Organic sensing element approach in electrochemical sensor for automated and accurate pesticides detection
Vol 6, Issue 1, 2023
VIEWS - 633 (Abstract) 456 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Wang W, Wang X, Cheng N, et al. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. TrAC Trends in Analytical Chemistry 2020; 132: 116041. doi: 10.1016/j.trac.2020.116041.
2. Abhilash PC, Singh N. Pesticide use and application: An Indian scenario. Journal of Hazardous Materials 2009; 165(1–3): 1–12. doi: 10.1016/j.jhazmat.2008.10.061.
3. Kumar V, Vaid K, Bansal SA, Kim KH. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosensors and Bioelectronics 2020; 165: 112382. doi: 10.1016/j.bios.2020.112382.
4. Su D, Li H, Yan X, et al. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry 2021; 134: 116126. doi: 10.1016/j.trac.2020.116126.
5. Kaur N, Khunger A, Wallen SL, et al. Advanced green analytical chemistry for environmental pesticide detection. Current Opinion in Green and Sustainable Chemistry 2021; 30: 100488. doi: 10.1016/j.cogsc.2021.100488.
6. Kim D, Na SY, Kim HJ. A fluorescence turn-on probe for a catalytic amount of cyanides through the cyanide-mediated cinnamate-to-coumarin transformation. Sensors and Actuators B: Chemical 2016; 226: 227–231. doi: 10.1016/j.snb.2015.11.122.
7. Chen H, Zhang L, Hu Y, et al. Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sensors and Actuators B: Chemical 2021; 329: 129135. doi: 10.1016/j.snb.2020.129135.
8. López Ó, Fernández-Bolaños JG, Gil MV. New trends in pest control: The search for greener insecticides. Green Chemistry 2005; 7(6): 431–442. doi: 10.1039/B500733J.
9. Sharma A, Shukla A, Attri K, et al. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety 2020; 201: 110812. doi: 10.1016/j.ecoenv.2020.110812.
10. Cebi N, Manav OG, Olgun EO. Analysis of pesticide residues in hazelnuts using the QuEChERS method by liquid chromatography–tandem mass spectrometry. Microchemical Journal 2021; 166: 106208. doi: 10.1016/j.microc.2021.106208.
11. Patel S, Jamunkar R, Sinha D, et al. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: A review. Trends in Environmental Analytical Chemistry 2021; 31: e00136. doi: 10.1016/j.teac.2021.e00136.
12. Fang L, Jia M, Zhao H, et al. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends in Food Science & Technology 2021; 116: 387–404. doi: 10.1016/j.tifs.2021.07.039.
13. Fragoso DFM, Túler AC, Pratissoli D, et al. Biological activity of plant extracts on the small tomato borer Neoleucinodes elegantalis, an important pest in the Neotropical region. Crop Protection 2021; 145: 105606. doi: 10.1016/j.cropro.2021.105606.
14. Du H, Xie Y, Wang J. Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. TrAC Trends in Analytical Chemistry 2021; 135: 116178. doi: 10.1016/j.trac.2020.116178.
15. Liu X, Cheng H, Zhao Y, et al. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide. Biosensors and Bioelectronics 2022; 199: 113906. doi: 10.1016/j.bios.2021.113906.
16. Yan L, Yan X, Li H, et al. Reduced graphene oxide nanosheets and gold nanoparticles covalently linked to ferrocene-terminated dendrimer to construct electrochemical sensor with dual signal amplification strategy for ultra-sensitive detection of pesticide in vegetable. Microchemical Journal 2020; 157: 105016. doi: 10.1016/j.microc.2020.105016.
17. Bhawna, Kumar S, Sharma R, et al. Recent insights into SnO2-based engineered nanoparticles for sustainable H2 generation and remediation of pesticides. New Journal of Chemistry 2022; 46(9): 4014–4048. doi: 10.1039/D1NJ05808H.
18. Singh AP, Balayan S, Hooda V, et al. Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. International Journal of Biological Macromolecules 2020; 164: 3943–3952. doi: 10.1016/j.ijbiomac.2020.08.215.
