Titanium-doped graphite-type silicon carbide biosensor for detecting and eliminating gaseous pollution: A green chemistry approach by molecular simulation study
Vol 6, Issue 3, 2023
VIEWS - 1008 (Abstract) 241 (PDF)
Abstract
Regarding thermal strength, chemical stability and surface reactivity of silicon carbide (SiC), it is possible to allocate it as a suitable gas detector for commercial application. Therefore, this research was focused on the investigation of the chemo-resistivity properties of SiC nanosheet through doping with the transition metal. Thermochemical, electric and magnetic properties of titanium (Ti)-doped graphene-like monolayer silicon carbide (SiC) sheet have been studied by the first-principles methods based on the density functional theory (DFT) for scavenging of gas molecules of CO, CO2, NO, NO2. The results recommend that the adsorption of these gas molecules on Ti-embedded monolayer SiC sheet is more energetically desired than that on the pristine ones. Gas molecules of CO, CO2, NO, NO2 have been adsorbed on the Ti site of doped monolayer SiC through the formation of covalent bonds. The assumption of chemical adsorptions has been approved by the projected density of states (PDOS) and charge density difference plots. Charge density difference calculations also indicate that the electronic densities were mainly accumulated on the adsorbate of CO, CO2, NO, NO2 gas molecules. The results in this investigation can indicate the competence of transition metal doped silicon carbide nanosheet in sensor devices.
Keywords
Full Text:
PDFReferences
1. Rodin AS, Carvalho A, Castro Neto AH. Strain-induced gap modification in black phosphorus. Physical Review Letters 2014; 112(17): 176801. doi: 10.1103/PhysRevLett.112.176801
2. Low T, Rodin AS, Carvalho A, et al. Tunable optical properties of multilayer black phosphorus thin films. Physical Review B 2014; 90(7): 075434. doi: 10.1103/PhysRevB.90.075434
3. Fei R, Faghaninia A, Soklaski R, et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters 2014; 14(11): 6393–6399. doi: 10.1021/nl502865s
4. Ramasubramaniam A, Muniz AR. Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Physical Review B 2014; 90(8): 085424. doi: 10.1103/PhysRevB.90.085424
5. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666–669. doi: 10.1126/science.1102896
6. Geim AK. Graphene: Status and prospects. Science 2009; 324(5934): 1530–1534. doi: 10.1126/science.1158877
7. Neto AHC, Guinea F, Peres NMR, et al. The electronic properties of graphene. Reviews of Modern Physics 2009; 81(1): 109. doi: 10.1103/RevModPhys.81.109
8. Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters 2010; 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805
9. Mollaamin F, Monajjemi M. Corrosion inhibiting by some organic heterocyclic inhibitors through langmuir adsorption mechanism on the Al-X (X = Mg/Ga/Si) alloy surface: A study of quantum three-layer method of CAM-DFT/ONIOM. Journal of Bio- and Tribo-Corrosion 2023; 9: 33. doi: 10.1007/s40735-023-00751-y
10. Mollaamin F, Monajjemi M. Doping of graphene nanostructure with iron, nickel and zinc as selective detector for the toxic gas removal: A density functional theory study. C 2023; 9(1): 20. doi: 10.3390/c9010020
11. Yan Z, Bai Y, Sun L. Adsorption of thiophene and SOx molecules on Cr-doped and Ti-doped graphene nanosheets: A DFT study. Materials Research Express 2019; 6(12): 125067. doi: 10.1088/2053-1591/ab599d
