Complex dielectric-impedance spectroscopic studies of magnetite added chitin biopolymer

Sanjeeta Rani, Sunita Hooda, Neelu Dheer, V Bhasker Raj, Ishwar Prasad Sahu, Manisha Verma

Article ID: 1965
Vol 6, Issue 1, 2023

VIEWS - 420 (Abstract) 300 (PDF)

Abstract


We have successfully synthesized magnetic chitin (MCH) by incorporating iron oxide nanoparticles into biodegradable and abundantly naturally available chitin by the coprecipitation method. X-ray diffraction (XRD) characterization revealed formation of cubic inverse spinel structure of Fe3O4 nanoparticles. In addition to this, other characterization studies like energy dispersive X-ray analysis (EDX) and vibrating sample magnetometry (VSM) were also performed to have an insight into the compositional and functional nature of the structure. A detailed spectroscopic study of complex impedance and dielectric constant for a wide frequency range of ~1 Hz to 10 MHz at discrete temperatures ~300–400 K has been performed by us for the first time on MCH in order to understand various relaxation processes. From permittivity, we have estimated the height of the potential barrier to be ~95.8 ± 0.3 meV. Impedance measurements yielded an activation energy of ~35.85 meV. Thermogravimetric analysis (TGA) of the sample showed exceptionally high thermal stability of the sample with percentage of residual mass at 800 ℃ being ~73% in MCH, which is quite high in comparison to the pristine chitin. An S shaped curve obtained through VSM measurement confirmed the superparamagnetic nature of the nanocomposite. The study assumes significance in the present scenario of rising awareness about the environment and demand to explore alternative green materials with numerous biomedical/environmental applications ranging from drug delivery vehicles in COVID-19 treatment to food packaging.

Keywords


Biopolymer; Chitin; Complex Dielectric Constant; Complex Impedance; Thermal Stability; Magnetite; Nanoparticle

Full Text:

PDF


References


1. Ahmetli G, Kocak N, Dag M, Kurbanli R. Mechanical and thermal studies on epoxy toluene oligomer-modified epoxy resin/marble waste composites. Polymer Composites 2012; 33(8): 1455–1463. doi: 10.1002/pc.22274.

2. Jayasree R, Chandrasekhar R, Cindrella L. Synthesis and characterization of polypyrrole-platinum composite for use as electrode material. Polymer Composites 2012; 33(9): 1652–1657. doi: 10.1002/pc.22285.

3. Bach VR, Zempulski DA, Oliveira LG, et al. Green synthesis of NiO nanoparticles and application in production of renewable H2 from bioethanol. International Journal of Hydrogen Energy 2022; 47(60): 25229–25244. doi: 10.1016/j.ijhydene.2022.05.264.

4. Kumar MNVR. A review of chitin and chitosan applications. Reactive and Functional Polymers 2000; 46(1): 1–27. doi: 10.1016/s1381-5148(00)00038-9.

5. Hu X, Ricci S, Naranjo S, et al. Protein and polysaccharide-based electroactive and conductive materials for biomedical applications. Molecules 2021; 26(15): 4499. doi: 10.3390/molecules26154499.

6. Ikram R, Jan BM, Qadir MA, et al. Recent advances in chitin and chitosan/graphene-based bio-nanocomposites for energetic applications. Polymers 2020; 13(19): 3266. doi: 10.3390/polym13193266.

7. Safarzadeh M, Sadeghi S, Azizi M, et al. Chitin and chitosan as tools to combat COVID-19: A triple approach. International Journal of Biological Macromolecules 2021; 183: 235–244. doi: 10.1016/j.ijbiomac.2021.04.157.

8. Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers 2021: 13(17): 2959. doi: 10.3390/polym13172959.

9. Babaei-Ghazvini A, Acharya B, Korber DR. Antimicrobial biodegradable food packaging based on chitosan and metal/metal oxide bio-nanocomposites: A review. Polymers 2021; 13(16): 2790. doi: 10.3390/polym13162790.

10. Miao Y, Tan SN. Aerometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix crosslinked with glutaraldehyde. Analyst 2000; 125: 1591–1594. doi: 10.1039/B003483P.

