Abstract
The combustion chamber is a crucial component in power generation within a micro gas turbine. This paper prioritizes practical over theoretical considerations in designing an efficient, small-scale combustion chamber for micro gas turbine applications. The investigation covers the temperature profile within the combustion chamber, employing 19 reversible reactions and considering 9 different chemical species in reactive flow calculations. Preliminary experiments demonstrate hydrogen as a feasible fuel in a micro combustion chamber, generating approximately 1 kW of thermal power. Turbulence physics are assessed using the accurate k-Ɛ model. Findings indicate a reactant inlet temperature of 300 K and a primary zone temperature of 1750 K. This research suggests that minimizing the back pressure effect in a steady-state micro combustion chamber can improve turbine performance.
Keywords
fuel; micro combustion chamber; temperature, design
References
Machineni L, Deepanraj B, Chew KW, et al. Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods. Renewable and Sustainable Energy Reviews 2023; 182: 113344. doi: 10.1016/j.rser.2023.113344
Balakrishnan D, Manmai N, Ponnambalam S, et al. Optimized model of fermentable sugar production from Napier grass for biohydrogen generation via dark fermentation. International Journal of Hydrogen Energy 2023; 48(55): 21152–21160. doi: 10.1016/j.ijhydene.2022.12.011
Zhao Z, Zuo Z, Wang W, et al. Performance optimization for a combustion-based micro thermoelectric generator with two-stage thermoelectric module. Applied Thermal Engineering 2021; 198: 117464. doi: 10.1016/j.applthermaleng.2021.117464
Hiranandani K, Aravind B, Ratna Kishore V, et al. Development of a numerical model for performance prediction of an integrated microcombustor-thermoelectric power generator. Energy 2020; 192: 116624. doi: 10.1016/j.energy.2019.116624
Aravind B, Raghuram GKS, Kishore VR, et al. Compact design of planar stepped micro combustor for portable thermoelectric power generation. Energy Conversion and Management 2018; 156: 224–234. doi: 10.1016/j.enconman.2017.11.021
Hu L, Tian Q, Zou C, et al. A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data. Renewable and Sustainable Energy Reviews 2022; 162: 112416. doi: 10.1016/j.rser.2022.112416
Xie B, Peng Q, Yang W, et al. Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic. Energy 2022; 239: 122341. doi: 10.1016/j.energy.2021.122341
Galazutdinova Y, Al‐Hallaj S, Grágeda M, et al. Development of the inorganic composite phase change materials for passive thermal management of Li‐ion batteries: Material characterization. International Journal of Energy Research 2019; 44(3): 2011–2022. doi: 10.1002/er.5054
Ansari M, Amani E. Micro-combustor performance enhancement using a novel combined baffle-bluff configuration. Chemical Engineering Science 2018; 175: 243–256. doi: 10.1016/j.ces.2017.10.001
Wan J, Shang C, Zhao H. Anchoring mechanisms of methane/air premixed flame in a mesoscale diverging combustor with cylindrical flame holder. Fuel 2018; 232: 591–599. doi: 10.1016/j.fuel.2018.06.027
Peng Q, E J, Zhang Z, et al. Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor. Applied Thermal Engineering 2018; 130: 541–551. doi: 10.1016/j.applthermaleng.2017.11.016
Bagheri G, Hosseini SE, Wahid MA. Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen–air mixture. Applied Thermal Engineering 2014; 67(1–2): 266–272. doi: 10.1016/j.applthermaleng.2014.03.040
E J, Peng Q, Liu X, et al. Numerical investigation on hydrogen/air non-premixed combustion in a three-dimensional micro combustor. Energy Conversion and Management 2016; 124: 427–438. doi: 10.1016/j.enconman.2016.07.048
Haj Ayed A, Kusterer K, Funke HHW, et al. Experimental and numerical investigations of the dry-low-NOX hydrogen micromix combustion chamber of an industrial gas turbine. Propulsion and Power Research 2015; 4(3): 123–131. doi: 10.1016/j.jppr.2015.07.005
Epstein AH. Millimeter-scale, micro-electro-mechanical systems gas turbine engines. Journal of Engineering for Gas Turbines and Power 2004; 126(2): 205–226. doi: 10.1115/1.1739245
Cao HL, Xu JL. Thermal performance of a micro-combustor for micro-gas turbine system. Energy Conversion and Management 2007; 48(5): 1569–1578. doi: 10.1016/j.enconman.2006.11.022
Jiang L, Zhao D, Yamashita H. Study on a lower heat loss micro gas turbine combustor with porous inlet. Combustion Science and Technology 2015; 187(9): 1376–1391. doi: 10.1080/00102202.2015.1019615
Wan J, Fan A, Yao H, et al. Effect of thermal conductivity of solid wall on combustion efficiency of a micro-combustor with cavities. Energy Conversion and Management 2015; 96: 605–612. doi: 10.1016/j.enconman.2015.03.030
Wan J, Fan A, Yao H, et al. Flame-anchoring mechanisms of a micro cavity-combustor for premixed H2/air flame. Chemical Engineering Journal 2015; 275: 17–26. doi: 10.1016/j.cej.2015.04.011
Gad MS, Elsoly A, Hamed HM, et al. Impact of oxy-hydrogen enriched gasoline on petrol engine performance and emissions. Journal of Thermal Analysis and Calorimetry 2022; 147(23): 13793–13803. doi: 10.1007/s10973-022-11513-2
Gad MS, El-Shafay AS, Ağbulut Ü, et al. Impact of produced oxyhydrogen gas (HHO) from dry cell electrolyser on spark ignition engine characteristics. International Journal of Hydrogen Energy 2024; 49: 553–563. doi: 10.1016/j.ijhydene.2023.08.210
Chen H, Liu W. Numerical investigation of the combustion in an improved micro combustion chamber with rib. Journal of Chemistry 2019; 2019: 1–12. doi: 10.1155/2019/8354541
Wang S, Yuan Z, Fan A. Experimental investigation on non-premixed CH4/air combustion in a novel miniature Swiss-roll combustor. Chemical Engineering and Processing - Process Intensification 2019; 139: 44–50. doi: 10.1016/j.cep.2019.03.019
Li J, Yang G, Wang S, et al. Experimental and numerical investigation on non-premixed CH4/air combustion in a micro Swiss-roll combustor. Fuel 2023; 349: 128740. doi: 10.1016/j.fuel.2023.128740
Ma L, Fang Q, Zhang C, et al. A novel Swiss-roll micro-combustor with double combustion chambers: A numerical investigation on effect of solid material on premixed CH4/air flame blow-off limit. International Journal of Hydrogen Energy 2021; 46(29): 16116–16126. doi: 10.1016/j.ijhydene.2021.02.118
Lefebvre AH. Gas Turbine Combustion, 2nd ed. Taylor and Francis; 1999.
Saravanamutto H, Cohen H, Rogers GFC, Straznicky PV. Gas Turbine Theory, 6th ed. Pearson College Div; 2008. 608p.
Pandya MP. Design Optimization and Simulation of Radial Inflow Gas Turbine in Small Capacity Range [PhD thesis]. Sardar Vallabhbhai Patel National Institute of Technology; 2004.
Kulshreshtha DB, Channiwala SA. Hydrogen fuelled micro gas turbine combustion chamber. HKIE Transactions 2011; 18(2): 19–25. doi: 10.1080/1023697x.2011.10668227
Mattingly J, Heiser W, Pratt D. Aircraft Engine Design, 2nd ed. AIAA; 2013. 719p.