Literature review on the evaluation of resilience in infrastructure projects

Ali Shoaei, Vitor Sousa, Carlos Oliveira Cruz

Article ID: 9984
Vol 8, Issue 15, 2024

VIEWS - 1079 (Abstract)

Abstract


Infrastructure decision-making has traditionally been focused on the use of cost-benefit analysis (CBA) and multicriteria decision analysis (MCDA). Nevertheless, there remains no consensus in the infrastructure sector regarding a favored approach that comprehensively integrates resilience principles with those tools. This review focuses on how resilience has been evaluated in infrastructure projects. Initially, 400 papers were sourced from Web of Science and Scopus. After a preliminary review, 103 papers were selected, and ultimately, the focus was narrowed down to 56 papers. The primary aim was to uncover limitations in both CBA and MCDA, exploring various strategies for amalgamating them and enhancing their potential to foster resilience, sustainability, and other infrastructure performance aspects. Results were classified based on different rationalities: i) objectivist, ii) conformist, iii) adjustive, and iv) reflexive. The analysis revealed that while both CBA and MCDA contribute to decision-making, their perceived strengths and weaknesses differ depending on the chosen rationality. Nonetheless, embracing a broader perspective, fostering participatory methods, and potentially integrating both approaches seem to offer more promising avenues for assessing the resilience of infrastructures. The goal of this research proposal is to devise an integrated approach for evaluating the long-term sustainability and resilience of infrastructure projects and constructed assets.


Keywords


cost-benefit; decision-support; evaluation; infrastructure; multi-criteria analysis; resilience

Full Text:

