Complex dielectric-impedance spectroscopic studies of magnetite added chitin biopolymer
Vol 6, Issue 1, 2023
VIEWS - 420 (Abstract) 300 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Ahmetli G, Kocak N, Dag M, Kurbanli R. Mechanical and thermal studies on epoxy toluene oligomer-modified epoxy resin/marble waste composites. Polymer Composites 2012; 33(8): 1455–1463. doi: 10.1002/pc.22274.
2. Jayasree R, Chandrasekhar R, Cindrella L. Synthesis and characterization of polypyrrole-platinum composite for use as electrode material. Polymer Composites 2012; 33(9): 1652–1657. doi: 10.1002/pc.22285.
3. Bach VR, Zempulski DA, Oliveira LG, et al. Green synthesis of NiO nanoparticles and application in production of renewable H2 from bioethanol. International Journal of Hydrogen Energy 2022; 47(60): 25229–25244. doi: 10.1016/j.ijhydene.2022.05.264.
4. Kumar MNVR. A review of chitin and chitosan applications. Reactive and Functional Polymers 2000; 46(1): 1–27. doi: 10.1016/s1381-5148(00)00038-9.
5. Hu X, Ricci S, Naranjo S, et al. Protein and polysaccharide-based electroactive and conductive materials for biomedical applications. Molecules 2021; 26(15): 4499. doi: 10.3390/molecules26154499.
6. Ikram R, Jan BM, Qadir MA, et al. Recent advances in chitin and chitosan/graphene-based bio-nanocomposites for energetic applications. Polymers 2020; 13(19): 3266. doi: 10.3390/polym13193266.
7. Safarzadeh M, Sadeghi S, Azizi M, et al. Chitin and chitosan as tools to combat COVID-19: A triple approach. International Journal of Biological Macromolecules 2021; 183: 235–244. doi: 10.1016/j.ijbiomac.2021.04.157.
8. Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers 2021: 13(17): 2959. doi: 10.3390/polym13172959.
9. Babaei-Ghazvini A, Acharya B, Korber DR. Antimicrobial biodegradable food packaging based on chitosan and metal/metal oxide bio-nanocomposites: A review. Polymers 2021; 13(16): 2790. doi: 10.3390/polym13162790.
10. Miao Y, Tan SN. Aerometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix crosslinked with glutaraldehyde. Analyst 2000; 125: 1591–1594. doi: 10.1039/B003483P.
11. Neubergera T, Schopf B, Hofmann H, et al. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials 2005; 293(1): 483–496. doi: 10.1016/j.jmmm.2005.01.064.
12. Kaushik A, Khan R, Solanki PR, et al. Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosensors and Bioelectronics 2008; 24(4): 676–683. doi: 10.1016/j.bios.2008.06.032.
13. Kaushik A, Solanki PR, Ansari AA, et al. Iron oxide-chitosan nanobiocomposite for urea sensor. Sensors and Actuators B: Chemistry 2009; 138(2): 572–580. doi: 10.1016/j.snb.2009.02.005.
14. Kanagathara N, Sankar S, Saravanan L, et al. Dielectric and impedance spectroscopic investigation of (3-nitrophenol) -2,4,6-triamino-1,3,5- triazine: An organic crystalline material. Advances in Condensed Matter Physics 2022; 2022: 6002025. doi: 10.1155/2022/6002025.
15. Verma S, Mohanty S, Nayaka SK. Preparation of hydrophobic epoxy–polydimethylsiloxane–graphene oxide nanocomposite coatings for antifouling application. Soft Matter 2020; 16: 1211–1226. doi: 10.1039/C9SM01952A.
16. Kurahatti RV, Surendranathan AO, Kori SA, et al. Defence applications of polymer nanocomposites. Defence Science Journal 2010; 60(5): 551–563. doi: 10.14429/dsj.60.578.
17. Fu S, Sun Z, Huang P, et al. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science 2019; 1(1): 2–30. doi: 10.1016/j.nanoms.2019.02.006.
18. Salaberria AM, Juanes RT, Badia JD, et al. Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites. Composite Science & Technology 2018; 167: 323–330. doi: 10.1016/j.compscitech.2018.08.019.
19. Seoudi R, Nada AMA. Molecular structure and dielectric properties studies of chitin and its treated by acid, base and hypochlorite. Carbohydrate Polymers 2007; 68(4): 728–733. doi: 10.1016/j.carbpol.2006.08.009.
20. Movlaee K, Ganjali MR, Norouzi P, Neri G. Iron-based nanomaterials/graphene composites for advanced electrochemical sensors. Nanomaterials 2017; 7(12): 406. doi: 10.3390/nano7120406.
21. Gautam D, Lal S, Hooda S. Adsorption of Rhodamine 6G dye on binary system of nanoarchitectonics composite magnetic graphene oxide material. Journal of Nanoscience and Nanotechnology 2020; 20(5): 2939–2945. doi: 10.1166/jnn.2020.17442.
22. Tabuchi M, Ado K, Kobayashi H, et al. Magnetic properties of metastable lithium iron oxides obtained by solvothermal/hydrothermal reaction. Journal of Solid State Chemistry 1998; 141(2): 554–561. doi: 10.1006/jssc.1998.8018.
