Ni2+ ion sensitive sustainable sensors based on 4-vinyl pyridine-ethyl acrylate copolymer
Vol 6, Issue 1, 2023
VIEWS - 1033 (Abstract) 346 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Sall ML, Diagne Diaw AK, Gningue-Sall D, et al. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environmental Science and Pollution Research International 2020; 27(24): 29927–29942. doi: 10.1007/s11356-020-09354-3.
2. Zalyhina V, Cheprasova V, Belyaeva V, Romanovski V. Pigments from spent Zn, Ni, Cu, and Cd electrolytes from electroplating industry. Environmental Science and Pollution Research 2021; 28: 32660–32668. doi: 10.1007/s11356-021-13007-4.
3. Król A, Mizerna K, Bożym M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials 2020; 384: 121502. doi: 10.1016/j.jhazmat.2019.121502.
4. Buxton S, Garman E, Heim KE, et al. Concise review of nickel human health toxicology and ecotoxicology. Inorganics 2019; 7(7): 89. doi: 10.3390/inorganics7070089.
5. Piszcz-Karaś K, Łuczak J, Hupka J. Release of selected chemical elements from shale drill cuttings to aqueous solutions of different pH. Applied Geochemistry 2016; 72: 136–145. doi: 10.1016/j.apgeochem.2016.07.006.
6. Kasprzak KS, Salnikow K. Nickel toxicity and carcinogenesis. In: Sigel A, Sigel H, Sigel RKO (editors). Nickel and its surprising impact in nature. Chichester: John Wiley & Sons, Ltd.; 2007. p. 619–660. doi: 10.1002/9780470028131.ch17.
7. Fu Z, Xi S. The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods 2020; 30(3): 167–176. doi: 10.1080/15376516.2019.1701594.
8. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry 2018; 119(1): 157–184. doi: 10.1002/jcb.26234.
9. Ferancová A, Hattuniemi MK, Sesay AM, et al. Rapid and direct electrochemical determination of Ni (II) in industrial discharge water. Journal of Hazardous Materials 2016; 306: 50–57. doi: 10.1016/j.jhazmat.2015.11.057.
10. Jain AK, Gupta VK, Singh RD, et al. Nickel(II)-selective sensors based on heterogeneous membranes of macrocyclic compounds. Sensors and Actuators B: Chemical 1997; 40(1): 15–20. doi: 10.1016/S0925-4005(97)80193-1.
11. Gupta VK, Prasad R, Kumar P, Mangla R. New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix. Analytica Chimica Acta 2000; 420(1): 19–27. doi: 10.1016/S0003-2670(00)01013-8.
12. Mazloum M, Salavati Niassary M, Amini MK. Pentacyclooctaaza as a neutral carrier in coated-wire ion-selective electrode for nickel(II). Sensors and Actuators B: Chemical 2002; 82(2-3): 259–264. doi: 10.1016/S0925-4005(01)01017-6.
13. Mao A, Li H, Yu L, Hu X. Electrochemical sensor based on multi-walled carbon nanotubes and chitosan-nickel complex for sensitive determination of metronidazole. Journal of Electroanalytical Chemistry 2017; 799: 257–262. doi: 10.1016/j.jelechem.2017.05.049.
14. Yao Q, Feng Y, Rong M, et al. Determination of nickel(II) via quenching of the fluorescence of boron nitride quantum dots. Microchimica Acta 2017; 184: 4217–4223. doi: 10.1007/s00604-017-2496-5.
15. Elsayed NH, Alatawi A, Monier M. Diacetylmonoxine modified chitosan derived ion-imprinted polymer for selective solid-phase extraction of nickel (II) ions. Reactive and Functional Polymers 2020; 151: 104570. doi: 10.1016/j.reactfunctpolym.2020.104570.
16. Erbas Z, Soylak M, Yilmaz E, Dogan M. Deepeutectic solvent based liquid phase microextraction of nickel at trace level as its diethyldithiocarbamate chelate from environmental samples. Microchemical Journal 2019; 145: 745–750. doi: 10.1016/j.microc.2018.11.039.
17. Crespo GA. Recent advances in ion-selective membrane electrodes for in situ environmental water analysis. Electrochimica Acta 2017; 245: 1023–1034. doi: 10.1016/j.electacta.2017.05.159.
18. Dionigi F, Reier T, Pawolek Z, et al. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016; 9(9): 962–972. doi: 10.1002/cssc.201501581.
19. Jain AK, Gupta VK, Ganeshpure PA, Raisoni JR. Ni(II)-selective ion sensors of salen type Schiff base chelates. Analytica Chimica Acta 2003; 553(1-2): 177–184. doi: 10.1016/j.aca.2005.08.016.
20. Kumar KG, Poduval R, Augustine P, et al. A PVCplasticized sensor for Ni(II) ion based on a simple ethylenediamine derivative. Analytical Sciences 2006; 22(10): 1333–1337. doi: 10.2116/analsci.22.1333.
21. Rawat A, Chandra S, Sarkar A, Jain D. Lanthanummonitoring by N,N’-1,3-phenylenedimaleimide based on polymeric membrane electrode. Analytical and Bioanalytical Electrochemistry 2009; 1(2): 98–111.
22. Khaligh NG, Abbo HS, Johan MR, Titinchi SJJ. Poly(vinyl pyridine)s: A versatile polymer in catalysis. Current Organic Chemistry 2019; 23(4): 439–479. doi: 10.2174/1385272823666190320145410.
