Design and performance analysis of hydrogen-fueled micro combustion chamber with focus on back pressure minimization

Ronakkumar Shah, Vishal Chaudhary, Manoj Kumar, Feroz Shaik, Digvijay Kulshrestha, Chandrakant Sonawane, Purva Saxena, Ankit Oza, Abhinav Kumar

Article ID: 3364
Vol 7, Issue 1, 2024

VIEWS - 500 (Abstract) 116 (PDF)

Abstract


The combustion chamber is a crucial component in power generation within a micro gas turbine. This paper prioritizes practical over theoretical considerations in designing an efficient, small-scale combustion chamber for micro gas turbine applications. The investigation covers the temperature profile within the combustion chamber, employing 19 reversible reactions and considering 9 different chemical species in reactive flow calculations. Preliminary experiments demonstrate hydrogen as a feasible fuel in a micro combustion chamber, generating approximately 1 kW of thermal power. Turbulence physics are assessed using the accurate k-Ɛ model. Findings indicate a reactant inlet temperature of 300 K and a primary zone temperature of 1750 K. This research suggests that minimizing the back pressure effect in a steady-state micro combustion chamber can improve turbine performance.


Keywords


fuel; micro combustion chamber; temperature, design

Full Text:

PDF


References


1. Machineni L, Deepanraj B, Chew KW, et al. Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods. Renewable and Sustainable Energy Reviews 2023; 182: 113344. doi: 10.1016/j.rser.2023.113344

2. Balakrishnan D, Manmai N, Ponnambalam S, et al. Optimized model of fermentable sugar production from Napier grass for biohydrogen generation via dark fermentation. International Journal of Hydrogen Energy 2023; 48(55): 21152–21160. doi: 10.1016/j.ijhydene.2022.12.011

3. Zhao Z, Zuo Z, Wang W, et al. Performance optimization for a combustion-based micro thermoelectric generator with two-stage thermoelectric module. Applied Thermal Engineering 2021; 198: 117464. doi: 10.1016/j.applthermaleng.2021.117464

4. Hiranandani K, Aravind B, Ratna Kishore V, et al. Development of a numerical model for performance prediction of an integrated microcombustor-thermoelectric power generator. Energy 2020; 192: 116624. doi: 10.1016/j.energy.2019.116624

5. Aravind B, Raghuram GKS, Kishore VR, et al. Compact design of planar stepped micro combustor for portable thermoelectric power generation. Energy Conversion and Management 2018; 156: 224–234. doi: 10.1016/j.enconman.2017.11.021

6. Hu L, Tian Q, Zou C, et al. A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data. Renewable and Sustainable Energy Reviews 2022; 162: 112416. doi: 10.1016/j.rser.2022.112416

7. Xie B, Peng Q, Yang W, et al. Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic. Energy 2022; 239: 122341. doi: 10.1016/j.energy.2021.122341

8. Galazutdinova Y, Al‐Hallaj S, Grágeda M, et al. Development of the inorganic composite phase change materials for passive thermal management of Li‐ion batteries: Material characterization. International Journal of Energy Research 2019; 44(3): 2011–2022. doi: 10.1002/er.5054

9. Ansari M, Amani E. Micro-combustor performance enhancement using a novel combined baffle-bluff configuration. Chemical Engineering Science 2018; 175: 243–256. doi: 10.1016/j.ces.2017.10.001

10. Wan J, Shang C, Zhao H. Anchoring mechanisms of methane/air premixed flame in a mesoscale diverging combustor with cylindrical flame holder. Fuel 2018; 232: 591–599. doi: 10.1016/j.fuel.2018.06.027

11. Peng Q, E J, Zhang Z, et al. Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor. Applied Thermal Engineering 2018; 130: 541–551. doi: 10.1016/j.applthermaleng.2017.11.016

12. Bagheri G, Hosseini SE, Wahid MA. Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen–air mixture. Applied Thermal Engineering 2014; 67(1–2): 266–272. doi: 10.1016/j.applthermaleng.2014.03.040

13. E J, Peng Q, Liu X, et al. Numerical investigation on hydrogen/air non-premixed combustion in a three-dimensional micro combustor. Energy Conversion and Management 2016; 124: 427–438. doi: 10.1016/j.enconman.2016.07.048