23. Liu Z, Wang J, Xie D, Chen G. Polyaniline-coated Fe3O4 nanoparticle–carbon-nanotube composite and its application in electrochemical biosensing. Small 2008; 4(4): 462–466. doi: 10.1002/smll.200701018.
24. Elsayed SA, El-Sayed IET, Tony MA. Impregnated chitin biopolymer with magnetic nanoparticles to immobilize dye from aqueous media as a simple, rapid and efficient composite photocatalyst. Applied Water Science 2022; 12: 252. doi: 10.1007/s13201-022-01776-3.
25. Holzwarth U, Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nature Nanotechnology 2011; 6: 534. doi: 10.1038/nnano.2011.145.
26. Rathinam K, Jayaram P, Sankaran M. Synthesis and characterization of magnetic chitin composite and its application towards the uptake of Pb(II) and Cd(II) ions from aqueous solution. Environmental Pprogress & Sustainable Energy 2019; 38(1): S288–S297. doi: 10.1002/ep.13013.
27. Rogovina SZ, Alexanyan CV, Prut EV. Biodegradable blends based on chitin and chitosan: Production, structure, and properties. Journal of Applied Polymer Science 2011; 121(3): 1850–1859. doi: 10.1002/app.33477.
28. Shankar S, Reddy JP, Rhim JW, Kim HY. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers 2015; 117: 468–475. doi: 10.1016/j.carbpol.2014.10.010.
29. Jayakumar R, Selvamurugan N, Nair SV, et al. Preparative methods of phosphorylated chitin and chitosan—An overview. International Journal of Biological Macromolecules 2008; 43(3): 221–225.doi: 10.1016/j.ijbiomac.2008.07.004.
30. Koch CC. Nanostructured materials: Processing, properties, and applications. 2nd ed. Norwich: William Andrew Publishing; 2007.
31. Triyono D, Supriyadi Y, Laysandra H. Investigation on electrical conductivity and dielectric property of La0.8Pb0.2(Fe,Ti)0.5O3 ceramic nanoparticles. Journal of Advanced Dielectrics 2019; 9(4): 1950029. doi: 10.1142/S2010135X19500292.
32. Rayssi C, Kossi SE, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Advances 2018; 8: 17139–17150. doi: 10.1039/C8RA00794B.
33. Yan M, Jin J, Ma T. Grain boundary restructuring and La/Ce/Y application in Nd–Fe–B magnets. Chinese Physics B 2019; 28(7): 077507.
34. Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Physical Review 1951; 83(1): 121–124. doi: 10.1103/PhysRev.83.121.
35. Chauhan L, Shukla AK, Sreenivas K. Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion. Ceramic International 2015; 41(7): 8341–8351. doi: 10.1016/j.ceramint.2015.03.014.
36. Batoo KM, Kumar S, Lee CG, Alimuddin A. Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Current Applied Physics 2009; 9(6): 1397–1406. doi: 10.1016/j.cap.2009.03.012.
37. Soibam I, Phanjoubam S, Sharma HB, et al. Effects of cobalt substitution on the dielectric properties of Li–Zn ferrites. Solid State Communication 2008; 148(9–10): 399–402. doi: 10.1016/j.ssc.2008.09.029.
38. Thakur A, Mathur P, Singh M. Study of dielectric behaviour of Mn-Zn nano ferrites. Journal of Physics and Chemistry of Solids 2007; 68(3): 378–381. doi: 10.1016/j.jpcs.2006.11.028.
39. Chen H, Li X, Yu W, et al. Chitin/MoS2 nanosheet dielectric composite films with significantly enhanced discharge energy density and efficiency. Biomacromolecules 2020; 21(7): 2929–2937. doi: 10.1021/acs.biomac.0c00732.
40. Jawad SA, Abu-Surrah AS, Maghrabi M, Khattari Z. Electric impedance study of elastic alternating propylene–carbon monoxide copolymer (PCO-200). Physica B: Condensed Matter 2011; 406(13): 2565–2569. doi: 10.1016/j.physb.2011.03.069.
41. Xi Y, Bin Y, Chiang C, Matsuo M. Dielectric effects on positive temperature coefficient composites of polyethylene and short carbon fibers. Carbon 2007; 45(6): 1302–1309. doi: 10.1016/j.carbon.2007.01.019.
42. Bouaamlat H, Hadi N, Belghiti N, et al. Dielectric properties, AC conductivity, and electric modulus analysis of bulk ethylcarbazole-terphenyl. Advances in Materials Science & Engineering 2020; 2020: 8689150. doi: 10.1155/2020/8689150.
43. Yang K, Huang X, Huang Y, et al. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: Toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chemistry of Materials 2013; 25(11): 2327–2338. doi: 10.1021/cm4010486.
44. Farid MT, Ahmad I, Aman S, et al. Structural, electrical and dielectric behavior of NixCo1-xNdyfe2-yO4 nano-ferrites synthesized by sol-gel method. Digest Journal of Nanomaterials and Biostructures 2015; 10(1): 265–275.
45. Badry MD, Wahba MA, Khaled RK, Farghali A. Preparation and dielectric properties of magnetite/chitosan nanocomposite film. Middle East Journal of Applied Sciences 2015; 5(4): 940–944.
DOI: https://doi.org/10.24294/ace.v6i1.1965
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.