Effect of fused deposition modeling process parameter in influence of mechanical property of acrylonitrile butadiene styrene polymer
Vol 7, Issue 1, 2024
VIEWS - 467 (Abstract) 306 (PDF)
Abstract
The objective of this study is to investigate how the mechanical properties of components produced using acrylonitrile butadiene styrene (ABS) on a Creality Ender-3 3D printer are affected by various fused deposition modeling (FDM) printing parameters. The impact of various factors, including infill density, printing speed, platform temperature, extruder temperature, and so on, was assessed in terms of their influence on the ultimate tensile strength, yield strength, and elastic modulus of the manufactured components. The impact of each parameter was assessed using a Multi-criteria decision-making (MCDM) methodology. Finally, the second set of parameters, including a 35% infill thickness, 0.25 mm layer level, 40 mm/s printing speed, 75 °C platform temperature, 210 °C extruder temperature, and 75 mm/s travel speed, was discovered to be the most suitable for ABS filament used to make impellers.
Keywords
Full Text:
PDFReferences
1. Marino SG, Košťáková EK, Czél G. Development of pseudo-ductile interlayer hybrid composites of standard thickness plies by interleaving polyamide 6 nanofibrous layers. Composites Science and Technology. 2023, 234: 109924. doi: 10.1016/j.compscitech.2023.109924
2. Birosz MT, Safranyik F, Andó M. Concurrent shape and build orientation optimization for FDM additive manufacturing using the principal stress lines (PSL). Heliyon. 2023, 9(4): e15022. doi: 10.1016/j.heliyon.2023.e15022
3. Adapa SK, Jagadish. Prospects of Natural Fiber-Reinforced Polymer Composites for Additive Manufacturing Applications: A Review. JOM. 2023, 75(3): 920-940. doi: 10.1007/s11837-022-05670-w
4. Rajeshkumar G, Hariharan V, Indran S, et al. Influence of Sodium Hydroxide (NaOH) Treatment on Mechanical Properties and Morphological Behaviour of Phoenix sp. Fiber/Epoxy Composites. Journal of Polymers and the Environment. 2020, 29(3): 765-774. doi: 10.1007/s10924-020-01921-6
5. Baechle-Clayton M, Loos E, Taheri M, et al. Failures and Flaws in Fused Deposition Modeling (FDM) Additively Manufactured Polymers and Composites. Journal of Composites Science. 2022, 6(7): 202. doi: 10.3390/jcs6070202
6. Buj-Corral I, Zayas-Figueras EE. Comparative study about dimensional accuracy and form errors of FFF printed spur gears using PLA and Nylon. Polymer Testing. 2023, 117: 107862. doi: 10.1016/j.polymertesting.2022.107862
7. Sharma MP, Gupta PK, Kumar G. Process Parameters and Their Effect During Electrochemical Discharge Machining: A Review. Emerging Trends in Mechanical and Industrial Engineering. Published online 2023: 553-570. doi: 10.1007/978-981-19-6945-4_42
8. S., R., & A., J. R. (2023). Selection of polymer extrusion parameters by factorial experimental design—A decision making model. Scientia Iranica. doi: 10.24200/sci.2023.60096.6591
9. Abeykoon C, Sri-Amphorn P, Fernando A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture. 2020, 3(3): 284-297. doi: 10.1016/j.ijlmm.2020.03.003
10. Alhazmi MW, Backar A, Backar AH. Influence of infill density and orientation on the mechanical response of PLA+ specimens produced using FDM 3D printing fatigue behavior of austempered ductile iron view project stainless steels view project influence of infill density and orientation on. Int. J. Adv. Sci. Technol, 2020. 29(6): 3362–3371.
