Click chemistry: A fascinating, Nobel-winning method for the improvement of biological activity
Vol 6, Issue 1, 2023
VIEWS - 2091 (Abstract)
Abstract
Keywords
Full Text:
PDFReferences
1. Le Droumaguet B, Guerrouache M, Carbonnier B. Contribution of the “click chemistry” toolbox for the design, synthesis, and resulting applications of innovative and efficient separative supports: Time for assessment. Macromolecular Rapid Communications 2022; 43(19): 1–34. doi: 10.1002/marc.202200210.
2. Witczak ZJ, Bielski R. Click chemistry in glycoscience: New developments and strategies. New Jersey: John Wiley & Sons; 2013. p. 3–9.
3. Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chemical Reviews 2013; 113(7): 4905–4979. doi: 10.1021/cr200409f.
4. Nie J, Li JP, Deng H, Pan HC. Progress on click chemistry and its application in chemical sensors. Chinese Journal of Analytical Chemistry 2015; 43(4): 609–616. doi: 10.1016/S1872-2040(15)60819-2.
5. Gao P, Sun L, Zhou J, et al. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opinion on Drug Discovery 2016; 11(9): 857–871. doi: 10.1080/17460441.2016.1210125.
6. Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discovery Today 2003; 8(24): 1128–1137. doi: 10.1016/S1359-6446(03)02933-7.
7. Yang W, Chen J, Yan J, et al. Advance of click chemistry in anion exchange membranes for energy application. Journal of Polymer Science 2022; 60(4): 627–649. doi: 10.1002/pol.20210819.
8. Barrow AS, Smedley CJ, Zheng Q, et al. The growing applications of SuFEx click chemistry. Chemical Society Reviews 2019; 48(17): 4731–4758. doi: 10.1039/C8CS00960K.
9. Somani RR, Sabnis AA, Vaidya AV. Click chemical reactions: An emerging approach and its pharmaceutical applications. International Journal of Pharmaceutical and Phytopharmacological Research 2012; 1(5): 322–331.
10. Sykam K, Donempudi S, Basak P. 1,2,3-Triazole rich polymers for flame retardant application: A review. Journal of Applied Polymer Science 2022; 139(32): 1–17. doi: 10.1002/app.52771.
11. Zhu Y, Zhang X, You Q, Jiang Z. Recent applications of CBT-Cys click reaction in biological systems. Bioorganic & Medicinal Chemistry 2022; 68: 1–13. doi: 10.1016/j.bmc.2022.116881.
12. Khashei Siuki H, Ghamari Kargar P, Bagherzade G. New acetamidine Cu(II) schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Scientific Reports 2022; 12(1): 1–17. doi: 10.1038/s41598-022-07674-7.
13. Li J, Zhang J. The antibacterial activity of 1,2,3-triazole- and 1,2,4-triazole-containing hybrids against Staphylococcus aureus: An updated review (2020-Present). Current Topics in Medicinal Chemistry 2022; 22(1): 41–63. doi: 10.2174/1568026621666211111160332.
14. Varala R, Bollikolla HB, Kurmarayuni CM. Synthesis of pharmacological relevant 1,2,3-triazole and its analogues-A review. Current Organic Synthesis 2021; 18(2): 101–124. doi: 10.2174/1570179417666200914142229.
15. Sachdeva H, Saquib M, Tanwar K. Design and development of triazole derivatives as prospective anticancer agents: A review. Anti-cancer Agents in Medicinal Chemistry 2022; 22(19): 3269–3279. doi: 10.2174/1871520622666220412133112.
16. Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorganic Chemistry 2017; 71: 30–54. doi: 10.1016/j.bioorg.2017.01.010.
17. Hebbar NU, Patil AR, Gudimani P, et al. Click approach for synthesis of 3,4-dihydro-2(1H) quinolinone, coumarin moored 1,2,3-triazoles as inhibitor of mycobacteria tuberculosis H37RV, their antioxidant, cytotoxicity and in-silico studies. Journal of Molecular Structure 2022; 1269: 133795. doi: 10.1016/j.molstruc.2022.133795.
18. Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. Journal of Enzyme Inhibition and Medicinal Chemistry 2011; 26(1): 1–21. doi: 10.3109/14756360903524304.