12. Mollaamin F, Monajjemi M. Graphene embedded with transition metals for capturing carbon dioxide: Gas detection study using QM methods. Clean Technologies 2023; 5(1): 403–417. doi: 10.3390/cleantechnol5010020
13. Mollaamin F, Monajjemi M. Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: A molecular modeling framework by DFT perspective. Journal of Molecular Modeling 2023; 29(4): 119. doi: 10.1007/s00894-023-05526-3
14. Mollaamin F, Monajjemi M. Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sensors for NO, NO2, and NH3 adsorbing: A DFT study. Journal of Molecular Modeling 2023; 29(6): 170. doi: 10.1007/s00894-023-05567-8
15. Mollaamin F, Monajjemi M. Application of DFT and TD-DFT on langmuir adsorption of nitrogen and sulfur heterocycle dopants on an aluminum surface decorated with magnesium and silicon. Computation 2023; 11(6): 108. doi: 10.3390/computation11060108
16. Zhang XH, Han JC, Zhou JG, et al. Ferromagnetism in homogeneous (Al, Co)-codoped 4H-silicon carbides. Journal of Magnetism and Magnetic Materials 2014; 363: 34–42. doi: 10.1016/j.jmmm.2014.03.062
17. Monajjemi M, Mahdavian L, Mollaamin F. Characterization of nanocrystalline silicon germanium film and nanotube in adsorption gas by Monte Carlo and Langevin dynamic simulation. Bulletin of the Chemical Society of Ethiopia 2008; 22(2): 277–286. doi: 10.4314/bcse.v22i2.61299
18. Lin SS. Light-emitting two-dimensional ultrathin silicon carbide. The Journal of Physical Chemistry C 2012; 116(6): 3951–3955. doi: 10.1021/jp210536m
19. Hsueh HC, Guo GY, Louie SG. Excitonic effects in the optical properties of a SiC sheet and nanotubes. Physical Review B 2011; 84: 085404. doi: 10.1103/PhysRevB.84.085404
20. Eliseeva NS, Kuzubov AA, Ovchinnikov SG, et al. Theoretical study of the magnetic properties of ordered vacancies in 2D hexagonal structures: Graphene, 2D-SiC, and H-BN. JETP Letters 95: 555–559. doi: 10.1134/S0021364012110045
21. Mollaamin F, Monajjemi M. electric and magnetic evaluation of aluminum–magnesium nanoalloy decorated with germanium through heterocyclic carbenes adsorption: A density functional theory study. Russian Journal of Physical Chemistry B 2023; 17(3): 658–672. doi: 10.1134/S1990793123030223
22. Gaiardo A, Fabbri B, Valt M, et al. Silicon carbide: A gas sensing material for selective detection of SO2. Proceedings 2017; 1(8): 745. doi: 10.3390/proceedings1080745
23. Litvinov A, Etrekova M, Podlepetsky B, et al. MOSFE-capacitor silicon carbide-based hydrogen gas sensors. Sensors 2023; 23(7): 3760. doi: 10.3390/s23073760
24. Samotaev N, Litvinov A, Oblov K, et al. Combination of material processing and characterization methods for miniaturization of field-effect gas sensor. Sensors 2023; 23(1): 514. doi: 10.3390/s23010514
25. Jin Q, Yuan J, Zhou J. Surface modification of silicon carbide wafers using atmospheric plasma etching: Effects of processing parameters. Micromachines 2023; 14(7): 1331. doi: 10.3390/mi14071331
26. Xu S, Yuan J, Zhou J, et al. Study of atmospheric pressure plasma temperature based on silicon carbide etching. Micromachines 2023; 14(5): 992. doi: 10.3390/mi14050992
27. Bekaroglu E, Topsakal M, Cahagirov S, Ciraci S. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Physical Review B 2010; 81(7): 075433. doi: 10.1103/PhysRevB.81.075433
28. Alaal N, Loganathan V, Medhekar N, Shukla A. First principles many-body calculations of electronic structure and optical properties of SiC nanoribbons. Journal of Physics D: Applied Physics 2016; 49(10): 105306. doi: 10.1088/0022-3727/49/10/105306