19. Wen T, Yu J, Yuan L, et al. Behavior and mechanism of in-situ synthesis of auxiliary electrode for electrochemical sulfur sensor by calcium aluminate system. Ceramics International 2020; 46(4): 4256–4264. doi: 10.1016/j.ceramint.2019.10.146.
20. Ibrahim H, Temerk Y. A novel electrochemical sensor based on gold nanoparticles decorated functionalized carbon nanofibers for selective determination of xanthine oxidase inhibitor febuxostat in plasma of patients with gout. Sensors and Actuators B: Chemical 2021; 347: 130626. doi: 10.1016/j.snb.2021.130626.
21. Suresh I, Selvaraj S, Nesakumar N, et al. Nanomaterials based non-enzymatic electrochemical and optical sensors for the detection of carbendazim: A review. Trends in Environmental Analytical Chemistry 2021; 31: e00137. doi: 10.1016/j.teac.2021.e00137.
22. Madianos L, Skotadis E, Tsekenis G, et al. Ιmpedimetric nanoparticle aptasensor for selective and label free pesticide detection. Microelectronic Engineering 2018; 189: 39–45. doi: 10.1016/j.mee.2017.12.016.
23. Musarurwa H, Tawanda Tavengwa N. Extraction and electrochemical sensing of pesticides in food and environmental samples by use of polydopamine-based materials. Chemosphere 2021; 266: 129222. doi: 10.1016/j.chemosphere.2020.129222.
24. Liu J, Siavash Moakhar R, Mahshid S, et al. Multimodal electrochemical and SERS platform for chlorfenapyr detection. Applied Surface Science 2021; 566: 150617. doi: 10.1016/j.apsusc.2021.150617.
25. Wen S, Liang R, Zhang L, Qiu J. Multimodal assay of arsenite contamination in environmental samples with improved sensitivity through stimuli-response of multiligands modified silver nanoparticles. ACS Sustainable Chemistry & Engineering 2018; 6: 6223–6232. doi: 10.1021/acssuschemeng.7b04934.
26. Amatatongchai M, Sitanurak J, Sroysee W, et al. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Analytica Chimica Acta 2019; 1077: 255–265. doi: 10.1016/j.aca.2019.05.047.
27. Ding S, Lyu Z, Li S, et al. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosensors and Bioelectronics 2021; 191: 113434. doi: 10.1016/j.bios.2021.113434.
28. Zhang Y, Zhang W, Zhang L, et al. A molecularly imprinted electrochemical BPA sensor based on multi-walled carbon nanotubes modified by CdTe quantum dots for the detection of bisphenol A. Microchemical Journal 2021; 170: 106737. doi: 10.1016/j.microc.2021.106737.
29. Liu L, Guo J, Ding L. Polyaniline nanowire arrays deposited on porous carbon derived from raffia for electrochemical detection of imidacloprid. Electroanalysis 2021; 33: 2048–2052. doi: 10.1002/elan.202100162.
30. Dong S, Zhang J, Huang G, et al. Conducting microporous organic polymer with –OH functional groups: Special structure and multi-functional integrated property for organophosphorus biosensor. Chemical Engineering Journal 2021; 405: 126682. doi: 10.1016/j.cej.2020.126682.
31. Chang J, Yu L, Hou T, et al. Direct and specific detection of glyphosate using a phosphatase-like nanozyme-mediated chemiluminescence strategy. Analytical Chemistry 2022; 95(9): 4479–4485. doi: 10.1021/acs.analchem.2c05198.
32. Zhang X, Wu D, Zhou X, et al. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends in Analytical Chemistry 2018; 121: 115668. doi: 10.1016/j.trac.2019.115668.
33. Sun Y, Wei J, Zou J, et al. Electrochemical detection of methyl-paraoxon based on bifunctional cerium oxide nanozyme with catalytic activity and signal amplification effect. Journal of Pharmaceutical Analysis 2021; 11(5): 653–660. doi: 10.1016/j.jpha.2020.09.002.
34. Borah SJ, Gupta A, Sahu PK, et al. Science through the lens of nature: Recent advances in biomimetic approach towards pesticide degradation. SynOpen 2023; 7(1): 33–42. doi: 10.1055/a-2004-7289.