11. Neubergera T, Schopf B, Hofmann H, et al. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials 2005; 293(1): 483–496. doi: 10.1016/j.jmmm.2005.01.064.

12. Kaushik A, Khan R, Solanki PR, et al. Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosensors and Bioelectronics 2008; 24(4): 676–683. doi: 10.1016/j.bios.2008.06.032.

13. Kaushik A, Solanki PR, Ansari AA, et al. Iron oxide-chitosan nanobiocomposite for urea sensor. Sensors and Actuators B: Chemistry 2009; 138(2): 572–580. doi: 10.1016/j.snb.2009.02.005.

14. Kanagathara N, Sankar S, Saravanan L, et al. Dielectric and impedance spectroscopic investigation of (3-nitrophenol) -2,4,6-triamino-1,3,5- triazine: An organic crystalline material. Advances in Condensed Matter Physics 2022; 2022: 6002025. doi: 10.1155/2022/6002025.

15. Verma S, Mohanty S, Nayaka SK. Preparation of hydrophobic epoxy–polydimethylsiloxane–graphene oxide nanocomposite coatings for antifouling application. Soft Matter 2020; 16: 1211–1226. doi: 10.1039/C9SM01952A.

16. Kurahatti RV, Surendranathan AO, Kori SA, et al. Defence applications of polymer nanocomposites. Defence Science Journal 2010; 60(5): 551–563. doi: 10.14429/dsj.60.578.

17. Fu S, Sun Z, Huang P, et al. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science 2019; 1(1): 2–30. doi: 10.1016/j.nanoms.2019.02.006.

18. Salaberria AM, Juanes RT, Badia JD, et al. Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites. Composite Science & Technology 2018; 167: 323–330. doi: 10.1016/j.compscitech.2018.08.019.

19. Seoudi R, Nada AMA. Molecular structure and dielectric properties studies of chitin and its treated by acid, base and hypochlorite. Carbohydrate Polymers 2007; 68(4): 728–733. doi: 10.1016/j.carbpol.2006.08.009.

20. Movlaee K, Ganjali MR, Norouzi P, Neri G. Iron-based nanomaterials/graphene composites for advanced electrochemical sensors. Nanomaterials 2017; 7(12): 406. doi: 10.3390/nano7120406.

21. Gautam D, Lal S, Hooda S. Adsorption of Rhodamine 6G dye on binary system of nanoarchitectonics composite magnetic graphene oxide material. Journal of Nanoscience and Nanotechnology 2020; 20(5): 2939–2945. doi: 10.1166/jnn.2020.17442.

22. Tabuchi M, Ado K, Kobayashi H, et al. Magnetic properties of metastable lithium iron oxides obtained by solvothermal/hydrothermal reaction. Journal of Solid State Chemistry 1998; 141(2): 554–561. doi: 10.1006/jssc.1998.8018.

23. Liu Z, Wang J, Xie D, Chen G. Polyaniline-coated Fe3O4 nanoparticle–carbon-nanotube composite and its application in electrochemical biosensing. Small 2008; 4(4): 462–466. doi: 10.1002/smll.200701018.

24. Elsayed SA, El-Sayed IET, Tony MA. Impregnated chitin biopolymer with magnetic nanoparticles to immobilize dye from aqueous media as a simple, rapid and efficient composite photocatalyst. Applied Water Science 2022; 12: 252. doi: 10.1007/s13201-022-01776-3.

25. Holzwarth U, Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nature Nanotechnology 2011; 6: 534. doi: 10.1038/nnano.2011.145.

26. Rathinam K, Jayaram P, Sankaran M. Synthesis and characterization of magnetic chitin composite and its application towards the uptake of Pb(II) and Cd(II) ions from aqueous solution. Environmental Pprogress & Sustainable Energy 2019; 38(1): S288–S297. doi: 10.1002/ep.13013.

27. Rogovina SZ, Alexanyan CV, Prut EV. Biodegradable blends based on chitin and chitosan: Production, structure, and properties. Journal of Applied Polymer Science 2011; 121(3): 1850–1859. doi: 10.1002/app.33477.

