Effect of fused deposition modeling process parameter in influence of mechanical property of acrylonitrile butadiene styrene polymer

Raja Subramani, Arun Kumar Kalidass, Mohan Dass Muneeswaran, Balaji Gantala Lakshmipathi

Article ID: 3576
Vol 7, Issue 1, 2024

VIEWS - 267 (Abstract) 119 (PDF)

Abstract


The objective of this study is to investigate how the mechanical properties of components produced using acrylonitrile butadiene styrene (ABS) on a Creality Ender-3 3D printer are affected by various fused deposition modeling (FDM) printing parameters. The impact of various factors, including infill density, printing speed, platform temperature, extruder temperature, and so on, was assessed in terms of their influence on the ultimate tensile strength, yield strength, and elastic modulus of the manufactured components. The impact of each parameter was assessed using a Multi-criteria decision-making (MCDM) methodology. Finally, the second set of parameters, including a 35% infill thickness, 0.25 mm layer level, 40 mm/s printing speed, 75 °C platform temperature, 210 °C extruder temperature, and 75 mm/s travel speed, was discovered to be the most suitable for ABS filament used to make impellers.


Keywords


fused deposition modeling; thermoplastic polymer; 3D printing; mechanical property; process parameter analysis

Full Text:

PDF


References


1. Marino SG, Košťáková EK, Czél G. Development of pseudo-ductile interlayer hybrid composites of standard thickness plies by interleaving polyamide 6 nanofibrous layers. Composites Science and Technology. 2023, 234: 109924. doi: 10.1016/j.compscitech.2023.109924

2. Birosz MT, Safranyik F, Andó M. Concurrent shape and build orientation optimization for FDM additive manufacturing using the principal stress lines (PSL). Heliyon. 2023, 9(4): e15022. doi: 10.1016/j.heliyon.2023.e15022

3. Adapa SK, Jagadish. Prospects of Natural Fiber-Reinforced Polymer Composites for Additive Manufacturing Applications: A Review. JOM. 2023, 75(3): 920-940. doi: 10.1007/s11837-022-05670-w

4. Rajeshkumar G, Hariharan V, Indran S, et al. Influence of Sodium Hydroxide (NaOH) Treatment on Mechanical Properties and Morphological Behaviour of Phoenix sp. Fiber/Epoxy Composites. Journal of Polymers and the Environment. 2020, 29(3): 765-774. doi: 10.1007/s10924-020-01921-6

5. Baechle-Clayton M, Loos E, Taheri M, et al. Failures and Flaws in Fused Deposition Modeling (FDM) Additively Manufactured Polymers and Composites. Journal of Composites Science. 2022, 6(7): 202. doi: 10.3390/jcs6070202

6. Buj-Corral I, Zayas-Figueras EE. Comparative study about dimensional accuracy and form errors of FFF printed spur gears using PLA and Nylon. Polymer Testing. 2023, 117: 107862. doi: 10.1016/j.polymertesting.2022.107862

7. Sharma MP, Gupta PK, Kumar G. Process Parameters and Their Effect During Electrochemical Discharge Machining: A Review. Emerging Trends in Mechanical and Industrial Engineering. Published online 2023: 553-570. doi: 10.1007/978-981-19-6945-4_42

8. S., R., & A., J. R. (2023). Selection of polymer extrusion parameters by factorial experimental design—A decision making model. Scientia Iranica. doi: 10.24200/sci.2023.60096.6591

9. Abeykoon C, Sri-Amphorn P, Fernando A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture. 2020, 3(3): 284-297. doi: 10.1016/j.ijlmm.2020.03.003

10. Alhazmi MW, Backar A, Backar AH. Influence of infill density and orientation on the mechanical response of PLA+ specimens produced using FDM 3D printing fatigue behavior of austempered ductile iron view project stainless steels view project influence of infill density and orientation on. Int. J. Adv. Sci. Technol, 2020. 29(6): 3362–3371.