35. Wu J, Yang Q, Li Q, et al. Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Analytical Chemistry 2021; 93(8): 4084–4091. doi: 10.1021/acs.analchem.0c05257.
36. Zhu Y, Wu J, Han L, et al. Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides. Analytical Chemistry 2020; 92(11): 7444–7452. doi: 10.1021/acs.analchem.9b05110.
37. Shen Y, Gao X, Chen H, et al. Ultrathin C3N4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. Journal of Hazardous Materials 2023; 451: 131171. doi: 10.1016/j.jhazmat.2023.131171.
38. Jiang J, Zou S, Ma L, et al. Surface-enhanced raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver nanorods. ACS Applied Materials & Interfaces 2018; 10(10): 9129–9135. doi: 10.1021/acsami.7b18039.
39. Sammi H, Nair RV, Sardana N. Recent advances in nanoporous AAO based substrates for surface-enhanced raman scattering. Materials Today: Proceedings 2020; 41(4): 843–850. doi: 10.1016/j.matpr.2020.09.233.
40. Wang TJ, Barveen NR, Liu ZY, et al. Transparent, flexible plasmonic Ag NP/PMMA substrates using chemically patterned ferroelectric crystals for detecting pesticides on curved surfaces. ACS Applied Materials & Interfaces 2021; 13(29): 34910–34922. doi: 10.1021/acsami.1c08233.
41. Xu R, Dai S, Dou M, et al. Simultaneous, label-free and high-throughput SERS detection of multiple pesticides on Ag@three-dimensional silica photonic microsphere array. Journal of Agricultural and Food Chemistry 2022; 71(6): 3050–3059. doi: 10.1021/acs.jafc.2c07846.
42. Yu M, Chang Q, Zhang L, et al. Ultra-sensitive detecting OPs-isocarbophos using photoinduced regeneration of aptamer-based electrochemical sensors. Electroanalysis 2022; 34(6): 995–1000. doi: 10.1002/elan.202100222.
43. Tu X, Gao F, Ma X, et al. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. Journal of Hazardous Materials 2020; 396: 122776. doi: 10.1016/j.jhazmat.2020.122776.
44. Singh AP, Balayan S, Gupta S, et al. Detection of pesticide residues utilizing enzyme-electrode interface via nano-patterning of TiO2 nanoparticles and molybdenum disulfide (MoS2) nanosheets. Process Biochemistry 2021; 108: 185–193. doi: 10.1016/j.procbio.2021.06.015.
45. Qader B, Hussain I, Baron M, et al. A molecular imprinted polymer sensor for biomonitoring of fenamiphos pesticide metabolite fenamiphos sulfoxide. Electroanalysis 2021; 33(5): 1129–1136. doi: 10.1002/elan.202060599.
46. Zhao Y, Zheng X, Wang Q, et al. Electrochemical behavior of reduced graphene oxide/cyclodextrins sensors for ultrasensitive detection of imidacloprid in brown rice. Food Chemistry 2020; 333: 127495. doi: 10.1016/j.foodchem.2020.127495.
47. Majdinasab M, Daneshi M, Marty JL. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 2021; 232: 122397. doi: 10.1016/j.talanta.2021.122397.
48. Almutairi M, Alsaleem T, Jeperel H, et al. Determination of inorganic arsenic, heavy metals, pesticides and mycotoxins in Indian rice (Oryza sativa) and a probabilistic dietary risk assessment for the population of Saudi Arabia. Regulatory Toxicology and Pharmacology 2021; 125: 104986. doi: 10.1016/j.yrtph.2021.104986.
49. Li X, Gao X, Gai P, et al. Degradable metal-organic framework/methylene blue composites-based homogeneous electrochemical strategy for pesticide assay. Sensors and Actuators B: Chemical 2020; 323: 128701. doi: 10.1016/j.snb.2020.128701.
50. Mahmoudpour M, Torbati M, Mousavi MM, et al. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC Trends in Analytical Chemistry 2020; 129: 115943. doi: 10.1016/j.trac.2020.115943.
DOI: https://doi.org/10.24294/ace.v6i1.1933
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.