Adsorption behavior between thiophene and M = (Mo, Pd, Sn) by quantum chemistry method
Vol 4, Issue 2, 2021
VIEWS - 756 (Abstract) 222 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Baeza P, Aguila G, Vargas G, et al. Adsorption of thiophene and dibenzothiophene on highly dispersed Cu/ZrO2 adsorbents. Applied Catalysis B: Environmental 2012; 111-112: 133–140.
2. Saha B, Sengupta S. Influence of different hydrocarbon components in fuel on the oxidative desulfurisation of thiophene: Deactivation of catalyst. Fuel 2015; 150(15): 679–686.
3. Potapenko O, Doronin VP, Sorokina TP, et al. Transformations of thiophene compounds under catalytic cracking conditions. Applied Catalysis B: Environmental 2012; 117-118: 177–184.
4. Bezverkhyy L, Ryzhikov A, Gadacz G, et al. Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO. Catalysis Today 2008; 130(1): 199–205.
5. Dong K, Ma X, Zhang H, et al. Novel MWCNT-support for Co-Mo sulfide catalyst in HDS of thiophene and HDN of pyrrole. Journal of Natural Gas Chemistry 2006; 15(1): 28–37.
6. Pawelec B, Mariscal R, Navarro RM, et al. Simultaneous 1-pentene hydroisomerisation and thiophene hydrodesulphurization over sulphided Ni/FAU and Ni/ZSM-5 catalysts. Applied Catalysts A: General 2004; 262(2): 155–166.
7. Yu Z, Fareid LE, Moljord K, et al. Hydrodesulfurization of thiophene on carbon nanofiber supported Co/Ni/Mo catalysts. Applied Catalysis B: Environmental 2008; 84(3-4): 482–489.
8. Eduardo PB, Alexander BF, Alano VSN, et al. Incorporation of the precursors of Mo and Ni oxides directly into the reaction mixture of sol-gel prepared gamma-Al2O3-ZrO2 supports—Evaluation of the sulfided catalysts in the thiophene hydrodesulfurization. Catalysis Today 2015; 246(3): 184–190.
9. Zdeněk V, Hana K, Luděk K, et al. Effect of preparation of Pd and Pd–Pt catalysts from acid leached silica-alumina on their activity in HDS of thiophene and benzothiophene. Applied Catalysis B: Environmental 2011; 108–109(10): 152–160.
10. Valeria LP, Maria LT, Anna MV. Pd and PdAu catalysts supported over 3-MPTES grafted HMS used in the HDS of thiophene. Applied Catalysis B: Environmental 2012; 119-120(30): 248–255.
11. Biswajit S, Sonali S. Influence of different hydrocarbon components in fuel on the oxidative desulfurisation of thiophene: Deactivation of catalyst. Fuel 2015; 150(6): 679–686.
12. Zhang J, Liu Y, Tian S, et al. Reactive adsorption of thiophene on Ni/ZnO adsorbent: Effect of ZnO textural structure on the desulfurization activity. Journal of Natural Gas Chemistry 2010; 19(3): 327–332.
13. Jose N, Sengupta S, Basu JK. Optimization of oxidative desulfurization of thiophene using Cu/titanium silicate-1 by box-behnken design. Fuel 90(2): 626–632.
14. Long W, Yan X. Catalysis of transition metals in oil desulfurization technology. Journal of Foshan University of Science and Technology: Natural Science Edition 2013; 31(4): 22–29.
15. Zheng K, Gao J, Xu C. Quantum chemistry study on mechanism of catalytic degradation of thiophene. Journal of Chemical Industry and Engineering (China) 2004; 55(1): 87–90.
16. Xu K, Feng J, Chu Q, et al. Density functional theory study of thiophene hydrodesulfurization on γ-Mo2N(100) surface. Acta Physico-Chimica Sinica 2014; 30(11): 2063–2070.
17. Xu W, Long W, Du R. Theoretical investigation of methane’s dihydrogen — Reforming with supercritical CO2 over Nickel. Chemical Bulletin 2011; 74(8): 732–736.
18. Long W, Yan X, Chen Z. Solvent effect, electronic structural and optical properties of BiOX (X = F, Cl, Br, I). Journal of Natural Science of Heilongjiang University 2013; 30(5): 635–641.
19. Malick DK, Petersson GA, Montgometry JA. Transition states for chemical reactions I. Geometry and classical barrier height. Journal of Chemical Physics 1998; 108(14): 5704–5713.
20. Zhang L, Shi W, Xia S, et al. Hydrodesulfurization mechanisms of thiophene catalyzed by Au/Pd (111) bimetallic surface. Acta Physico-Chimica Sinica 2014; 30(10): 1847–1854.
DOI: https://doi.org/10.24294/ace.v4i2.1343
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.