14. Haj Ayed A, Kusterer K, Funke HHW, et al. Experimental and numerical investigations of the dry-low-NOX hydrogen micromix combustion chamber of an industrial gas turbine. Propulsion and Power Research 2015; 4(3): 123–131. doi: 10.1016/j.jppr.2015.07.005

15. Epstein AH. Millimeter-scale, micro-electro-mechanical systems gas turbine engines. Journal of Engineering for Gas Turbines and Power 2004; 126(2): 205–226. doi: 10.1115/1.1739245

16. Cao HL, Xu JL. Thermal performance of a micro-combustor for micro-gas turbine system. Energy Conversion and Management 2007; 48(5): 1569–1578. doi: 10.1016/j.enconman.2006.11.022

17. Jiang L, Zhao D, Yamashita H. Study on a lower heat loss micro gas turbine combustor with porous inlet. Combustion Science and Technology 2015; 187(9): 1376–1391. doi: 10.1080/00102202.2015.1019615

18. Wan J, Fan A, Yao H, et al. Effect of thermal conductivity of solid wall on combustion efficiency of a micro-combustor with cavities. Energy Conversion and Management 2015; 96: 605–612. doi: 10.1016/j.enconman.2015.03.030

19. Wan J, Fan A, Yao H, et al. Flame-anchoring mechanisms of a micro cavity-combustor for premixed H2/air flame. Chemical Engineering Journal 2015; 275: 17–26. doi: 10.1016/j.cej.2015.04.011

20. Gad MS, Elsoly A, Hamed HM, et al. Impact of oxy-hydrogen enriched gasoline on petrol engine performance and emissions. Journal of Thermal Analysis and Calorimetry 2022; 147(23): 13793–13803. doi: 10.1007/s10973-022-11513-2

21. Gad MS, El-Shafay AS, Ağbulut Ü, et al. Impact of produced oxyhydrogen gas (HHO) from dry cell electrolyser on spark ignition engine characteristics. International Journal of Hydrogen Energy 2024; 49: 553–563. doi: 10.1016/j.ijhydene.2023.08.210

22. Chen H, Liu W. Numerical investigation of the combustion in an improved micro combustion chamber with rib. Journal of Chemistry 2019; 2019: 1–12. doi: 10.1155/2019/8354541

23. Wang S, Yuan Z, Fan A. Experimental investigation on non-premixed CH4/air combustion in a novel miniature Swiss-roll combustor. Chemical Engineering and Processing - Process Intensification 2019; 139: 44–50. doi: 10.1016/j.cep.2019.03.019

24. Li J, Yang G, Wang S, et al. Experimental and numerical investigation on non-premixed CH4/air combustion in a micro Swiss-roll combustor. Fuel 2023; 349: 128740. doi: 10.1016/j.fuel.2023.128740

25. Ma L, Fang Q, Zhang C, et al. A novel Swiss-roll micro-combustor with double combustion chambers: A numerical investigation on effect of solid material on premixed CH4/air flame blow-off limit. International Journal of Hydrogen Energy 2021; 46(29): 16116–16126. doi: 10.1016/j.ijhydene.2021.02.118

26. Lefebvre AH. Gas Turbine Combustion, 2nd ed. Taylor and Francis; 1999.

27. Saravanamutto H, Cohen H, Rogers GFC, Straznicky PV. Gas Turbine Theory, 6th ed. Pearson College Div; 2008. 608p.

28. Pandya MP. Design Optimization and Simulation of Radial Inflow Gas Turbine in Small Capacity Range [PhD thesis]. Sardar Vallabhbhai Patel National Institute of Technology; 2004.

29. Kulshreshtha DB, Channiwala SA. Hydrogen fuelled micro gas turbine combustion chamber. HKIE Transactions 2011; 18(2): 19–25. doi: 10.1080/1023697x.2011.10668227

30. Mattingly J, Heiser W, Pratt D. Aircraft Engine Design, 2nd ed. AIAA; 2013. 719p.




DOI: https://doi.org/10.24294/ace.v7i1.3364

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.