Click chemistry: A fascinating, Nobel-winning method for the improvement of biological activity

Erkan Halay, Yaser Acikbas

Article ID: 1847
Vol 6, Issue 1, 2023

VIEWS - 826 (Abstract) 528 (PDF)

Abstract


Click chemistry is totally an approach consisting of efficient and reliable reactions that bind two molecular building blocks and require no complex purification techniques. The aspire of achieving molecules with the desired characteristics and behaviour is the key to the click chemistry concept. In this concept, in order to obtain 1,2,3-triazole products as diversely functionalized molecules, copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has been widely used for years in the field of materials science, organic synthesis and the biochemistry. This review focusses on the importance of click chemistry for obtaining biologically active triazole molecules and therefore the applications of such 1,2,3-triazole derivatives in medicinal chemistry field are highlighted.

Keywords


Click Chemistry; Triazole; CuAAC; Cycloaddition; Drug Discovery; Biological Activity

Full Text:

PDF


References


1. Le Droumaguet B, Guerrouache M, Carbonnier B. Contribution of the “click chemistry” toolbox for the design, synthesis, and resulting applications of innovative and efficient separative supports: Time for assessment. Macromolecular Rapid Communications 2022; 43(19): 1–34. doi: 10.1002/marc.202200210.

2. Witczak ZJ, Bielski R. Click chemistry in glycoscience: New developments and strategies. New Jersey: John Wiley & Sons; 2013. p. 3–9.

3. Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chemical Reviews 2013; 113(7): 4905–4979. doi: 10.1021/cr200409f.

4. Nie J, Li JP, Deng H, Pan HC. Progress on click chemistry and its application in chemical sensors. Chinese Journal of Analytical Chemistry 2015; 43(4): 609–616. doi: 10.1016/S1872-2040(15)60819-2.

5. Gao P, Sun L, Zhou J, et al. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opinion on Drug Discovery 2016; 11(9): 857–871. doi: 10.1080/17460441.2016.1210125.

6. Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discovery Today 2003; 8(24): 1128–1137. doi: 10.1016/S1359-6446(03)02933-7.

7. Yang W, Chen J, Yan J, et al. Advance of click chemistry in anion exchange membranes for energy application. Journal of Polymer Science 2022; 60(4): 627–649. doi: 10.1002/pol.20210819.

8. Barrow AS, Smedley CJ, Zheng Q, et al. The growing applications of SuFEx click chemistry. Chemical Society Reviews 2019; 48(17): 4731–4758. doi: 10.1039/C8CS00960K.

9. Somani RR, Sabnis AA, Vaidya AV. Click chemical reactions: An emerging approach and its pharmaceutical applications. International Journal of Pharmaceutical and Phytopharmacological Research 2012; 1(5): 322–331.

10. Sykam K, Donempudi S, Basak P. 1,2,3-Triazole rich polymers for flame retardant application: A review. Journal of Applied Polymer Science 2022; 139(32): 1–17. doi: 10.1002/app.52771.

11. Zhu Y, Zhang X, You Q, Jiang Z. Recent applications of CBT-Cys click reaction in biological systems. Bioorganic & Medicinal Chemistry 2022; 68: 1–13. doi: 10.1016/j.bmc.2022.116881.

12. Khashei Siuki H, Ghamari Kargar P, Bagherzade G. New acetamidine Cu(II) schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Scientific Reports 2022; 12(1): 1–17. doi: 10.1038/s41598-022-07674-7.

13. Li J, Zhang J. The antibacterial activity of 1,2,3-triazole- and 1,2,4-triazole-containing hybrids against Staphylococcus aureus: An updated review (2020-Present). Current Topics in Medicinal Chemistry 2022; 22(1): 41–63. doi: 10.2174/1568026621666211111160332.

14. Varala R, Bollikolla HB, Kurmarayuni CM. Synthesis of pharmacological relevant 1,2,3-triazole and its analogues-A review. Current Organic Synthesis 2021; 18(2): 101–124. doi: 10.2174/1570179417666200914142229.

15. Sachdeva H, Saquib M, Tanwar K. Design and development of triazole derivatives as prospective anticancer agents: A review. Anti-cancer Agents in Medicinal Chemistry 2022; 22(19): 3269–3279. doi: 10.2174/1871520622666220412133112.

16. Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorganic Chemistry 2017; 71: 30–54. doi: 10.1016/j.bioorg.2017.01.010.