11. Banerjee D, Mishra SB, Sadique Khan M, et al. Mathematical approach for the geometrical deformation of fused deposition modelling build parts. Materials Today: Proceedings. 2020, 33: 5051-5054. doi: 10.1016/j.matpr.2020.02.842

12. Ayatollahi MR, Nabavi-Kivi A, Bahrami B, et al. The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Engineering Fracture Mechanics. 2020, 237: 107225. doi: 10.1016/j.engfracmech.2020.107225

13. Deshwal S, Kumar A, Chhabra D. Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement. CIRP Journal of Manufacturing Science and Technology. 2020, 31: 189-199. doi: 10.1016/j.cirpj.2020.05.009

14. Dave HK, Prajapati AR, Rajpurohit SR, et al. Investigation on tensile strength and failure modes of FDM printed part using in-house fabricated PLA filament. Advances in Materials and Processing Technologies. 2020, 8(1): 576-597. doi: 10.1080/2374068x.2020.1829951

15. Farayibi PK, Omiyale BO. Mechanical Behaviour of Polylactic Acid Parts Fabricated via Material Extrusion Process: A Taguchi-Grey Relational Analysis Approach. International Journal of Engineering Research in Africa. 2020, 46: 32-44. doi: 10.4028/www.scientific.net/jera.46.32

16. Kamaal M, Anas M, Rastogi H, et al. Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Progress in Additive Manufacturing. 2020, 6(1): 63-69. doi: 10.1007/s40964-020-00145-3

17. Son TA, Minh PS, Thanh TD. Effect of 3D Printing Parameters on the Tensile Strength of Products. Key Engineering Materials. 2020, 863: 103-108. doi: 10.4028/www.scientific.net/kem.863.103

18. Andrearczyk A, Bagiński P, Klonowicz P. Numerical and experimental investigations of a turbocharger with a compressor wheel made of additively manufactured plastic. International Journal of Mechanical Sciences. 2020, 178: 105613. doi: 10.1016/j.ijmecsci.2020.105613

19. Jiang S, Luo C, Lu Y. Multilayered nature in crystallization of polymer droplets studied by MD simulations: Orientation and entanglement. Polymer. 2023, 268: 125696. doi: 10.1016/j.polymer.2023.125696

20. Ren G, Wan K, Kong H, et al. Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydrate Polymers. 2023, 305: 120537. doi: 10.1016/j.carbpol.2023.120537

21. Prieto C, Lagaron JM. Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas. Nanomaterials. 2020, 10(2): 270. doi: 10.3390/nano10020270

22. Andrés MS, Chércoles R, Navarro E, et al. Use of 3D printing PLA and ABS materials for fine art. Analysis of composition and long-term behaviour of raw filament and printed parts. Journal of Cultural Heritage. 2023, 59: 181-189. doi: 10.1016/j.culher.2022.12.005

23. Raja S, Agrawal AP, P Patil P, et al. Optimization of 3D Printing Process Parameters of Polylactic Acid Filament Based on the Mechanical Test. Balaji GL, ed. International Journal of Chemical Engineering. 2022, 2022: 1-7. doi: 10.1155/2022/5830869

24. Joseph TM, Kallingal A, Suresh AM, et al. 3D printing of polylactic acid: recent advances and opportunities. The International Journal of Advanced Manufacturing Technology. 2023, 125(3-4): 1015-1035. doi: 10.1007/s00170-022-10795-y

25. Pulipaka A, Gide KM, Beheshti A, et al. Effect of 3D printing process parameters on surface and mechanical properties of FFF-printed PEEK. Journal of Manufacturing Processes. 2023, 85: 368-386. doi: 10.1016/j.jmapro.2022.11.057

26. French AD, Anguiano SA, Bliss M, et al. Mass spectrometric investigations into 3D printed parts to assess radiopurity as ultralow background materials for rare event physics detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2023, 1047: 167830. doi: 10.1016/j.nima.2022.167830

27. Hernandez-Carrillo I, Wood CJ, Liu H. Advanced materials for the impeller in an ORC radial microturbine. Energy Procedia. 2017, 129: 1047-1054. doi: 10.1016/j.egypro.2017.09.241

28. Pavlovic A, Sljivic M, Kraisnik M, et al. Polymers in additive manufacturing: The case of a water pump impeller. FME Transaction. 2017, 45(3): 354-359. doi: 10.5937/fmet1703354p

29. Polák M. Behaviour of 3D printed impellers in performance tests of hydrodynamic pump. In Proceedings of the 7th International Conference on Trends in Agricultural Engineering, Prague, Czech Republic. 17–20 September 2019; pp. 17–20.