29. Javan MB. Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals. Journal of Magnetism and Magnetic Materials 2016; 401: 656–661. doi: 10.1016/j.jmmm.2015.10.103
30. Wu Y, Zhou L, Du X, Yang Y. Near-field radiative heat transfer between two SiC plates with/without coated metal films. Journal of Nanoscience and Nanotechnology 2015; 15(4): 3017–3024. doi: 10.1166/jnn.2015.9687
31. Chabi S, Guler Z, Brearley AJ, et al. The creation of true two-dimensional silicon carbide. Nanomaterials 2023; 11(7): 1799. doi: 10.3390/nano11071799
32. Galashev AE. Computer simulation of a silicene anode on a silicon carbide substrate. Russian Journal of Physical Chemistry B 2023; 17(1): 113–121. doi: 10.1134/S1990793123010190
33. Shikunov S, Kaledin A, Shikunova I, et al. Novel method for deposition of gas-tight SiC coatings. Coatings 2023; 13(2): 354. doi: 10.3390/coatings13020354
34. Makhov MN. Energy content of HMX–Silicon nanopowder mixtures. Russian Journal of Physical Chemistry B 2018; 12(1): 115–119. doi: 10.1134/S1990793118010232
35. Yadav A. Monolayer silicon carbide as an efficient adsorbent for volatile organic compounds: An Ab initio approach. Silicon 2023; 15(3): 1563–1569. doi: 10.1007/s12633-022-02120-9
36. Yadav A. Monolayered carbides of main group elements (Si, Ge, Sn and Pb) for NO2 gas sensing: Insights from first-principle studies. Silicon 2022; 14(18): 12683–12692. doi: 10.1007/s12633-022-01987-y
37. Dindorkar SS, Yadav A. Comparative study on adsorption behaviour of the monolayer graphene, boron nitride and silicon carbide hetero-sheets towards carbon monoxide: Insights from first-principle studies. Computational and Theoretical Chemistry 2022; 1211: 113676. doi: 10.1016/j.comptc.2022.113676
38. Dindorkar SS, Yadav A. Monolayered silicon carbide for sensing toxic gases: A comprehensive study based on the first-principle density functional theory. Silicon 2022; 14(17): 11771–11779. doi: 10.1007/s12633-022-01899-x
39. Mollaamin F, Monajjemi M. Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method. Sensor Review 2023; 43(4): 266–279. doi: 10.1108/SR-03-2023-0040
40. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters 1996; 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
41. Mollaamin F, Monajjemi M. Tribocorrosion framework of (Iron, Nickel, Zinc)-doped graphene nanosheet: New sights into sulfur dioxide and hydrogen sulfide removal using DFT/TD-DFT methods. Journal of Bio- and Tribo-Corrosion 2023; 9(3): 47. doi: 10.1007/s40735-023-00768-3
42. Miyamoto Y, Yu BD. Computational designing of graphitic silicon carbide and its tubular forms. Applied Physics Letters 2002; 80(4): 586–588. doi: 10.1063/1.1445474
43. Mollaamin F, Monajjemi M. Hexagonal honeycomb PL-GaN nanosheet as adsorbent surface for gas molecules sensing: A quantum chemical study. Surface Review and Letters 2023. doi: 10.1142/S0218625X24500057
44. Monajjemi M, Mollaamin F, Gholami MR, et al. Quantum chemical parameters of some organic corrosion inhibitors, pyridine, 2-Picoline 4-Picoline and 2,4-Lutidine, adsorption at aluminum surface in hydrochloric and nitric acids and comparison between two acidic media. Main Group Metal Chemistry 2003; 26(6): 349–361. doi: 10.1515/MGMC.2003.26.6.349
45. Dennington R, Keith TA, Millam J. GaussView Version 6. Available online: https://gaussian.com/gaussview6/ (accessed on 11 February 2023).
46. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016. Available online: https://gaussian.com/ (accessed on 24 September 2021).