17. Hebbar NU, Patil AR, Gudimani P, et al. Click approach for synthesis of 3,4-dihydro-2(1H) quinolinone, coumarin moored 1,2,3-triazoles as inhibitor of mycobacteria tuberculosis H37RV, their antioxidant, cytotoxicity and in-silico studies. Journal of Molecular Structure 2022; 1269: 133795. doi: 10.1016/j.molstruc.2022.133795.

18. Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. Journal of Enzyme Inhibition and Medicinal Chemistry 2011; 26(1): 1–21. doi: 10.3109/14756360903524304.

19. Battıgelli A, Almeida B, Shukla A. Recent advances in bioorthogonal click chemistry for biomedical applications. Bioconjugate Chemistry 2022; 33(2): 263–271. doi: 10.1021/acs.bioconjchem.1c00564.

20. Banert K, Hagedorn M, Hemeltjen C, et al. Synthesis of N-unsubstituted 1,2,3-triazoles via a cascade including propargyl azides, allenyl azides, and triazafulvenes. ARKIVOC 2016; 5: 338–361. doi: 10.24820/ark.5550190.p009.846.

21. Mohammadkhani A, Heydari A. Nano‑magnetic‑iron oxides@choline acetate as a heterogeneous catalyst for the synthesis of 1,2,3‑triazoles. Catalysis Letters 2021; 152(6): 1678–1691. doi: 10.1007/s10562-021-03739-w.

22. Tomé AC. Product Class 13: 1,2,3-Triazoles. In: Storr RC, Gilchrist TL (editors). Science of synthesis. Stuttgart: Georg Thieme Verlag; 2004. p. 415–601.

23. Perrone D, Marchesi E, Preti L, Navacchia ML. Modified nucleosides, nucleotides and nucleic acids via click azide-alkyne cycloaddition for pharmacological applications. Molecules 2021; 26(11): 3100. doi: 10.3390/molecules26113100.

24. Dong S, He J, Sun Y, et al. Efficient click synthesis of a protonized and reduction-sensitive amphiphilic small-molecule prodrug containing camptothecin and gemcitabine for a drug self-delivery system. Molecular Pharmaceutics 2019; 16(9): 3770–3779. doi: 10.1021/acs.molpharmaceut.9b00349.

25. Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chemical Reviews 2009; 109(7): 3141–3157. doi: 10.1021/cr900174j.

26. Zhao Y. Surface-cross-linked micelles as multifunctionalized organic nanoparticles for controlled release, light harvesting, and catalysis. Langmuir 2016; 32(23): 5703–5713. doi: 10.1021/acs.langmuir.6b01162.

27. Werengowska-Ciećwierz K, Wiśniewski M, Terzyk AP, Furmaniak S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Advances in Condensed Matter Physics 2015; 2015: 198175. doi: 10.1155/2015/198175.

28. Liu F, Wang H, Li S, et al. Biocompatible SuFEx click chemistry: Thionyl tetrafluoride (SOF4)-derived connective hubs for bioconjugation to DNA and proteins. Angewandte Chemie International Edition 2019; 58(24): 8029–8033. doi: 10.1002/anie.201902489.

29. Pickens CJ, Johnson SN, Pressnall MM, et al. Practical considerations, challenges, and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjugate Chemistry 2018; 29(3): 686–701. doi: 10.1021/acs.bioconjchem.7b00633.

30. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. Journal of the American Chemical Society 2004; 126(46): 15046–15047. doi: 10.1021/ja044996f.

31. Presolski SI, Hong VP, Finn MG. Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Current Protocols in Chemical Biology 2011; 3(4): 153–162. doi: 10.1002/9780470559277.ch110148.

32. Lallana E, Sousa-Herves A, Fernandez-Trillo F, et al. Click chemistry for drug delivery nanosystems. Pharmaceutical Research 2012; 29(1): 1–34. doi: 10.1007/s11095-011-0568-5.

33. Müggenburg F, Müller S. Azide-modified nucleosides as versatile tools for bioorthogonal labeling and functionalization. Chemical Record 2022; 22(5): e202100322. doi: 10.1002/tcr.202100322.

34. Hrimla M, Bahsis L, Laamari MR, et al. An overview on the performance of 1,2,3-triazole derivatives as corrosion inhibitors for metal surfaces. International Journal of Molecular Sciences 2022; 23(1): 16. doi: 10.3390/ijms23010016.

35. Huisgen R. 1,3-Dipolar cycloadditions. Angewandte Chemie 1963; 75(13): 604–637. doi: 10.1002/anie.196306331.

36. Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition 2001; 40(11): 2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.