23. Rao GN, Srivastava S, Srivastava SK, Singh M. Chelating ion-exchange resin membrane sensor for nickel(II) ions. Talanta 1996; 43(10): 1821–1825. doi: 10.1016/0039-9140(96)01959-5.
24. Gupta VK, Prasad R, Kumar A. Dibenzocyclamnickel(II) as ionophore in PVC-matrix for Ni2+-selective sensor. Sensors 2002; 2(10): 384–396. doi: 10.3390/s21000384.
25. Tomar PK, Chandra S, Malik A, Kumar A. Nickel analysis in real samples by Ni2+ selective PVC membrane electrode based on a new Schiff base. Materials Science and Engineering: C 2013; 33(8): 4978–4984. doi: 10.1016/j.msec.2013.08.019.
26. Gupta VK, Singh AK, Pal MK. Ni(II) selectivesensors based on Schiff bases membranes in poly(vinyl chloride). Analytica Chimica Acta 2008; 624(2): 223–231. doi: 10.1016/j.aca.2008.06.054.
27. Hooda S. Reactivity ratio determination and complete spectral assignment of 4-vinyl pyridine-ethyl acrylate copolymer by NMR spectroscopy. Indian Journal of Chemistry 2002; 41: 723–729.
28. Howick CJ. Plasticizers. In: John Wiley & Sons, Inc. (editor). Kirk-Othmer encyclopedia of chemical technology. Hoboken: John Wiley & Sons, Inc.; 2021. doi: 10.1002/0471238961.1612011903010415.a01.pub2.
29. Srivastava SK, Sahgal V, Vardhan H. A solid inorganic gel membrane sensor for mercury. Sensors and Actuators B: Chemical 1993; 13(1-3): 391–395. doi: 10.1016/0925-4005(93)85409-4.
30. Mi Y, Bakker E. Determination of complex formation constants of lipophilic neutral ionophores in solvent polymeric membranes with segmented sandwich membranes. Analytical Chemistry 1999; 71(23): 5279–5287. doi: 10.1021/ac9905930.
31. Bandi KR, Singh AK, Upadhyay A. Constructionand performance characteristics of polymeric membrane electrode and coated graphite electrode for the selective determination of Fe3+ ion. Materials Science and Engineering: C 2014; 36: 187–193. doi: 10.1016/j.msec.2013.12.010.
32. Yari A, Zaroon MM. Application of a newly synthesized dioxime derivative to design and characterize a novel electrochemical nickel(II)-selective sensor. Analytical Bioanalytical Electrochemistry 2011; 3(2): 160–174.
33. Ardakani MM, Iranpoor F, Karimi MA, Salavati-Niasari M. A new selective membrane electrode for oxalate based on N,N’-Bis(salicylidene)-2,2-dimethylpropane-1,3-diamine Ni(II). Bulletin of the Korean Chemical Society 2008; 29(2): 398–404. doi: 10.5012/BKCS.2008.29.2.398.
34. Singh AK, Singh P, Mehtab S. Polymeric membraneand coated graphite electrode based on newly synthesized tetraazamacrocyclic ligand for trace level determination of nickel ion in fruit juices and wine samples. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2009; 63: 87–95. doi: 10.1007/s10847-008-9492-7.
35. Gadzekpo VPY, Christian GD. Determination of selectivity coefficients of ion-selective electrodes by a matched-potential method. Analytica Chemical Acta 1984; 164: 279–282. doi: 10.1016/S0003-2670(00)85640-8.
36. Gupta VK, Goyal RN, Sharma RA. Novel PVC membrane based alizarin sensor and its application; Determination of vanadium, zirconium and molybdenum. International Journal of Electrochemical Science 2009; 4: 156–172.
37. Chandra S, Deepshikha, Sarkar A. Spectral, thermal and electrochemical investigation of carbohydrazone derived ionophore as Fe(III) ion selective electrode. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013; 107: 271–279. doi: 10.1016/j.saa.2013.01.055.
38. Chandra S, Singh I, Tomar PK, et al. Response characteristics of new perchlorate selective PVC membrane electrode based on a tripodal benzimidazole derivative as a neutral carrier. Journal of the Indian Chemical Society 2013; 90: 79–85.
39. Chandra S, Hooda S, Tomar PK, et al. Synthesis and characterization of bis nitrato[4-hydroxyacetophenonesemicarbazone) nickel(II) complex as ionophore for thiocyanate-selective electrode. Materials Science and Engineering: C 2016; 62: 18–27. doi: 10.1016/j.msec.2015.12.065.
40. Buck RP, Lindner E. Recommendations for nomenclature of ion-selective electrodes. Pure and Applied Chemistry 1994; 66(12): 2527–2536. doi: 10.1351/pac199466122527.
41. Huang M, Ding Y, Li X, et al. Synthesis of semiconducting polymer microparticles as solid ionophore with abundant complexing sites for long-life Pb(II) sensors. ACS Applied Materials & Interfaces 2014; 6(24): 22096–22107. doi: 10.1021/am505463f.
42. Criscuolo F, Ny Hanitra MI, Taurino I, et al. All-solid-state ion-selective electrodes: A tutorial for correct practice. IEEE Sensors Journal 2021; 21(20): 22143–22154. doi: 10.1109/JSEN.2021.3099209.
DOI: https://doi.org/10.24294/ace.v6i1.1948
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.