11. Banerjee D, Mishra SB, Sadique Khan M, et al. Mathematical approach for the geometrical deformation of fused deposition modelling build parts. Materials Today: Proceedings. 2020, 33: 5051-5054. doi: 10.1016/j.matpr.2020.02.842
12. Ayatollahi MR, Nabavi-Kivi A, Bahrami B, et al. The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Engineering Fracture Mechanics. 2020, 237: 107225. doi: 10.1016/j.engfracmech.2020.107225
13. Deshwal S, Kumar A, Chhabra D. Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement. CIRP Journal of Manufacturing Science and Technology. 2020, 31: 189-199. doi: 10.1016/j.cirpj.2020.05.009
14. Dave HK, Prajapati AR, Rajpurohit SR, et al. Investigation on tensile strength and failure modes of FDM printed part using in-house fabricated PLA filament. Advances in Materials and Processing Technologies. 2020, 8(1): 576-597. doi: 10.1080/2374068x.2020.1829951
15. Farayibi PK, Omiyale BO. Mechanical Behaviour of Polylactic Acid Parts Fabricated via Material Extrusion Process: A Taguchi-Grey Relational Analysis Approach. International Journal of Engineering Research in Africa. 2020, 46: 32-44. doi: 10.4028/www.scientific.net/jera.46.32
16. Kamaal M, Anas M, Rastogi H, et al. Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Progress in Additive Manufacturing. 2020, 6(1): 63-69. doi: 10.1007/s40964-020-00145-3
17. Son TA, Minh PS, Thanh TD. Effect of 3D Printing Parameters on the Tensile Strength of Products. Key Engineering Materials. 2020, 863: 103-108. doi: 10.4028/www.scientific.net/kem.863.103
18. Andrearczyk A, Bagiński P, Klonowicz P. Numerical and experimental investigations of a turbocharger with a compressor wheel made of additively manufactured plastic. International Journal of Mechanical Sciences. 2020, 178: 105613. doi: 10.1016/j.ijmecsci.2020.105613
19. Jiang S, Luo C, Lu Y. Multilayered nature in crystallization of polymer droplets studied by MD simulations: Orientation and entanglement. Polymer. 2023, 268: 125696. doi: 10.1016/j.polymer.2023.125696
20. Ren G, Wan K, Kong H, et al. Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydrate Polymers. 2023, 305: 120537. doi: 10.1016/j.carbpol.2023.120537
21. Prieto C, Lagaron JM. Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas. Nanomaterials. 2020, 10(2): 270. doi: 10.3390/nano10020270
22. Andrés MS, Chércoles R, Navarro E, et al. Use of 3D printing PLA and ABS materials for fine art. Analysis of composition and long-term behaviour of raw filament and printed parts. Journal of Cultural Heritage. 2023, 59: 181-189. doi: 10.1016/j.culher.2022.12.005
23. Raja S, Agrawal AP, P Patil P, et al. Optimization of 3D Printing Process Parameters of Polylactic Acid Filament Based on the Mechanical Test. Balaji GL, ed. International Journal of Chemical Engineering. 2022, 2022: 1-7. doi: 10.1155/2022/5830869
24. Joseph TM, Kallingal A, Suresh AM, et al. 3D printing of polylactic acid: recent advances and opportunities. The International Journal of Advanced Manufacturing Technology. 2023, 125(3-4): 1015-1035. doi: 10.1007/s00170-022-10795-y
25. Pulipaka A, Gide KM, Beheshti A, et al. Effect of 3D printing process parameters on surface and mechanical properties of FFF-printed PEEK. Journal of Manufacturing Processes. 2023, 85: 368-386. doi: 10.1016/j.jmapro.2022.11.057
26. French AD, Anguiano SA, Bliss M, et al. Mass spectrometric investigations into 3D printed parts to assess radiopurity as ultralow background materials for rare event physics detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2023, 1047: 167830. doi: 10.1016/j.nima.2022.167830
27. Hernandez-Carrillo I, Wood CJ, Liu H. Advanced materials for the impeller in an ORC radial microturbine. Energy Procedia. 2017, 129: 1047-1054. doi: 10.1016/j.egypro.2017.09.241
28. Pavlovic A, Sljivic M, Kraisnik M, et al. Polymers in additive manufacturing: The case of a water pump impeller. FME Transaction. 2017, 45(3): 354-359. doi: 10.5937/fmet1703354p
29. Polák M. Behaviour of 3D printed impellers in performance tests of hydrodynamic pump. In Proceedings of the 7th International Conference on Trends in Agricultural Engineering, Prague, Czech Republic. 17–20 September 2019; pp. 17–20.