37. Rostovtsev VV, Green LG, Fokin VV, et al. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition 2002; 41(14): 2596–2599. doi: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0.

38. Sun H, Schanze KS. Functionalization of water-soluble conjugated polymers for bioapplications. ACS Applied Materials & Interfaces 2022; 14(18): 20506–20519. doi: 10.1021/acsami.2c02475.

39. Meldal M, Tornøe CW. Cu-catalyzed azide-alkyne cycloaddition. Chemical Reviews 2008; 108(8): 2952–3015. doi: 10.1021/cr0783479.

40. Tiwari VK, Mishra BB, Mishra KB, et al. Cu-catalyzed click reaction in carbohydrate chemistry. Chemical Reviews 2016; 116(5): 3086–3240. doi: 10.1021/acs.chemrev.5b00408.

41. Halay E, Ay E, Salva E, et al. Syntheses of 1,2,3-triazole-bridged pyranose sugars with purine and pyrimidine nucleobases and evaluation of their anticancer potential. Nucleosides Nucleotides & Nucleic Acids 2017; 36(9): 598–619. doi: 10.1080/15257770.2017.1346258.

42. Halay E, Ay E, Salva E, et al. Synthesis of triazolylmethyl-linked nucleoside analogs via combination of azidofuranoses with propargylated nucleobases and study on their cytotoxicity. Chemistry of Heterocyclic Compounds 2018; 54(2): 158–166. doi: 10.1007/s10593-018-2248-4.

43. Koksal Yildirim Ç, Kotmakcı M, Halay E, et al. Formulation, characterization, cytotoxicity and Salmonella/microsome mutagenicity (Ames) studies of a novel 5-fluorouracil derivative. Saudi Pharmaceutical Journal 2018; 26(3): 369–374. doi: 10.1016/j.jsps.2018.01.004.

44. Limpachayaporn P, Nuchpun S, Sirirak J, et al. meta-Ureidophenoxy-1,2,3-triazole hybrid as a novel scaffold for promising HepG2 hepatocellular carcinoma inhibitors: Synthesis, biological evaluation and molecular docking studies. Bioorganic & Medicinal Chemistry 2022; 74: 117048. doi: 10.1016/j.bmc.2022.117048.

45. Ay K, Ispartaloglu B, Halay E, et al. Synthesis and antimicrobial evaluation of sulfanilamide- and carbohydrate-derived 1,4-disubstitued-1,2,3-triazoles via click chemistry. Medicinal Chemistry Research 2017; 26(7): 1497–1505. doi: 10.1007/s00044-017-1864-3.

46. Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. European Journal of Medicinal Chemistry 2019; 168: 357–372. doi: 10.1016/j.ejmech.2019.02.055.

47. Xie F, Hao Y, Bao J, et al. Design, synthesis, and in vitro evaluation of novel antifungal triazoles containing substituted 1,2,3-triazole-methoxyl side chains. Bioorganic Chemistry 2022; 129: 106216. doi: 10.1016/j.bioorg.2022.106216.

48. Soltani Rad MN, Behrouz S, Mohammad-Javadi M, et al. Synthesis of fish scale derived hydroxyapatite silica propyl bisaminoethoxy ethane cuprous complex (HASPBAEECC) as a novel hybrid nano‑catalyst for highly efficient synthesis of new benzimidazole‑1,2,3‑triazole hybrid analogues as antifungal agents. Molecular Diversity 2022; 26(5): 2503–2521. doi: 10.1007/s11030-021-10346-9.

49. Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Archiv der Pharmazie 2021; 354(1): e2000163. doi: 10.1002/ardp.202000163.

50. Sun L, Huang T, Dick A, et al. Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. European Journal of Medicinal Chemistry 2020; 190: 112085. doi: 10.1016/j.ejmech.2020.112085.

51. Dutta A, Trivedi P, Gehlot PS, et al. Design and synthesis of quinazolinone-triazole hybrids as potent anti-tubercular agents. ACS Applied Bio Materials 2022; 5(9): 4413–4424. doi: 10.1021/acsabm.2c00562.

52. Sharma A, Agrahari AK, Rajkhowa S, Tiwari VK. Emerging impact of triazoles as anti-tubercular agent. European Journal of Medicinal Chemistry 2022; 238: 114454. doi: 10.1016/j.ejmech.2022.114454.

