Synthesis of carbon-based CoV electrocatalyst and its application in Zn-air battery devices
Vol 4, Issue 2, 2021
VIEWS - 907 (Abstract) 232 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Ma L, Chen S, Wang D, et al. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Advanced Energy Materials 2019; 9: 1803046.
2. Chen X, Zhou Z, Karahan HE, et al. Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 2018; 8: 1–29.
3. Stacy J, Regmi YN, Leonard B, et al. The recent progress and future of oxygen reduction reaction catalysis: A review. Renewable and Sustainable Energy Reviews 2017; 69(6): 401–414.
4. Cui SH, Sun LP, Kong FH, et al. Carbon-coated MnCo2O4 nanowire as bifunctional oxygen catalysts for rechargeable Zn-air batteries. Power Sources 2019; 8: 25–31.
5. Li M, Luo F, Zhang Q, et al. Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries. Advanced Energy Materials 2020; 7: 2001064.
6. Naoya A, Hideo I, Akira S, et al. Electrochemical and chemical treatment methods for enhancement of oxygen reduction reaction activity of Pt shell-Pd core structured catalyst. Electrochimica Acta 2017; 8: 146–153.
7. Yu L, Yu X, Luo XW. The design and synthesis of hollow micro-/nanostructures: Present and future trends. Advanced Materials 2018; 30(38): 1800939.
8. Li Z, Li M, Bian Z, et al. Design of highly stable and selective core/yolk–shell nanocatalysts — A review. Applied Catalysis B: Environmental 2016; 188: 324–341.
9. Burke MS, Enman LJ, Batchellor AS, et al. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: Activity trends and design principles. Chemistry of Materials 2015; 27(22): 7549–7558.
10. Chitturi VR, Ara M, Fawaz W. Enhanced lithium-oxygen battery performances with Pt subnanocluster decorated N-doped single-walled carbon nanotube cathodes. ACS Catalysis 2016; 6(10): 7088–7097.
11. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry B 2004; 108(46): 17886–17892.
12. Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angewandte Chemie International Edition 2012; 5: 11496–11500.
13. Li M, Xiong N, Zhou X, et al. Controllable fabrication of Fe3S4 nanocrystals and electrocatalytic hydrogen evolution properties. Journal of Engineering of Heilongjiang University 2020; 11(1): 41–47.
14. Zheng X, Wu J, Cao X, et al. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Applied Catalysis B: Environmental 2019; 241: 442–451.
15. Wang Z, Li B, Ge X, et al. Co@Co3O4@PPD core@bishell nanoparticle-based composite as an efficient electrocatalyst for oxygen reduction reaction. Small 2016; 12(19): 2580–2587.
16. Gu P, Zheng M, Zhao Q, et al. Rechargeable zinc-air batteries: A promising way to green energy. Journal of Materials Chemistry A 2017; 5(17): 7651–7666.
DOI: https://doi.org/10.24294/ace.v4i2.1351
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.