30. Kyzyrov U, Turgali D. Performance Enhancement of a Centrifugal Pump by Impeller Retrofitting; Nazarbayev University School of Engineering and Digital Sciences: 2019. Available online: https://nur.nu.edu.kz/bitstream/handle/123456789/4476/Performance%20Enhancement%20of%20a%20Centrifugal%20Pump%20by%20Impeller%20Retrofitting.pdf;jsessionid=3A3B30B32BD593170B53A63F8FFC63C9?sequence=5 (accessed on 7 July 2019).
31. Kopparapu R, Mathew S, Siciliano E, et al. Designing a Centrifugal Pump System for High Altitude Water Crises. 2017.
32. Warner J, Celli D, Scott-Emuakpor O, et al. Fused Deposition Modeling Fabrication Evaluation of a Ti-6Al-4V Centrifugal Compressor. Journal of Engineering for Gas Turbines and Power. 2022, 145(3). doi: 10.1115/1.4055582
33. Matos T, Pinto V, Sousa P, et al. Design and In Situ Validation of Low-Cost and Easy to Apply Anti-Biofouling Techniques for Oceanographic Continuous Monitoring with Optical Instruments. Sensors. 2023, 23(2): 605. doi: 10.3390/s23020605
34. Mishra V, Negi S, Kar S. FDM-based additive manufacturing of recycled thermoplastics and associated composites. Journal of Material Cycles and Waste Management. 2023, 25(2): 758-784. doi: 10.1007/s10163-022-01588-2
35. Birosz MT, Andó M, Jeganmohan S. Finite Element Method modeling of Additive Manufactured Compressor Wheel. Journal of The Institution of Engineers (India): Series D. 2021, 102(1): 79-85. doi: 10.1007/s40033-021-00251-8
36. Yost S. Increased Interlayer Adhesion of Additively Manufactured Parts. 2023.
37. Hannouch A, Habchi C, Metni N, et al. Thermal analysis of a 3D printed thermal manikin inside an infant incubator. International Journal of Thermal Sciences. 2023, 183: 107826. doi: 10.1016/j.ijthermalsci.2022.107826
38. Subramani R, Kaliappan S, Sekar S, et al. Polymer Filament Process Parameter Optimization with Mechanical Test and Morphology Analysis. Thanigaivelan R, ed. Advances in Materials Science and Engineering. 2022, 2022: 1-8. doi: 10.1155/2022/8259804
39. Odetti A, Altosole M, Bruzzone G, et al. Design and Construction of a Modular Pump-Jet Thruster for Autonomous Surface Vehicle Operations in Extremely Shallow Water. Journal of Marine Science and Engineering. 2019, 7(7): 222. doi: 10.3390/jmse7070222.
40. Zywica G, Kaczmarczyk TZ, Ihnatowicz E, et al. Application OF a heat resistant plastic IN a high-speed microturbine designed for the domestic ORC system. Int. Semin. ORC Power Syst., 2019. 1–8.