53. Tan W, Li Q, Li W, et al. Synthesis and antioxidant property of novel 1,2,3-triazole-linked starch derivatives via ‘click chemistry’. International Journal of Biological Macromolecules 2016; 82: 404–410. doi: 10.1016/j.ijbiomac.2015.10.007.

54. Siddiqui MM, Nagargoje AA, Akolkar SV, et al. [HDBU][HSO4]‑catalyzed facile synthesis of new 1,2,3‑triazole‑tethered 2,3‑dihydroquinazolin‑4[1H]‑one derivatives and their DPPH radical scavenging activity. Research on Chemical Intermediates 2022; 48(3): 1199–1225. doi: 10.1007/s11164-021-04639-9.

55. Quintana V, Gonzalez-Bakker A, Padron JI, et al. Synthesis of oxazole–tetrahydropyran hybrids and study on their antiproliferative activity against human tumour cells. European Journal of Organic Chemistry 2022; 2022(39): e202200528. doi: 10.1002/ejoc.202200528.

56. Thanh ND, Do SH, Le TH, et al. Synthesis and antiproliferative activity of 1H-1,2,3-triazole-4H-chromene-D-glucose hybrid compounds with dual inhibitory activity against EGFR/VEGFR-2 and molecular docking study. New Journal of Chemistry 2022; 46(48): 23179–23197. doi: 10.1039/D2NJ04373D.

57. Chandrasekaran R, Murugavel S, Silambarasan T. Synthesis, quantum chemical, and molecular modeling investigations of 1,2,3-triazole fused dicarboxylate bioorganic derivative as angiotensin-converting enzyme inhibitor. Journal of the Chinese Chemical Society 2022; 69(3): 569–584. doi: 10.1002/jccs.202100482.

58. Fallah Z, Tajbakhsh M, Alikhani M, et al. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. Journal of Molecular Structure 2022; 1255: 132469. doi: 10.1016/j.molstruc.2022.132469.

59. Jiang X, Hao X, Jing L, et al. Recent applications of click chemistry in drug discovery. Expert Opinion on Drug Discovery 2019; 14(8): 779–789. doi: 10.1080/17460441.2019.1614910.

60. Langmuir I. Isomorphism, isosterism and covalence. Journal of the American Chemical Society 1919; 41: 1543–1559. doi: 10.1021/ja02231a009.

61. Recnik L-M, Kandioller W, Mindt TL. 1,4-Disubstituted 1,2,3-triazoles as amide bond surrogates for the stabilisation of linear peptides with biological activity. Molecules 2020; 25(16): 3576. doi: 10.3390/molecules25163576.

62. Meanwell NA. Synopsis of some recent tactical application of bioisosteres in drug design. Journal of Medicinal Chemistry 2011; 54(8): 2529–2591. doi: 10.1021/jm1013693.

63. Lengerli D, Ibis K, Nural Y, Banoglu E. The 1,2,3-triazole ‘all-in-one’ ring system in drug discovery: A good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opinion on Drug Discovery 2022; 17(11): 1209–1236. doi: 10.1080/17460441.2022.2129613.

64. Bonandi E, Christodoulou MS, Fumagalli G, et al. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discovery Today 2017; 22(10): 1572–1581. doi: 10.1016/j.drudis.2017.05.014.

65. Tron GC, Pirali T, Billington RA, et al. Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes. Medicinal Research Reviews 2008; 28(2): 278–308. doi: 10.1002/med.20107.

66. Pedersen DS, Abell A. 1,2,3-Triazoles in peptidomimetic chemistry. European Journal of Organic Chemistry 2011; 2011(13): 2399–2411. doi: 10.1002/ejoc.201100157.

67. Guo HY, Chen ZA, Shen QK, Quan ZS. Application of triazoles in the structural modification of natural products. Journal of Enzyme Inhibition and Medicinal Chemistry 2021; 36(1): 1115–1144. doi: 10.1080/14756366.2021.1890066.

68. Shinde GB, Mahale PK, Padaki SA, et al. An efficient and safe process for the preparation of ticagrelor, a platelet aggregation inhibitor via resin‑NO2 catalyzed formation of triazole ring. SpringerPlus 2015; 4: 493. doi: 10.1186/s40064-015-1299-6.

69. Said MA, Khan DJO, Al-blewi FF, et al. New 1,2,3-Triazole scaffold schiff bases as potential anti-COVID-19: Design, synthesis, DFT-molecular docking, and cytotoxicity aspects. Vaccines 2021; 9(9): 1012. doi: 10.3390/vaccines9091012.