47. Dzedzej Z, Gzella T. Generalized gradient equivariant multivalued maps, approximation and degree. Mathematics 2020; 8(8): 1262. doi: 10.3390/math8081262
48. Bakhshi K, Mollaamin F, Monajjemi M. Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA). Journal of Computational and Theoretical Nanoscience 2011; 8(4): 763–768. doi: 10.1166/jctn.2011.1750
49. Monajjemi M, Baie MT, Mollaamin F. Interaction between threonine and cadmium cation in [Cd(Thr)n]2+ (n = 1–3) complexes: Density functional calculations. Russian Chemical Bulletin 2010; 59(5): 886–889. doi: 10.1007/s11172-010-0181-5
50. Mollaamin F, Monajjemi M, Salemi S, Baei MT. A dielectric effect on normal mode analysis and symmetry of BNNT nanotube. Fullerenes, Nanotubes and Carbon Nanostructures 2011; 19(3): 182–196. doi: 10.1080/15363831003782932
51. Khaleghian M, Zahmatkesh M, Mollaamin F, Monajjemi M. Investigation of solvent effects on armchair single-walled carbon nanotubes: A QM/MD study. Fullerenes, Nanotubes and Carbon Nanostructures 2011; 19(4): 251–261. doi: 10.1080/15363831003721757
52. Monajjemi M, Khaleghian M, Tadayonpour N, Mollaamin F. The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study. International Journal of Nanoscience 2011; 9(5): 517–529. doi: 10.1142/S0219581X10007071
53. Korhonen ST, Calatayud M, Krause AOI. Stability of hydroxylated (111) and (101) surfaces of monoclinic zirconia: A combined study by DFT and infrared spectroscopy. The Journal of Physical Chemistry C 2008; 112(16): 6469–6476. doi: 10.1021/jp8008546
54. Crocombette JP, Willaime F. Ab initio electronic structure calculations for nuclear materials. Comprehensive Nuclear Materials 2012; 1: 223–248. doi: 10.1016/B978-0-08-056033-5.00025-2
55. Svensson M, Humbel S, Froese RDJ, et al. ONIOM: A multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels−alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. The Journal of Physical Chemistry 1996; 100(50): 19357–19363. doi: 10.1021/jp962071j
56. Lehtola S. A review on non-relativistic fully numerical electronic structure calculations on atoms and diatomic molecules. International Journal of Quantum Chemistry 2019; 119(19): e25968. doi: 10.1002/qua.25968
57. Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 2006; 36(3): 354–360. doi: 10.1016/j.commatsci.2005.04.010
58. Zhou YG, Zu XT, Gao F, et al. Electronic and magnetic properties of graphene absorbed with S atom: A first-principles study. Journal of Applied Physics 2009; 105(10): 104311. doi: 10.1063/1.3130401
59. Mao Y, Yuan J, Zhong J. Density functional calculation of transition metal adatom adsorption on graphene. Journal of Physics: Condensed Matter 2008; 20(11): 115209. doi: 10.1088/0953-8984/20/11/115209
60. Smith JAS. Nuclear quadrupole resonance spectroscopy. General principles. Journal of Chemical Education 1971; 48(1): 39. doi: 10.1021/ed048p39
61. Trontelj Z, Pirnat J, Jazbinšek V, et al. Nuclear quadrupole resonance (NQR)—A useful spectroscopic tool in pharmacy for the study of polymorphism. Crystals 2020; 10(6): 450. doi: 10.3390/cryst10060450
62. Larina LI. Nuclear quadrupole resonance spectroscopy: Tautomerism and structure of functional azoles. Crystals 2019; 9(7): 366. doi: 10.3390/cryst9070366
63. Young HD, Freedman RA, Lewis FA. Sears and Zemansky’s University Physics with Modern Physics, 13th ed. Addison-Wesley; 2011. p. 754.
64. Mollaamin F, Monajjemi M. Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Molecular Simulation 2023; 49(4): 365–376. doi: 10.1080/08927022.2022.2159996
65. Mollaamin F, Shahriari S, Monajjemi M, Khalaj Z. Nanocluster of aluminum lattice via organic inhibitors coating: A study of freundlich adsorption. Journal of Cluster Science 2023; 34(3): 1547–1562. doi: 10.1007/s10876-022-02335-1
66. Monajjemi M, Baheri H, Mollaamin F. A percolation model for carbon nanotube-polymer composites using the Mandelbrot-given. Journal of Structural Chemistry 2011; 52(1): 54–59. doi: 10.1134/S0022476611010070
67. Mollaamin F, Monajjemi M. In silico-DFT investigation of nanocluster alloys of Al-(Mg, Ge, Sn) coated by nitrogen heterocyclic carbenes as corrosion inhibitors. Journal of Cluster Science 2023. doi: 10.1007/s10876-023-02436-5
68. Mollaamin F, Ilkhani A, Sakhaei N, et al. Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: Hydrogen bonding study. Journal of Computational and Theoretical Nanoscience 2015; 12(10): 3148–3154. doi: 10.1166/jctn.2015.4092
DOI: https://doi.org/10.24294/ace.v6i3.2303
Refbacks
- There are currently no refbacks.
License URL: https://creativecommons.org/licenses/by-nc/4.0/