41. Malaga A, Vinodh S. Technology Selection for Additive Manufacturing in Industry 4.0 Scenario Using Hybrid MCDM Approach. Industry 40 and Advanced Manufacturing. Published online July 24, 2022: 207-217. doi: 10.1007/978-981-19-0561-2_19
42. Raja S, Rajan AJ. A Decision-Making Model for Selection of the Suitable FDM Machine Using Fuzzy TOPSIS. Gupta P, ed. Mathematical Problems in Engineering. 2022, 2022: 1-15. doi: 10.1155/2022/7653292
43. Ghuge S, Parhi S. Additive Manufacturing Service Provider Selection Using a Neutrosophic Best Worst Method. Procedia Computer Science. 2023, 217: 1550-1559. doi: 10.1016/j.procs.2022.12.355
44. Chandra M, Shahab F, KEK V, et al. Selection for additive manufacturing using hybrid MCDM technique considering sustainable concepts. Rapid Prototyping Journal. 2022, 28(7): 1297-1311. doi: 10.1108/rpj-06-2021-0155
45. Raja S, John Rajan A, Praveen Kumar V, et al. Selection of Additive Manufacturing Machine Using Analytical Hierarchy Process. Gupta P, ed. Scientific Programming. 2022, 2022: 1-20. doi: 10.1155/2022/1596590
46. Subramani R, Kaliappan S, Arul kumar PV, et al. A Recent Trend on Additive Manufacturing Sustainability with Supply Chain Management Concept, Multicriteria Decision Making Techniques. Thanigaivelan R, ed. Advances in Materials Science and Engineering. 2022, 2022: 1-12. doi: 10.1155/2022/9151839
47. Aydoğdu E, Güner E, Aldemir B, et al. Complex spherical fuzzy TOPSIS based on entropy. Expert Systems with Applications. 2023, 215: 119331. doi: 10.1016/j.eswa.2022.119331
48. Olaiya NG, Maraveas C, Salem MA, et al. Viscoelastic and Properties of Amphiphilic Chitin in Plasticised Polylactic Acid/Starch Biocomposite. Polymers. 2022, 14(11): 2268. doi: 10.3390/polym14112268
49. Sekhar KC, Surakasi R, Roy DrP, et al. Mechanical Behavior of Aluminum and Graphene Nanopowder-Based Composites. Balaji GL, ed. International Journal of Chemical Engineering. 2022, 2022: 1-13. doi: 10.1155/2022/2224482
50. Velmurugan G, Siva Shankar V, Kaliappan S, et al. Effect of Aluminium Tetrahydrate Nanofiller Addition on the Mechanical and Thermal Behaviour of Luffa Fibre-Based Polyester Composites under Cryogenic Environment. Lakshmipathy R, ed. Journal of Nanomaterials. 2022, 2022: 1-10. doi: 10.1155/2022/5970534
51. Karthick M, Meikandan M, Kaliappan S, et al. Experimental Investigation on Mechanical Properties of Glass Fiber Hybridized Natural Fiber Reinforced Penta-Layered Hybrid Polymer Composite. Balaji GL, ed. International Journal of Chemical Engineering. 2022, 2022: 1-9. doi: 10.1155/2022/1864446
52. Natrayan L, Kaliappan S, Baskara Sethupathy S, et al. Investigation on Interlaminar Shear Strength and Moisture Absorption Properties of Soybean Oil Reinforced with Aluminium Trihydrate-Filled Polyester-Based Nanocomposites. R L, ed. Journal of Nanomaterials. 2022, 2022: 1-8. doi: 10.1155/2022/7588699
53. Tamil Mannan K, Sivaprakash V, Raja S, et al. Effect of Roselle and biochar reinforced natural fiber composites for construction applications in cryogenic environment. Materials Today: Proceedings. 2022, 69: 1361-1368. doi: 10.1016/j.matpr.2022.09.003
54. Velu R, Tulasi R, Ramachandran MK. Environmental Impact, Challenges for Industrial Applications and Future Perspectives of Additive Manufacturing. Nanotechnology‐Based Additive Manufacturing. Published online December 23, 2022: 691-709. doi: 10.1002/9783527835478.ch24
55. Tamil Mannan K, Sivaprakash V, Raja S, et al. Significance of Si3N4/Lime powder addition on the mechanical properties of natural calotropis gigantea composites. Materials Today: Proceedings. 2022, 69: 1355-1360. doi: 10.1016/j.matpr.2022.09.002
56. He F, Yuan L, Mu H, et al. Research and application of artificial intelligence techniques for wire arc additive manufacturing: a state-of-the-art review. Robotics and Computer-Integrated Manufacturing. 2023, 82: 102525. doi: 10.1016/j.rcim.2023.102525