19. Battıgelli A, Almeida B, Shukla A. Recent advances in bioorthogonal click chemistry for biomedical applications. Bioconjugate Chemistry 2022; 33(2): 263–271. doi: 10.1021/acs.bioconjchem.1c00564.
20. Banert K, Hagedorn M, Hemeltjen C, et al. Synthesis of N-unsubstituted 1,2,3-triazoles via a cascade including propargyl azides, allenyl azides, and triazafulvenes. ARKIVOC 2016; 5: 338–361. doi: 10.24820/ark.5550190.p009.846.
21. Mohammadkhani A, Heydari A. Nano‑magnetic‑iron oxides@choline acetate as a heterogeneous catalyst for the synthesis of 1,2,3‑triazoles. Catalysis Letters 2021; 152(6): 1678–1691. doi: 10.1007/s10562-021-03739-w.
22. Tomé AC. Product Class 13: 1,2,3-Triazoles. In: Storr RC, Gilchrist TL (editors). Science of synthesis. Stuttgart: Georg Thieme Verlag; 2004. p. 415–601.
23. Perrone D, Marchesi E, Preti L, Navacchia ML. Modified nucleosides, nucleotides and nucleic acids via click azide-alkyne cycloaddition for pharmacological applications. Molecules 2021; 26(11): 3100. doi: 10.3390/molecules26113100.
24. Dong S, He J, Sun Y, et al. Efficient click synthesis of a protonized and reduction-sensitive amphiphilic small-molecule prodrug containing camptothecin and gemcitabine for a drug self-delivery system. Molecular Pharmaceutics 2019; 16(9): 3770–3779. doi: 10.1021/acs.molpharmaceut.9b00349.
25. Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chemical Reviews 2009; 109(7): 3141–3157. doi: 10.1021/cr900174j.
26. Zhao Y. Surface-cross-linked micelles as multifunctionalized organic nanoparticles for controlled release, light harvesting, and catalysis. Langmuir 2016; 32(23): 5703–5713. doi: 10.1021/acs.langmuir.6b01162.
27. Werengowska-Ciećwierz K, Wiśniewski M, Terzyk AP, Furmaniak S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Advances in Condensed Matter Physics 2015; 2015: 198175. doi: 10.1155/2015/198175.
28. Liu F, Wang H, Li S, et al. Biocompatible SuFEx click chemistry: Thionyl tetrafluoride (SOF4)-derived connective hubs for bioconjugation to DNA and proteins. Angewandte Chemie International Edition 2019; 58(24): 8029–8033. doi: 10.1002/anie.201902489.
29. Pickens CJ, Johnson SN, Pressnall MM, et al. Practical considerations, challenges, and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjugate Chemistry 2018; 29(3): 686–701. doi: 10.1021/acs.bioconjchem.7b00633.
30. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. Journal of the American Chemical Society 2004; 126(46): 15046–15047. doi: 10.1021/ja044996f.
31. Presolski SI, Hong VP, Finn MG. Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Current Protocols in Chemical Biology 2011; 3(4): 153–162. doi: 10.1002/9780470559277.ch110148.
32. Lallana E, Sousa-Herves A, Fernandez-Trillo F, et al. Click chemistry for drug delivery nanosystems. Pharmaceutical Research 2012; 29(1): 1–34. doi: 10.1007/s11095-011-0568-5.
33. Müggenburg F, Müller S. Azide-modified nucleosides as versatile tools for bioorthogonal labeling and functionalization. Chemical Record 2022; 22(5): e202100322. doi: 10.1002/tcr.202100322.
34. Hrimla M, Bahsis L, Laamari MR, et al. An overview on the performance of 1,2,3-triazole derivatives as corrosion inhibitors for metal surfaces. International Journal of Molecular Sciences 2022; 23(1): 16. doi: 10.3390/ijms23010016.
35. Huisgen R. 1,3-Dipolar cycloadditions. Angewandte Chemie 1963; 75(13): 604–637. doi: 10.1002/anie.196306331.
36. Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition 2001; 40(11): 2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
37. Rostovtsev VV, Green LG, Fokin VV, et al. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition 2002; 41(14): 2596–2599. doi: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0.
38. Sun H, Schanze KS. Functionalization of water-soluble conjugated polymers for bioapplications. ACS Applied Materials & Interfaces 2022; 14(18): 20506–20519. doi: 10.1021/acsami.2c02475.