30. Kyzyrov U, Turgali D. Performance Enhancement of a Centrifugal Pump by Impeller Retrofitting; Nazarbayev University School of Engineering and Digital Sciences: 2019. Available online: https://nur.nu.edu.kz/bitstream/handle/123456789/4476/Performance%20Enhancement%20of%20a%20Centrifugal%20Pump%20by%20Impeller%20Retrofitting.pdf;jsessionid=3A3B30B32BD593170B53A63F8FFC63C9?sequence=5 (accessed on 7 July 2019).

31. Kopparapu R, Mathew S, Siciliano E, et al. Designing a Centrifugal Pump System for High Altitude Water Crises. 2017.

32. Warner J, Celli D, Scott-Emuakpor O, et al. Fused Deposition Modeling Fabrication Evaluation of a Ti-6Al-4V Centrifugal Compressor. Journal of Engineering for Gas Turbines and Power. 2022, 145(3). doi: 10.1115/1.4055582

33. Matos T, Pinto V, Sousa P, et al. Design and In Situ Validation of Low-Cost and Easy to Apply Anti-Biofouling Techniques for Oceanographic Continuous Monitoring with Optical Instruments. Sensors. 2023, 23(2): 605. doi: 10.3390/s23020605

34. Mishra V, Negi S, Kar S. FDM-based additive manufacturing of recycled thermoplastics and associated composites. Journal of Material Cycles and Waste Management. 2023, 25(2): 758-784. doi: 10.1007/s10163-022-01588-2

35. Birosz MT, Andó M, Jeganmohan S. Finite Element Method modeling of Additive Manufactured Compressor Wheel. Journal of The Institution of Engineers (India): Series D. 2021, 102(1): 79-85. doi: 10.1007/s40033-021-00251-8

36. Yost S. Increased Interlayer Adhesion of Additively Manufactured Parts. 2023.

37. Hannouch A, Habchi C, Metni N, et al. Thermal analysis of a 3D printed thermal manikin inside an infant incubator. International Journal of Thermal Sciences. 2023, 183: 107826. doi: 10.1016/j.ijthermalsci.2022.107826

38. Subramani R, Kaliappan S, Sekar S, et al. Polymer Filament Process Parameter Optimization with Mechanical Test and Morphology Analysis. Thanigaivelan R, ed. Advances in Materials Science and Engineering. 2022, 2022: 1-8. doi: 10.1155/2022/8259804

39. Odetti A, Altosole M, Bruzzone G, et al. Design and Construction of a Modular Pump-Jet Thruster for Autonomous Surface Vehicle Operations in Extremely Shallow Water. Journal of Marine Science and Engineering. 2019, 7(7): 222. doi: 10.3390/jmse7070222.

40. Zywica G, Kaczmarczyk TZ, Ihnatowicz E, et al. Application OF a heat resistant plastic IN a high-speed microturbine designed for the domestic ORC system. Int. Semin. ORC Power Syst., 2019. 1–8.

41. Malaga A, Vinodh S. Technology Selection for Additive Manufacturing in Industry 4.0 Scenario Using Hybrid MCDM Approach. Industry 40 and Advanced Manufacturing. Published online July 24, 2022: 207-217. doi: 10.1007/978-981-19-0561-2_19

42. Raja S, Rajan AJ. A Decision-Making Model for Selection of the Suitable FDM Machine Using Fuzzy TOPSIS. Gupta P, ed. Mathematical Problems in Engineering. 2022, 2022: 1-15. doi: 10.1155/2022/7653292

