Organic sensing element approach in electrochemical sensor for automated and accurate pesticides detection

Saira Bano, Prasanta Kumar Sahu, Vinod Kumar, Vandana Kumari, Akanksha Gupta, Ravi Kant, Ravinder Kumar

Article ID: 1933
Vol 6, Issue 1, 2023

VIEWS - 633 (Abstract) 456 (PDF)

Abstract


The primary component for human health is food quality and its safety. The world has crossed 8 billion population highlighting major demand to fulfil high consumption food requirement. To overcome food security issue, inorganic farming trend is booming. In the process of boosting agriculture and allied products, unethical practices of using pesticides achieve heights. Protection of plants is necessary from weeds and pests. Thus, in order, to minimize the curb of unwanted growth of weeds and pest attack, pesticides act as an agent for protection and helping for immense production of crops. Therefore, swift and precise detection of harmful pesticides in agriculture products is required in urgent demand. In this review, the distinct organic material-based sensor such as colorimetric sensing, fluorescent sensors, gas chromatography-mass spectrometry, and liquid chromatography, with the organic compounds as sensing elements to monitor pesticides level in distinct samples due to their specificity, reusability, stability, high sensitivity, and selectivity. Apart from it, this study provides a comprehensive overview of the recent major advancement in organic sensing elements in electrochemical sensor pesticides detection based on molecularly imprinted, multimodal sensor polydopamine and conductive polymer at low-cost production.

Keywords


Pesticides; Sensing Elements; Electrochemical Sensor; Pesticide Detection; Sensitivity

Full Text:

PDF


References


1. Wang W, Wang X, Cheng N, et al. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. TrAC Trends in Analytical Chemistry 2020; 132: 116041. doi: 10.1016/j.trac.2020.116041.

2. Abhilash PC, Singh N. Pesticide use and application: An Indian scenario. Journal of Hazardous Materials 2009; 165(1–3): 1–12. doi: 10.1016/j.jhazmat.2008.10.061.

3. Kumar V, Vaid K, Bansal SA, Kim KH. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosensors and Bioelectronics 2020; 165: 112382. doi: 10.1016/j.bios.2020.112382.

4. Su D, Li H, Yan X, et al. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry 2021; 134: 116126. doi: 10.1016/j.trac.2020.116126.

5. Kaur N, Khunger A, Wallen SL, et al. Advanced green analytical chemistry for environmental pesticide detection. Current Opinion in Green and Sustainable Chemistry 2021; 30: 100488. doi: 10.1016/j.cogsc.2021.100488.

6. Kim D, Na SY, Kim HJ. A fluorescence turn-on probe for a catalytic amount of cyanides through the cyanide-mediated cinnamate-to-coumarin transformation. Sensors and Actuators B: Chemical 2016; 226: 227–231. doi: 10.1016/j.snb.2015.11.122.

7. Chen H, Zhang L, Hu Y, et al. Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sensors and Actuators B: Chemical 2021; 329: 129135. doi: 10.1016/j.snb.2020.129135.

8. López Ó, Fernández-Bolaños JG, Gil MV. New trends in pest control: The search for greener insecticides. Green Chemistry 2005; 7(6): 431–442. doi: 10.1039/B500733J.

9. Sharma A, Shukla A, Attri K, et al. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety 2020; 201: 110812. doi: 10.1016/j.ecoenv.2020.110812.

10. Cebi N, Manav OG, Olgun EO. Analysis of pesticide residues in hazelnuts using the QuEChERS method by liquid chromatography–tandem mass spectrometry. Microchemical Journal 2021; 166: 106208. doi: 10.1016/j.microc.2021.106208.

11. Patel S, Jamunkar R, Sinha D, et al. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: A review. Trends in Environmental Analytical Chemistry 2021; 31: e00136. doi: 10.1016/j.teac.2021.e00136.

12. Fang L, Jia M, Zhao H, et al. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends in Food Science & Technology 2021; 116: 387–404. doi: 10.1016/j.tifs.2021.07.039.

13. Fragoso DFM, Túler AC, Pratissoli D, et al. Biological activity of plant extracts on the small tomato borer Neoleucinodes elegantalis, an important pest in the Neotropical region. Crop Protection 2021; 145: 105606. doi: 10.1016/j.cropro.2021.105606.

14. Du H, Xie Y, Wang J. Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. TrAC Trends in Analytical Chemistry 2021; 135: 116178. doi: 10.1016/j.trac.2020.116178.

15. Liu X, Cheng H, Zhao Y, et al. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide. Biosensors and Bioelectronics 2022; 199: 113906. doi: 10.1016/j.bios.2021.113906.