39. Meldal M, Tornøe CW. Cu-catalyzed azide-alkyne cycloaddition. Chemical Reviews 2008; 108(8): 2952–3015. doi: 10.1021/cr0783479.
40. Tiwari VK, Mishra BB, Mishra KB, et al. Cu-catalyzed click reaction in carbohydrate chemistry. Chemical Reviews 2016; 116(5): 3086–3240. doi: 10.1021/acs.chemrev.5b00408.
41. Halay E, Ay E, Salva E, et al. Syntheses of 1,2,3-triazole-bridged pyranose sugars with purine and pyrimidine nucleobases and evaluation of their anticancer potential. Nucleosides Nucleotides & Nucleic Acids 2017; 36(9): 598–619. doi: 10.1080/15257770.2017.1346258.
42. Halay E, Ay E, Salva E, et al. Synthesis of triazolylmethyl-linked nucleoside analogs via combination of azidofuranoses with propargylated nucleobases and study on their cytotoxicity. Chemistry of Heterocyclic Compounds 2018; 54(2): 158–166. doi: 10.1007/s10593-018-2248-4.
43. Koksal Yildirim Ç, Kotmakcı M, Halay E, et al. Formulation, characterization, cytotoxicity and Salmonella/microsome mutagenicity (Ames) studies of a novel 5-fluorouracil derivative. Saudi Pharmaceutical Journal 2018; 26(3): 369–374. doi: 10.1016/j.jsps.2018.01.004.
44. Limpachayaporn P, Nuchpun S, Sirirak J, et al. meta-Ureidophenoxy-1,2,3-triazole hybrid as a novel scaffold for promising HepG2 hepatocellular carcinoma inhibitors: Synthesis, biological evaluation and molecular docking studies. Bioorganic & Medicinal Chemistry 2022; 74: 117048. doi: 10.1016/j.bmc.2022.117048.
45. Ay K, Ispartaloglu B, Halay E, et al. Synthesis and antimicrobial evaluation of sulfanilamide- and carbohydrate-derived 1,4-disubstitued-1,2,3-triazoles via click chemistry. Medicinal Chemistry Research 2017; 26(7): 1497–1505. doi: 10.1007/s00044-017-1864-3.
46. Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. European Journal of Medicinal Chemistry 2019; 168: 357–372. doi: 10.1016/j.ejmech.2019.02.055.
47. Xie F, Hao Y, Bao J, et al. Design, synthesis, and in vitro evaluation of novel antifungal triazoles containing substituted 1,2,3-triazole-methoxyl side chains. Bioorganic Chemistry 2022; 129: 106216. doi: 10.1016/j.bioorg.2022.106216.
48. Soltani Rad MN, Behrouz S, Mohammad-Javadi M, et al. Synthesis of fish scale derived hydroxyapatite silica propyl bisaminoethoxy ethane cuprous complex (HASPBAEECC) as a novel hybrid nano‑catalyst for highly efficient synthesis of new benzimidazole‑1,2,3‑triazole hybrid analogues as antifungal agents. Molecular Diversity 2022; 26(5): 2503–2521. doi: 10.1007/s11030-021-10346-9.
49. Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Archiv der Pharmazie 2021; 354(1): e2000163. doi: 10.1002/ardp.202000163.
50. Sun L, Huang T, Dick A, et al. Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. European Journal of Medicinal Chemistry 2020; 190: 112085. doi: 10.1016/j.ejmech.2020.112085.
51. Dutta A, Trivedi P, Gehlot PS, et al. Design and synthesis of quinazolinone-triazole hybrids as potent anti-tubercular agents. ACS Applied Bio Materials 2022; 5(9): 4413–4424. doi: 10.1021/acsabm.2c00562.
52. Sharma A, Agrahari AK, Rajkhowa S, Tiwari VK. Emerging impact of triazoles as anti-tubercular agent. European Journal of Medicinal Chemistry 2022; 238: 114454. doi: 10.1016/j.ejmech.2022.114454.
53. Tan W, Li Q, Li W, et al. Synthesis and antioxidant property of novel 1,2,3-triazole-linked starch derivatives via ‘click chemistry’. International Journal of Biological Macromolecules 2016; 82: 404–410. doi: 10.1016/j.ijbiomac.2015.10.007.
