Effect of Zn2+ concentration on the zinc oxide properties prepared by electrochemical deposition
Vol 2, Issue 1, 2019, Article identifier:
VIEWS - 169 (Abstract) 6 (PDF)
Abstract
In this work, ZnO nanostructures are electrodeposited on ITO conducting substrate prepared from chloride baths. The influence of concentration of Zn2+on the electrochemical characteristics has been studied using cyclic voltammetry (CV) and chronoamperometry (CA) techniques. The Mott–Schottky measurements demonstrate an n-type semiconductor character for all samples with a carrier density varying between 1.47×1018 cm−3 and 3.14×1018 cm−3. Scanning electron microscopy (SEM) show arrays of vertically aligned ZnO nanorods (NRs) with good homogeneity. X-ray diffraction spectra demonstrate that films crystalline with the Würtzite structure with preferential (002) crystallographic orientation having c-axis perpendicular to the substrate. The high optical properties of the ZnO NRs with a low density of deep defects was checked by UV-Vis transmittance analyses, the band gap energy of films varies between 3.3 and 3.4 eV with transparency around 80-90 %.
Keywords
Full Text:
PDFReferences
S. Sepulveda-Guzman, B. Reeja-Jayan, E. de la Rosa, A. Torres-Castro, V. Gonzalez-Gonzalez, M. Jose-Yacaman, Mater. Chem. Phys. 115 (2009)172-178.
O. Lupan, V.M. Guérin, I.M. Tiginyanu, V.V. Ursaki, L. Chowc, H. Heinrich, T. Pauporté, J. Photochem. Photobiol. A 211, (2010)65-73.
S. O’Brien, M.G. Nolan, M. Çopuroglu, J.A. Hamilton, I. Povey, L. Pereira, R. Martins, E. Fortunato, M. Pemble, Thin Solid Films 518(2010)4515-4519.
Y. Yang, W. Guo, Ken C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z.L. Wang, Nano Letters 12 (2012)2833-2838.
D. Pradhan, K.T. Leung, Langmuir 24(2008)9707-9716.
D.Chu,T.Hamada,K.Kato,Y .Masuda, Physical Status Solidi A 206 (2009)718-723.
Y.N. Chang, M. Zhang, L. Xia, J. Zhang, G. Xing, Materials 5 (2012)2850-2871.
L. Luo, Y.F. Zhang, S.S. Mao, L.W. Lin, Sensor. Actuator A-Phys. 127(2006)201-206.
T. Minami, T. Yamamoto, T. Miyata, Thin Solid Films 366 (2000)63-68.
B.M. Ateav, A.M. Bagamadova, V.V. Mamedov,A.K. Omaev, Mater. Sci. Eng. B 65 (1999)159-163.
X.W. Sun, H.S. Kwok, J. Appl. Phys. 86 (1999) 408-411.
A. El Hichou, M. Addou, J. Ebothé, M. Troyon, J. Lumin. 113 (2005)183-190.
K. M. K. Srivatsa, D. Chhikara, M. S. Kumar, J. Mater. Sci. Technol. 27 (2011) 701-706
A. Henni, A. Merrouche. L. Telli, A. Azizi, R. Nechache, Sci. Semicond. Process. 31 (2015) 380-385.
A. Henni, A. Merrouche. L. Telli, A. Karar, FI. Ezema, H. Haffar, J. Solid State Electrochem. 20(8) (2015) 2135-2142.
A. Henni, A. Merrouche. L. Telli, A. Karar, J. Electroanal.
Chem. 763 (2016) 149-154.
M.R. Khelladi, L. Mentar, A. Beniaiche, L. Makhloufi, A. Azizi, J. Mater. Sci.: Mater. Electron. 24 (2013)153-159.
M. Izaki, T. Omi, Appl. Phys. Lett. 68 (1996)2439-2440.
A. Goux, T. Pauporte, J. Chivot, D. Lincot, Electrochim. Acta 50 (2005)2239-2248.
T. Singh, D.K. Pandya, R. Singh, Opt. Mater. 35 (2013) 1493–1497.
M. Izaki, T. Omi, J. Electrochem. Soc. 143 (1996)L53-L55.
6 2.0 2.4 2.8 3.2 3.6 4.0 ( h )2(eV2cm-2)Energy (eV)5
Z.H. Gu, T.Z. Fahidy, J. Electrochem. Soc. 146 (1999)156-159.
D. Ramirez, D. Silva, H. Gomez, G. Riveros, R.E. Marotti, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 91 (2007)1458-1461.
T. Pauporte, D. Lincot, J. Electroanal. Chem. 517(2001)54-62.
L. Qi, H. Yu, Z. Lei, Q. Wang, Q. Ouyang, C. Li, Y. Chen, Appl. Phys. A 111 (2013)279-284.
M.C. Kao, H.Z. Chen, S.L. Young, Appl. Phys. A 98 (2010)595-599.
S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum, New York, 1980, p. 127.
D. Pradhan, S.K. Mohapatra, S. Tymen, M. Misra, K.T. Leung, Mater. Express 1 (2011) 59-67.
J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15 (1966)627-637.
DOI: http://dx.doi.org/10.24294/ace.v1i3.641
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.