43. Ghuge S, Parhi S. Additive Manufacturing Service Provider Selection Using a Neutrosophic Best Worst Method. Procedia Computer Science. 2023, 217: 1550-1559. doi: 10.1016/j.procs.2022.12.355

44. Chandra M, Shahab F, KEK V, et al. Selection for additive manufacturing using hybrid MCDM technique considering sustainable concepts. Rapid Prototyping Journal. 2022, 28(7): 1297-1311. doi: 10.1108/rpj-06-2021-0155

45. Raja S, John Rajan A, Praveen Kumar V, et al. Selection of Additive Manufacturing Machine Using Analytical Hierarchy Process. Gupta P, ed. Scientific Programming. 2022, 2022: 1-20. doi: 10.1155/2022/1596590

46. Subramani R, Kaliappan S, Arul kumar PV, et al. A Recent Trend on Additive Manufacturing Sustainability with Supply Chain Management Concept, Multicriteria Decision Making Techniques. Thanigaivelan R, ed. Advances in Materials Science and Engineering. 2022, 2022: 1-12. doi: 10.1155/2022/9151839

47. Aydoğdu E, Güner E, Aldemir B, et al. Complex spherical fuzzy TOPSIS based on entropy. Expert Systems with Applications. 2023, 215: 119331. doi: 10.1016/j.eswa.2022.119331

48. Olaiya NG, Maraveas C, Salem MA, et al. Viscoelastic and Properties of Amphiphilic Chitin in Plasticised Polylactic Acid/Starch Biocomposite. Polymers. 2022, 14(11): 2268. doi: 10.3390/polym14112268

49. Sekhar KC, Surakasi R, Roy DrP, et al. Mechanical Behavior of Aluminum and Graphene Nanopowder-Based Composites. Balaji GL, ed. International Journal of Chemical Engineering. 2022, 2022: 1-13. doi: 10.1155/2022/2224482

50. Velmurugan G, Siva Shankar V, Kaliappan S, et al. Effect of Aluminium Tetrahydrate Nanofiller Addition on the Mechanical and Thermal Behaviour of Luffa Fibre-Based Polyester Composites under Cryogenic Environment. Lakshmipathy R, ed. Journal of Nanomaterials. 2022, 2022: 1-10. doi: 10.1155/2022/5970534

51. Karthick M, Meikandan M, Kaliappan S, et al. Experimental Investigation on Mechanical Properties of Glass Fiber Hybridized Natural Fiber Reinforced Penta-Layered Hybrid Polymer Composite. Balaji GL, ed. International Journal of Chemical Engineering. 2022, 2022: 1-9. doi: 10.1155/2022/1864446

52. Natrayan L, Kaliappan S, Baskara Sethupathy S, et al. Investigation on Interlaminar Shear Strength and Moisture Absorption Properties of Soybean Oil Reinforced with Aluminium Trihydrate-Filled Polyester-Based Nanocomposites. R L, ed. Journal of Nanomaterials. 2022, 2022: 1-8. doi: 10.1155/2022/7588699

53. Tamil Mannan K, Sivaprakash V, Raja S, et al. Effect of Roselle and biochar reinforced natural fiber composites for construction applications in cryogenic environment. Materials Today: Proceedings. 2022, 69: 1361-1368. doi: 10.1016/j.matpr.2022.09.003

54. Velu R, Tulasi R, Ramachandran MK. Environmental Impact, Challenges for Industrial Applications and Future Perspectives of Additive Manufacturing. Nanotechnology‐Based Additive Manufacturing. Published online December 23, 2022: 691-709. doi: 10.1002/9783527835478.ch24

55. Tamil Mannan K, Sivaprakash V, Raja S, et al. Significance of Si3N4/Lime powder addition on the mechanical properties of natural calotropis gigantea composites. Materials Today: Proceedings. 2022, 69: 1355-1360. doi: 10.1016/j.matpr.2022.09.002

56. He F, Yuan L, Mu H, et al. Research and application of artificial intelligence techniques for wire arc additive manufacturing: a state-of-the-art review. Robotics and Computer-Integrated Manufacturing. 2023, 82: 102525. doi: 10.1016/j.rcim.2023.102525