54. Siddiqui MM, Nagargoje AA, Akolkar SV, et al. [HDBU][HSO4]‑catalyzed facile synthesis of new 1,2,3‑triazole‑tethered 2,3‑dihydroquinazolin‑4[1H]‑one derivatives and their DPPH radical scavenging activity. Research on Chemical Intermediates 2022; 48(3): 1199–1225. doi: 10.1007/s11164-021-04639-9.
55. Quintana V, Gonzalez-Bakker A, Padron JI, et al. Synthesis of oxazole–tetrahydropyran hybrids and study on their antiproliferative activity against human tumour cells. European Journal of Organic Chemistry 2022; 2022(39): e202200528. doi: 10.1002/ejoc.202200528.
56. Thanh ND, Do SH, Le TH, et al. Synthesis and antiproliferative activity of 1H-1,2,3-triazole-4H-chromene-D-glucose hybrid compounds with dual inhibitory activity against EGFR/VEGFR-2 and molecular docking study. New Journal of Chemistry 2022; 46(48): 23179–23197. doi: 10.1039/D2NJ04373D.
57. Chandrasekaran R, Murugavel S, Silambarasan T. Synthesis, quantum chemical, and molecular modeling investigations of 1,2,3-triazole fused dicarboxylate bioorganic derivative as angiotensin-converting enzyme inhibitor. Journal of the Chinese Chemical Society 2022; 69(3): 569–584. doi: 10.1002/jccs.202100482.
58. Fallah Z, Tajbakhsh M, Alikhani M, et al. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. Journal of Molecular Structure 2022; 1255: 132469. doi: 10.1016/j.molstruc.2022.132469.
59. Jiang X, Hao X, Jing L, et al. Recent applications of click chemistry in drug discovery. Expert Opinion on Drug Discovery 2019; 14(8): 779–789. doi: 10.1080/17460441.2019.1614910.
60. Langmuir I. Isomorphism, isosterism and covalence. Journal of the American Chemical Society 1919; 41: 1543–1559. doi: 10.1021/ja02231a009.
61. Recnik L-M, Kandioller W, Mindt TL. 1,4-Disubstituted 1,2,3-triazoles as amide bond surrogates for the stabilisation of linear peptides with biological activity. Molecules 2020; 25(16): 3576. doi: 10.3390/molecules25163576.
62. Meanwell NA. Synopsis of some recent tactical application of bioisosteres in drug design. Journal of Medicinal Chemistry 2011; 54(8): 2529–2591. doi: 10.1021/jm1013693.
63. Lengerli D, Ibis K, Nural Y, Banoglu E. The 1,2,3-triazole ‘all-in-one’ ring system in drug discovery: A good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opinion on Drug Discovery 2022; 17(11): 1209–1236. doi: 10.1080/17460441.2022.2129613.
64. Bonandi E, Christodoulou MS, Fumagalli G, et al. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discovery Today 2017; 22(10): 1572–1581. doi: 10.1016/j.drudis.2017.05.014.
65. Tron GC, Pirali T, Billington RA, et al. Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes. Medicinal Research Reviews 2008; 28(2): 278–308. doi: 10.1002/med.20107.
66. Pedersen DS, Abell A. 1,2,3-Triazoles in peptidomimetic chemistry. European Journal of Organic Chemistry 2011; 2011(13): 2399–2411. doi: 10.1002/ejoc.201100157.
67. Guo HY, Chen ZA, Shen QK, Quan ZS. Application of triazoles in the structural modification of natural products. Journal of Enzyme Inhibition and Medicinal Chemistry 2021; 36(1): 1115–1144. doi: 10.1080/14756366.2021.1890066.
68. Shinde GB, Mahale PK, Padaki SA, et al. An efficient and safe process for the preparation of ticagrelor, a platelet aggregation inhibitor via resin‑NO2 catalyzed formation of triazole ring. SpringerPlus 2015; 4: 493. doi: 10.1186/s40064-015-1299-6.
69. Said MA, Khan DJO, Al-blewi FF, et al. New 1,2,3-Triazole scaffold schiff bases as potential anti-COVID-19: Design, synthesis, DFT-molecular docking, and cytotoxicity aspects. Vaccines 2021; 9(9): 1012. doi: 10.3390/vaccines9091012.