16. Yan L, Yan X, Li H, et al. Reduced graphene oxide nanosheets and gold nanoparticles covalently linked to ferrocene-terminated dendrimer to construct electrochemical sensor with dual signal amplification strategy for ultra-sensitive detection of pesticide in vegetable. Microchemical Journal 2020; 157: 105016. doi: 10.1016/j.microc.2020.105016.

17. Bhawna, Kumar S, Sharma R, et al. Recent insights into SnO2-based engineered nanoparticles for sustainable H2 generation and remediation of pesticides. New Journal of Chemistry 2022; 46(9): 4014–4048. doi: 10.1039/D1NJ05808H.

18. Singh AP, Balayan S, Hooda V, et al. Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. International Journal of Biological Macromolecules 2020; 164: 3943–3952. doi: 10.1016/j.ijbiomac.2020.08.215.

19. Wen T, Yu J, Yuan L, et al. Behavior and mechanism of in-situ synthesis of auxiliary electrode for electrochemical sulfur sensor by calcium aluminate system. Ceramics International 2020; 46(4): 4256–4264. doi: 10.1016/j.ceramint.2019.10.146.

20. Ibrahim H, Temerk Y. A novel electrochemical sensor based on gold nanoparticles decorated functionalized carbon nanofibers for selective determination of xanthine oxidase inhibitor febuxostat in plasma of patients with gout. Sensors and Actuators B: Chemical 2021; 347: 130626. doi: 10.1016/j.snb.2021.130626.

21. Suresh I, Selvaraj S, Nesakumar N, et al. Nanomaterials based non-enzymatic electrochemical and optical sensors for the detection of carbendazim: A review. Trends in Environmental Analytical Chemistry 2021; 31: e00137. doi: 10.1016/j.teac.2021.e00137.

22. Madianos L, Skotadis E, Tsekenis G, et al. Ιmpedimetric nanoparticle aptasensor for selective and label free pesticide detection. Microelectronic Engineering 2018; 189: 39–45. doi: 10.1016/j.mee.2017.12.016.

23. Musarurwa H, Tawanda Tavengwa N. Extraction and electrochemical sensing of pesticides in food and environmental samples by use of polydopamine-based materials. Chemosphere 2021; 266: 129222. doi: 10.1016/j.chemosphere.2020.129222.

24. Liu J, Siavash Moakhar R, Mahshid S, et al. Multimodal electrochemical and SERS platform for chlorfenapyr detection. Applied Surface Science 2021; 566: 150617. doi: 10.1016/j.apsusc.2021.150617.

25. Wen S, Liang R, Zhang L, Qiu J. Multimodal assay of arsenite contamination in environmental samples with improved sensitivity through stimuli-response of multiligands modified silver nanoparticles. ACS Sustainable Chemistry & Engineering 2018; 6: 6223–6232. doi: 10.1021/acssuschemeng.7b04934.

26. Amatatongchai M, Sitanurak J, Sroysee W, et al. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Analytica Chimica Acta 2019; 1077: 255–265. doi: 10.1016/j.aca.2019.05.047.

27. Ding S, Lyu Z, Li S, et al. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosensors and Bioelectronics 2021; 191: 113434. doi: 10.1016/j.bios.2021.113434.

28. Zhang Y, Zhang W, Zhang L, et al. A molecularly imprinted electrochemical BPA sensor based on multi-walled carbon nanotubes modified by CdTe quantum dots for the detection of bisphenol A. Microchemical Journal 2021; 170: 106737. doi: 10.1016/j.microc.2021.106737.

29. Liu L, Guo J, Ding L. Polyaniline nanowire arrays deposited on porous carbon derived from raffia for electrochemical detection of imidacloprid. Electroanalysis 2021; 33: 2048–2052. doi: 10.1002/elan.202100162.

30. Dong S, Zhang J, Huang G, et al. Conducting microporous organic polymer with –OH functional groups: Special structure and multi-functional integrated property for organophosphorus biosensor. Chemical Engineering Journal 2021; 405: 126682. doi: 10.1016/j.cej.2020.126682.

31. Chang J, Yu L, Hou T, et al. Direct and specific detection of glyphosate using a phosphatase-like nanozyme-mediated chemiluminescence strategy. Analytical Chemistry 2022; 95(9): 4479–4485. doi: 10.1021/acs.analchem.2c05198.

32. Zhang X, Wu D, Zhou X, et al. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends in Analytical Chemistry 2018; 121: 115668. doi: 10.1016/j.trac.2019.115668.