70. Nural Y, Ozdemir S, Yalcin MS, et al. Synthesis, biological evaluation, molecular docking, and acid dissociation constant of new bis-1,2,3-triazole compounds. ChemistrySelect 2021; 6(28): 6994–7001. doi: 10.1002/slct.202101148.

71. Sletten EM, Bertozzi CR. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie-International Edition 2009; 48(38): 6974–6998. doi: 10.1002/anie.200900942.

72. Tei R, Baskin JM. Click chemistry and optogenetic approaches to visualize and manipulate phosphatidic acid signaling. Journal of Biological Chemistry 2022; 298(4): 101810. doi: 10.1016/j.jbc.2022.101810.

73. Kuczynska K, Bonczak B, Rarova L, et al. Synthesis and cytotoxic activity of 1,2,3-triazoles derived from 2,3-seco-dihydrobetulin via a click chemistry approach. Journal of Molecular Structure 2022; 1250: 131751. doi: 10.1016/j.molstruc.2021.131751.

74. Daher SS, Lee M, Jin X, et al. Alternative approaches utilizing click chemistry to develop next-generation analogs of solithromycin. European Journal of Medicinal Chemistry 2022; 233: 114213. doi: 10.1016/j.ejmech.2022.114213.

75. Antoszczak M, Müller S, Colombeau L, et al. Rapid access to ironomycin derivatives by click chemistry. ACS Organic & Inorganic Au 2022; 2(3): 222–228. doi: 10.1021/acsorginorgau.1c00045.

76. de Carvalho LL, Pena RB, Romeiro NC, et al. A concise synthesis of triazole analogues of lavendustin A via click chemistry approach and preliminary evaluation of their antiparasitic activity against Trypanosoma cruzi. ChemistrySelect 2022; 7(12): e202200128. doi: 10.1002/slct.202200128.

77. Traube FR, Stern M, Tölke AJ, et al. Suppression of SARS-CoV-2 replication with stabilized and click-chemistry modified siRNAs. Angewandte Chemie International Edition 2022; 61(38): e202204556. doi: 10.1002/anie.202204556.

78. Karypidou K, Ribone SR, Quevedo MA, et al. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorganic & Medicinal Chemistry Letters 2018; 28(21): 3472–3476. doi: 10.1016/j.bmcl.2018.09.019.

79. Kaushik CP, Pahwa A. Convenient synthesis, antimalarial and antimicrobial potential of thioethereal 1,4-disubstituted 1,2,3-triazoles with ester functionality. Medicinal Chemistry Research 2018; 27(2): 458–469. doi: 10.1007/s00044-017-2072-x.

80. Nagesh HN, Suresh N, Prakash GVSB, et al. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents. Medicinal Chemistry Research 2015; 24(2): 523–532. doi: 10.1007/s00044-014-1142-6.

81. Mohammadi-Khanaposhtani M, Safavi M, Sabourian R, et al. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9(10H)-acridinone-1,2,3-triazoles. Molecular Diversity 2015; 19(4): 787–795. doi: 10.1007/s11030-015-9616-0.

82. Sadat-Ebrahimi SE, Babania H, Mohammadi-Khanaposhtani M, et al. Design, synthesis, and biological evaluation of new indole-acrylamide-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Polycyclic Aromatic Compounds 2022; 42(6): 3157–3165. doi: 10.1080/10406638.2020.1854323.

83. Naveen, Tittal RK, Ghule VD, et al. Design, synthesis, biological activity, molecular docking and computational studies on novel 1,4-disubstituted-1,2,3-triazole-thiosemicarbazone hybrid molecules. Journal of Molecular Structure 2020; 1209: 127951. doi: 10.1016/j.molstruc.2020.127951.

84. Hachim ME, Oubella A, Byadi S, et al. Newly synthesized (R)-carvone-derived 1,2,3-triazoles: Structural, mechanistic, cytotoxic and molecular docking studies. Journal of Biomolecular Structure & Dynamics 2022; 40(16): 7205–7217. doi: 10.1080/07391102.2021.1894984.

85. Kaushik CP, Chahal M, Luxmi R, et al. Synthesis, characterization and biological activities of sulfonamide tagged 1,2,3-triazoles. Synthetic Communications 2020; 50(22): 3443–3461. doi: 10.1080/00397911.2020.1802758.




DOI: https://doi.org/10.24294/ace.v6i1.1847

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.