70. Nural Y, Ozdemir S, Yalcin MS, et al. Synthesis, biological evaluation, molecular docking, and acid dissociation constant of new bis-1,2,3-triazole compounds. ChemistrySelect 2021; 6(28): 6994–7001. doi: 10.1002/slct.202101148.
71. Sletten EM, Bertozzi CR. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie-International Edition 2009; 48(38): 6974–6998. doi: 10.1002/anie.200900942.
72. Tei R, Baskin JM. Click chemistry and optogenetic approaches to visualize and manipulate phosphatidic acid signaling. Journal of Biological Chemistry 2022; 298(4): 101810. doi: 10.1016/j.jbc.2022.101810.
73. Kuczynska K, Bonczak B, Rarova L, et al. Synthesis and cytotoxic activity of 1,2,3-triazoles derived from 2,3-seco-dihydrobetulin via a click chemistry approach. Journal of Molecular Structure 2022; 1250: 131751. doi: 10.1016/j.molstruc.2021.131751.
74. Daher SS, Lee M, Jin X, et al. Alternative approaches utilizing click chemistry to develop next-generation analogs of solithromycin. European Journal of Medicinal Chemistry 2022; 233: 114213. doi: 10.1016/j.ejmech.2022.114213.
75. Antoszczak M, Müller S, Colombeau L, et al. Rapid access to ironomycin derivatives by click chemistry. ACS Organic & Inorganic Au 2022; 2(3): 222–228. doi: 10.1021/acsorginorgau.1c00045.
76. de Carvalho LL, Pena RB, Romeiro NC, et al. A concise synthesis of triazole analogues of lavendustin A via click chemistry approach and preliminary evaluation of their antiparasitic activity against Trypanosoma cruzi. ChemistrySelect 2022; 7(12): e202200128. doi: 10.1002/slct.202200128.
77. Traube FR, Stern M, Tölke AJ, et al. Suppression of SARS-CoV-2 replication with stabilized and click-chemistry modified siRNAs. Angewandte Chemie International Edition 2022; 61(38): e202204556. doi: 10.1002/anie.202204556.
78. Karypidou K, Ribone SR, Quevedo MA, et al. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorganic & Medicinal Chemistry Letters 2018; 28(21): 3472–3476. doi: 10.1016/j.bmcl.2018.09.019.
79. Kaushik CP, Pahwa A. Convenient synthesis, antimalarial and antimicrobial potential of thioethereal 1,4-disubstituted 1,2,3-triazoles with ester functionality. Medicinal Chemistry Research 2018; 27(2): 458–469. doi: 10.1007/s00044-017-2072-x.
80. Nagesh HN, Suresh N, Prakash GVSB, et al. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents. Medicinal Chemistry Research 2015; 24(2): 523–532. doi: 10.1007/s00044-014-1142-6.
81. Mohammadi-Khanaposhtani M, Safavi M, Sabourian R, et al. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9(10H)-acridinone-1,2,3-triazoles. Molecular Diversity 2015; 19(4): 787–795. doi: 10.1007/s11030-015-9616-0.
82. Sadat-Ebrahimi SE, Babania H, Mohammadi-Khanaposhtani M, et al. Design, synthesis, and biological evaluation of new indole-acrylamide-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Polycyclic Aromatic Compounds 2022; 42(6): 3157–3165. doi: 10.1080/10406638.2020.1854323.
83. Naveen, Tittal RK, Ghule VD, et al. Design, synthesis, biological activity, molecular docking and computational studies on novel 1,4-disubstituted-1,2,3-triazole-thiosemicarbazone hybrid molecules. Journal of Molecular Structure 2020; 1209: 127951. doi: 10.1016/j.molstruc.2020.127951.
84. Hachim ME, Oubella A, Byadi S, et al. Newly synthesized (R)-carvone-derived 1,2,3-triazoles: Structural, mechanistic, cytotoxic and molecular docking studies. Journal of Biomolecular Structure & Dynamics 2022; 40(16): 7205–7217. doi: 10.1080/07391102.2021.1894984.
85. Kaushik CP, Chahal M, Luxmi R, et al. Synthesis, characterization and biological activities of sulfonamide tagged 1,2,3-triazoles. Synthetic Communications 2020; 50(22): 3443–3461. doi: 10.1080/00397911.2020.1802758.
DOI: https://doi.org/10.24294/ace.v6i1.1847
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.