Kosaka N, Tanaka M et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers 2009; 14: 529-538.
Huang X H, Wang Q, Chen J S et al. Bead-basedmicroarrayanalysis of microRNA expression in hepatocellular carcinoma: miR-338 is down regulated. Hepatol. Res. 2009; 39: 786-794.
Li L M, Hu Z B, Zhou Z X et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Research 2010; 70: 9798-9807.
Gui J, Tian Y, Wen X et al. Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clinical Science (Lond). 2011; 120: 183-193.
Qi P, Cheng S Q, Wang H et al. Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One 2011; 6: 1-8
Roderburg C, Luedde M, Vargas C D et al. miR-133a mediates TGF-β-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. Journal of Hepatology 2013; 58: 736-742.
Starkey L PJ, Dear J, Platt V et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 2011; 54: 1767-1776.
Xu J, Wu C, Che X et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. 2011; 50:136-142.
Zhao P, Liu W W, Li J F et al. Predictors of liver failure in primary biliary cirrhosis. Upsala Journal of Medical Sciences 2015; 28: 1-5.
Bihrer V, Friedrich-Rust M, Kronenberger B et al. Serum miR-122 as a biomarker of necro inflammation in patients with chronic hepatitis C virus infection. American Journal of Gastroenterology 2011; 106: 1663-1669.
Farid W R, Pan Q, van der Meer A J et al. Hepatocyte-derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation. Liver Transplant 2012; 18: 290-297.
Tomimaru Y, Eguchi H, Nagano H et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. Journal of Hepatology 2012; 56: 167-175.
Ninomiya M, Kondo Y, Funayama R et al. Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505-3p and miR197-3p as novel biomarkers. PLoS One. 2013; 8: 1-11.
Shen J, Wang A, Wang Q et al. Exploration of genome-wide circulating microRNA in hepatocellular carcinoma: MiR-483-5p as a potential biomarker. Cancer Epidemiology Biomarkers Preview 2013; 22: 2364-2373.
Shrivastava S, Petrone J, Steele R et al. Up-regulation of circulating miR-20a is correlated with hepatitis C virus-mediated liver disease progression. Hepatology 2013; 58: 863-871.
Trebicka J, Anadol E, Elfimova N et al. Hepatic and serum levels of miR-122 after chronic HCV-induced fibrosis. Journal of Hepatology 2013; 58: 234-239.
Winther T N, Heiberg I L, Bang-Berthelsen C H et al. Hepatitis B surface antigen quantity positively correlates with plasma levels of microRNAs differentially expressed in immunological phases of chronic hepatitis B in children. PLos One 2013; 8: 1-13.
Arataki K, Hayes C N, Akamatsu S, et al. Circulating microRNA-22 correlates with microRNA-122 and represents viral replication and liver injury in patients with chronic hepatitis. British Journal of Medicine and Virology 2013; 85: 789-798.
Giray B G, Emekdas G, Tezcan S et al. Profiles of serum microRNAs; miR-125b-5p and miR223-3p serve as novel biomarkers for HBV-positive hepatocellular carcinoma. Molecular Biology Report 2014; 41: 4513-4519.
Kumar S, Chawla Y K, Ghosh S et al. Severity of hepatitis C virus (genotype-3) infection positively correlates with circulating microRNA-122 in patients sera. Dis. Markers 2014; 1-6.
Li B K, Huang P Z, Qiu J L et al. Upregulation of microRNA-106b is associated with poor prognosis in hepatocellular carcinoma. Diagn Pathology 2014; 9.
Augello C, Gianelli U, Savi F et al. MicroRNA as potential biomarker in HCV-associated diffuse large B-cell lymphoma. Journal of Clinical Pathology 2014; 67: 697-701.