57. Guo H, Xu J, Zhang S, et al. Multi-orientation optimization of complex parts based on model segmentation in additive manufacturing. Journal of Mechanical Science and Technology. 2023, 37(1): 317-331. doi: 10.1007/s12206-022-1231-2
58. Li S, Johnson MS, Sitnikova E, et al. Laminated beams/shafts of annular cross-section subject to combined loading. Thin-Walled Structures. 2023, 182: 110153. doi: 10.1016/j.tws.2022.110153
59. Raja S, Logeshwaran J, Venkatasubramanian S, et al. OCHSA: Designing Energy-Efficient Lifetime-Aware Leisure Degree Adaptive Routing Protocol with Optimal Cluster Head Selection for 5G Communication Network Disaster Management. Gupta P, ed. Scientific Programming. 2022, 2022: 1-11. doi: 10.1155/2022/5424356
60. Heinisuo M, Pajunen S, Aspila A. Ultimate failure load analysis of cross-laminated timber panels subjected to in-plane compression. Structures. 2023, 47: 1558-1565. doi: 10.1016/j.istruc.2022.12.016
61. Raja S, Logeshwaran J, Venkatasubramanian S, et al. OCHSA: Designing Energy-Efficient Lifetime-Aware Leisure Degree Adaptive Routing Protocol with Optimal Cluster Head Selection for 5G Communication Network Disaster Management. Gupta P, ed. Scientific Programming. 2022, 2022: 1-11. doi: 10.1155/2022/5424356
62. Ji C, Hu J, Sadighi M, et al. Experimental and theoretical study on residual ultimate strength after impact of CF/PEEK-titanium hybrid laminates with nano-interfacial enhancement. Composites Science and Technology. 2023, 232: 109871. doi: 10.1016/j.compscitech.2022.109871
63. Kmita-Fudalej G, Szewczyk W, Kołakowski Z. Bending Stiffness of Honeycomb Paperboard. Materials. 2022, 16(1): 156. doi: 10.3390/ma16010156
64. Kam M, Saruhan H, İpekçi A. Investigation the Effect of 3d Printer System Vibrations on Surface Roughness of the Printed Products. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2019, 7(2): 147-157. doi: 10.29130/dubited.441221
65. Srinivasan R, Pridhar T, Ramprasath LS, et al. Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM). Materials Today: Proceedings. 2020, 27: 1827-1832. doi: 10.1016/j.matpr.2020.03.788
66. Dev S, Srivastava R. Experimental investigation and optimization of FDM process parameters for material and mechanical strength. Materials Today: Proceedings. 2020, 26: 1995-1999. doi: 10.1016/j.matpr.2020.02.435
67. Radhwan H, Shayfull Z, Abdellah AEH, et al. Optimization parameter effects on the strength of 3D-printing process using Taguchi method. AIP Conference Proceedings. Published online 2019. doi: 10.1063/1.5118162
68. Garzon-Hernandez S, Garcia-Gonzalez D, Jérusalem A, et al. Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties. Materials & Design. 2020, 188: 108414. doi: 10.1016/j.matdes.2019.108414
69. Kiendl J, Gao C. Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Composites Part B: Engineering. 2020, 180: 107562. doi: 10.1016/j.compositesb.2019.107562
70. Praveenkumar V, Raja S, Jamadon NH, et al. Role of laser power and scan speed combination on the surface quality of additive manufactured nickel-based superalloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. Published online November 13, 2023. doi: 10.1177/14644207231212566
71. Alafaghani A, Qattawi A, Alrawi B, et al. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manufacturing. 2017, 10: 791-803. doi: 10.1016/j.promfg.2017.07.079
72. Huu NH, Phuoc DP, Huu TN, et al. Optimization of The FDM Parameters to Improve The Compressive Strength of The PLA-copper Based Products. IOP Conference Series: Materials Science and Engineering. 2019, 530(1): 012001. doi: 10.1088/1757-899x/530/1/012001
DOI: https://doi.org/10.24294/ace.v7i1.3576
Refbacks
License URL: https://creativecommons.org/licenses/by-nc/4.0/