33. Sun Y, Wei J, Zou J, et al. Electrochemical detection of methyl-paraoxon based on bifunctional cerium oxide nanozyme with catalytic activity and signal amplification effect. Journal of Pharmaceutical Analysis 2021; 11(5): 653–660. doi: 10.1016/j.jpha.2020.09.002.

34. Borah SJ, Gupta A, Sahu PK, et al. Science through the lens of nature: Recent advances in biomimetic approach towards pesticide degradation. SynOpen 2023; 7(1): 33–42. doi: 10.1055/a-2004-7289.

35. Wu J, Yang Q, Li Q, et al. Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Analytical Chemistry 2021; 93(8): 4084–4091. doi: 10.1021/acs.analchem.0c05257.

36. Zhu Y, Wu J, Han L, et al. Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides. Analytical Chemistry 2020; 92(11): 7444–7452. doi: 10.1021/acs.analchem.9b05110.

37. Shen Y, Gao X, Chen H, et al. Ultrathin C3N4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. Journal of Hazardous Materials 2023; 451: 131171. doi: 10.1016/j.jhazmat.2023.131171.

38. Jiang J, Zou S, Ma L, et al. Surface-enhanced raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver nanorods. ACS Applied Materials & Interfaces 2018; 10(10): 9129–9135. doi: 10.1021/acsami.7b18039.

39. Sammi H, Nair RV, Sardana N. Recent advances in nanoporous AAO based substrates for surface-enhanced raman scattering. Materials Today: Proceedings 2020; 41(4): 843–850. doi: 10.1016/j.matpr.2020.09.233.

40. Wang TJ, Barveen NR, Liu ZY, et al. Transparent, flexible plasmonic Ag NP/PMMA substrates using chemically patterned ferroelectric crystals for detecting pesticides on curved surfaces. ACS Applied Materials & Interfaces 2021; 13(29): 34910–34922. doi: 10.1021/acsami.1c08233.

41. Xu R, Dai S, Dou M, et al. Simultaneous, label-free and high-throughput SERS detection of multiple pesticides on Ag@three-dimensional silica photonic microsphere array. Journal of Agricultural and Food Chemistry 2022; 71(6): 3050–3059. doi: 10.1021/acs.jafc.2c07846.

42. Yu M, Chang Q, Zhang L, et al. Ultra-sensitive detecting OPs-isocarbophos using photoinduced regeneration of aptamer-based electrochemical sensors. Electroanalysis 2022; 34(6): 995–1000. doi: 10.1002/elan.202100222.

43. Tu X, Gao F, Ma X, et al. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. Journal of Hazardous Materials 2020; 396: 122776. doi: 10.1016/j.jhazmat.2020.122776.

44. Singh AP, Balayan S, Gupta S, et al. Detection of pesticide residues utilizing enzyme-electrode interface via nano-patterning of TiO2 nanoparticles and molybdenum disulfide (MoS2) nanosheets. Process Biochemistry 2021; 108: 185–193. doi: 10.1016/j.procbio.2021.06.015.

45. Qader B, Hussain I, Baron M, et al. A molecular imprinted polymer sensor for biomonitoring of fenamiphos pesticide metabolite fenamiphos sulfoxide. Electroanalysis 2021; 33(5): 1129–1136. doi: 10.1002/elan.202060599.

46. Zhao Y, Zheng X, Wang Q, et al. Electrochemical behavior of reduced graphene oxide/cyclodextrins sensors for ultrasensitive detection of imidacloprid in brown rice. Food Chemistry 2020; 333: 127495. doi: 10.1016/j.foodchem.2020.127495.

47. Majdinasab M, Daneshi M, Marty JL. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 2021; 232: 122397. doi: 10.1016/j.talanta.2021.122397.

48. Almutairi M, Alsaleem T, Jeperel H, et al. Determination of inorganic arsenic, heavy metals, pesticides and mycotoxins in Indian rice (Oryza sativa) and a probabilistic dietary risk assessment for the population of Saudi Arabia. Regulatory Toxicology and Pharmacology 2021; 125: 104986. doi: 10.1016/j.yrtph.2021.104986.

49. Li X, Gao X, Gai P, et al. Degradable metal-organic framework/methylene blue composites-based homogeneous electrochemical strategy for pesticide assay. Sensors and Actuators B: Chemical 2020; 323: 128701. doi: 10.1016/j.snb.2020.128701.

50. Mahmoudpour M, Torbati M, Mousavi MM, et al. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC Trends in Analytical Chemistry 2020; 129: 115943. doi: 10.1016/j.trac.2020.115943.




DOI: https://doi.org/10.24294/ace.v6i1.1933

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.