57. Guo H, Xu J, Zhang S, et al. Multi-orientation optimization of complex parts based on model segmentation in additive manufacturing. Journal of Mechanical Science and Technology. 2023, 37(1): 317-331. doi: 10.1007/s12206-022-1231-2

58. Li S, Johnson MS, Sitnikova E, et al. Laminated beams/shafts of annular cross-section subject to combined loading. Thin-Walled Structures. 2023, 182: 110153. doi: 10.1016/j.tws.2022.110153

59. Raja S, Logeshwaran J, Venkatasubramanian S, et al. OCHSA: Designing Energy-Efficient Lifetime-Aware Leisure Degree Adaptive Routing Protocol with Optimal Cluster Head Selection for 5G Communication Network Disaster Management. Gupta P, ed. Scientific Programming. 2022, 2022: 1-11. doi: 10.1155/2022/5424356

60. Heinisuo M, Pajunen S, Aspila A. Ultimate failure load analysis of cross-laminated timber panels subjected to in-plane compression. Structures. 2023, 47: 1558-1565. doi: 10.1016/j.istruc.2022.12.016

61. Raja S, Logeshwaran J, Venkatasubramanian S, et al. OCHSA: Designing Energy-Efficient Lifetime-Aware Leisure Degree Adaptive Routing Protocol with Optimal Cluster Head Selection for 5G Communication Network Disaster Management. Gupta P, ed. Scientific Programming. 2022, 2022: 1-11. doi: 10.1155/2022/5424356

62. Ji C, Hu J, Sadighi M, et al. Experimental and theoretical study on residual ultimate strength after impact of CF/PEEK-titanium hybrid laminates with nano-interfacial enhancement. Composites Science and Technology. 2023, 232: 109871. doi: 10.1016/j.compscitech.2022.109871

63. Kmita-Fudalej G, Szewczyk W, Kołakowski Z. Bending Stiffness of Honeycomb Paperboard. Materials. 2022, 16(1): 156. doi: 10.3390/ma16010156

64. Kam M, Saruhan H, İpekçi A. Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2019, 7(2): 147-157. doi: 10.29130/dubited.441221

65. Srinivasan R, Pridhar T, Ramprasath LS, et al. Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM). Materials Today: Proceedings. 2020, 27: 1827-1832. doi: 10.1016/j.matpr.2020.03.788

66. Dev S, Srivastava R. Experimental investigation and optimization of FDM process parameters for material and mechanical strength. Materials Today: Proceedings. 2020, 26: 1995-1999. doi: 10.1016/j.matpr.2020.02.435

67. Radhwan H, Shayfull Z, Abdellah AEH, et al. Optimization parameter effects on the strength of 3D-printing process using Taguchi method. AIP Conference Proceedings. Published online 2019. doi: 10.1063/1.5118162

68. Garzon-Hernandez S, Garcia-Gonzalez D, Jérusalem A, et al. Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties. Materials & Design. 2020, 188: 108414. doi: 10.1016/j.matdes.2019.108414

69. Kiendl J, Gao C. Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Composites Part B: Engineering. 2020, 180: 107562. doi: 10.1016/j.compositesb.2019.107562

70. Praveenkumar V, Raja S, Jamadon NH, et al. Role of laser power and scan speed combination on the surface quality of additive manufactured nickel-based superalloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. Published online November 13, 2023. doi: 10.1177/14644207231212566

71. Alafaghani A, Qattawi A, Alrawi B, et al. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manufacturing. 2017, 10: 791-803. doi: 10.1016/j.promfg.2017.07.079

72. Huu NH, Phuoc DP, Huu TN, et al. Optimization of The FDM Parameters to Improve The Compressive Strength of The PLA-copper Based Products. IOP Conference Series: Materials Science and Engineering. 2019, 530(1): 012001. doi: 10.1088/1757-899x/530/1/012001




DOI: https://doi.org/10.24294/ace.v7i1.3576

Refbacks



License URL: https://creativecommons.org/licenses/by-nc/4.0/