28. Shankar S, Reddy JP, Rhim JW, Kim HY. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers 2015; 117: 468–475. doi: 10.1016/j.carbpol.2014.10.010.

29. Jayakumar R, Selvamurugan N, Nair SV, et al. Preparative methods of phosphorylated chitin and chitosan—An overview. International Journal of Biological Macromolecules 2008; 43(3): 221–225.doi: 10.1016/j.ijbiomac.2008.07.004.

30. Koch CC. Nanostructured materials: Processing, properties, and applications. 2nd ed. Norwich: William Andrew Publishing; 2007.

31. Triyono D, Supriyadi Y, Laysandra H. Investigation on electrical conductivity and dielectric property of La0.8Pb0.2(Fe,Ti)0.5O3 ceramic nanoparticles. Journal of Advanced Dielectrics 2019; 9(4): 1950029. doi: 10.1142/S2010135X19500292.

32. Rayssi C, Kossi SE, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Advances 2018; 8: 17139–17150. doi: 10.1039/C8RA00794B.

33. Yan M, Jin J, Ma T. Grain boundary restructuring and La/Ce/Y application in Nd–Fe–B magnets. Chinese Physics B 2019; 28(7): 077507.

34. Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Physical Review 1951; 83(1): 121–124. doi: 10.1103/PhysRev.83.121.

35. Chauhan L, Shukla AK, Sreenivas K. Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion. Ceramic International 2015; 41(7): 8341–8351. doi: 10.1016/j.ceramint.2015.03.014.

36. Batoo KM, Kumar S, Lee CG, Alimuddin A. Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Current Applied Physics 2009; 9(6): 1397–1406. doi: 10.1016/j.cap.2009.03.012.

37. Soibam I, Phanjoubam S, Sharma HB, et al. Effects of cobalt substitution on the dielectric properties of Li–Zn ferrites. Solid State Communication 2008; 148(9–10): 399–402. doi: 10.1016/j.ssc.2008.09.029.

38. Thakur A, Mathur P, Singh M. Study of dielectric behaviour of Mn-Zn nano ferrites. Journal of Physics and Chemistry of Solids 2007; 68(3): 378–381. doi: 10.1016/j.jpcs.2006.11.028.

39. Chen H, Li X, Yu W, et al. Chitin/MoS2 nanosheet dielectric composite films with significantly enhanced discharge energy density and efficiency. Biomacromolecules 2020; 21(7): 2929–2937. doi: 10.1021/acs.biomac.0c00732.

40. Jawad SA, Abu-Surrah AS, Maghrabi M, Khattari Z. Electric impedance study of elastic alternating propylene–carbon monoxide copolymer (PCO-200). Physica B: Condensed Matter 2011; 406(13): 2565–2569. doi: 10.1016/j.physb.2011.03.069.

41. Xi Y, Bin Y, Chiang C, Matsuo M. Dielectric effects on positive temperature coefficient composites of polyethylene and short carbon fibers. Carbon 2007; 45(6): 1302–1309. doi: 10.1016/j.carbon.2007.01.019.

42. Bouaamlat H, Hadi N, Belghiti N, et al. Dielectric properties, AC conductivity, and electric modulus analysis of bulk ethylcarbazole-terphenyl. Advances in Materials Science & Engineering 2020; 2020: 8689150. doi: 10.1155/2020/8689150.

43. Yang K, Huang X, Huang Y, et al. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: Toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chemistry of Materials 2013; 25(11): 2327–2338. doi: 10.1021/cm4010486.

44. Farid MT, Ahmad I, Aman S, et al. Structural, electrical and dielectric behavior of NixCo1-xNdyfe2-yO4 nano-ferrites synthesized by sol-gel method. Digest Journal of Nanomaterials and Biostructures 2015; 10(1): 265–275.

45. Badry MD, Wahba MA, Khaled RK, Farghali A. Preparation and dielectric properties of magnetite/chitosan nanocomposite film. Middle East Journal of Applied Sciences 2015; 5(4): 940–944.




DOI: https://doi.org/10.24294/ace.v6i1.1965

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.