PDF


References

  1. Achu, A. L., Thomas, J., & Reghunath, R. (2020). Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development, 10, 100365. https://doi.org/https://doi.org/10.1016/j.gsd.2020.100365
  2. Adams, T. M., Bekkem, K. R., & Toledo-Durán, E. J. (2012). Freight Resilience Measures. Journal of Transportation Engineering, 138(11), 1403–1409. https://doi.org/10.1061/(asce)te.1943-5436.0000415
  3. Adey, B. T., Martani, C., Kielhauser, C., Robles, I. U., Papathanasiou, N., Burkhalter, M., Beltran-Hernando, I., & Garcia-Sanchez, D. (2021). Estimating, and setting targets for, the resilience of transport infrastructure. Infrastructure Asset Management, 8(4), 167–190. https://doi.org/10.1680/jinam.20.00011
  4. Almohaimeed, S. A., Suryanarayanan, S., & O’neill, P. (2021). Simulation studies to quantify the impact of demand side management on environmental footprint. Sustainability (Switzerland), 13(17). https://doi.org/10.3390/su13179504
  5. Alves, A., Gersonius, B., Sanchez, A., Vojinovic, Z., & Kapelan, Z. (2018). Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resources Management, 32(7), 2505–2522. https://doi.org/10.1007/s11269-018-1943-3
  6. Andersson, H. (2018). Application of BCA in Europe-Experiences and Challenges. Journal of Benefit-Cost Analysis, 9(1), 84–96. https://doi.org/10.1017/bca.2018.5
  7. Anwar, G. A., Dong, Y., & Li, Y. (2020). Performance-based decision-making of buildings under seismic hazard considering long-term loss, sustainability, and resilience. Structure and Infrastructure Engineering, 17(4), 454–470. https://doi.org/10.1080/15732479.2020.1845751
  8. Arvin, M., Beiki, P., Hejazi, S. J., Sharifi, A., & Atashafrooz, N. (2023). Assessment of infrastructure resilience in multi-hazard regions: A case study of Khuzestan Province. International Journal of Disaster Risk Reduction, 88(December 2022), 103601. https://doi.org/10.1016/j.ijdrr.2023.103601
  9. Asadi, E., Shen, Z., Zhou, H., Salman, A., & Li, Y. (2020). Risk-informed multi-criteria decision framework for resilience, sustainability and energy analysis of reinforced concrete buildings. Journal of Building Performance Simulation, 13(6), 804–823. https://doi.org/10.1080/19401493.2020.1824016
  10. Attoh-Okine, N. O., Cooper, A. T., & Mensah, S. A. (2009). Formulation of Resilience Index of Urban Infrastructure Using Belief Functions. {IEEE} Systems Journal, 3(2), 147–153. https://doi.org/10.1109/jsyst.2009.2019148
  11. Bana e Costa, C. A., & Chagas, M. P. (2004). A career choice problem: An example of how to use MACBETH to build a quantitative value model based on qualitative value judgments. European Journal of Operational Research, 153(2), 323–331. https://doi.org/https://doi.org/10.1016/S0377-2217(03)00155-3
  12. BANA E COSTA, C. A., DE CORTE, J.-M., & VANSNICK, J.-C. (2012). MACBETH. International Journal of Information Technology & Decision Making, 11(02), 359–387. https://doi.org/10.1142/s0219622012400068
  13. Bank, E. I. (2013). The economic appraisal of investment projects at the EIB. European Investment Bank Luxembourg.
  14. Barfod, M. B., & Salling, K. B. (2015). A new composite decision support framework for strategic and sustainable transport appraisals. Transportation Research Part A: Policy and Practice, 72, 1–15. https://doi.org/10.1016/j.tra.2014.12.001
  15. Barfod, M. B., Salling, K. B., & Leleur, S. (2011). Composite decision support by combining cost-benefit and multi-criteria decision analysis. Decision Support Systems, 51(1), 167–175. https://doi.org/10.1016/j.dss.2010.12.005
  16. Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2013). Resilience-based network component importance measures. Reliability Engineering & System Safety, 117, 89–97. https://doi.org/https://doi.org/10.1016/j.ress.2013.03.012
  17. Baroud, H., Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2015). Inherent Costs and Interdependent Impacts of Infrastructure Network Resilience. Risk Analysis, 35(4), 642–662. https://doi.org/10.1111/risa.12223
  18. Baroud, H., Barker, K., Ramirez-Marquez, J. E., & Rocco S., C. M. (2014). Importance measures for inland waterway network resilience. Transportation Research Part E: Logistics and Transportation Review, 62, 55–67. https://doi.org/https://doi.org/10.1016/j.tre.2013.11.010
  19. Barzehkar, M., Parnell, K. E., Soomere, T., Dragovich, D., & Engström, J. (2021). Decision support tools, systems and indices for sustainable coastal planning and management: A review. Ocean and Coastal Management, 212(June). https://doi.org/10.1016/j.ocecoaman.2021.105813
  20. Behzadian, M., Kazemzadeh, R. B., Albadvi, A., & Aghdasi, M. (2010). PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 200(1), 198–215. https://doi.org/https://doi.org/10.1016/j.ejor.2009.01.021
  21. Belay, A. M., Torp, O., Thodesen, C., & Odeck, J. (2016). A framework for Organizing a Resilient Cost Benefit Analysis for Construction Projects. Procedia Engineering, 145(1877), 1169–1176. https://doi.org/10.1016/j.proeng.2016.04.151
  22. Bell, D. E., Keeney, R. L., & Raiffa, H. (1977). Conflicting objectives in decisions. John Wiley & Sons.
  23. Berche, B., von Ferber, C., Holovatch, T., & Holovatch, Y. (2009). Resilience of public transport networks against attacks. The European Physical Journal B, 71(1), 125–137. https://doi.org/10.1140/epjb/e2009-00291-3
  24. Berle, Ø., Norstad, I., & Asbjørnslett, B. E. (2013). Optimization, risk assessment and resilience in LNG transportation systems. Supply Chain Management: An International Journal, 18(3), 253–264. https://doi.org/10.1108/SCM-03-2012-0109
  25. Berle, Ø., Rice Jr., J. B., & Asbjørnslett, B. E. (2011). Failure modes in the maritime transportation system: a functional approach to throughput vulnerability. Maritime Policy & Management, 38(6), 605–632. https://doi.org/10.1080/03088839.2011.615870
  26. Bhamra, R., Dani, S., & Burnard, K. (2011). Resilience: the concept, a literature review and future directions. International Journal of Production Research, 49(18), 5375–5393. https://doi.org/10.1080/00207543.2011.563826
  27. Biringer, B., Vugrin, E., & Warren, D. (2013). Critical Infrastructure System Security and Resiliency. {CRC} Press. https://doi.org/10.1201/b14566
  28. Blockley, D., Agarwal, J., & Godfrey, P. (2012). Infrastructure Resilience for High-Impact Low Chance Risks. ICE Proceedings Civil Engineering, 165, 13–19. https://doi.org/10.1680/cien.11.00046
  29. Bocchini, P., Frangopol, D. M., Ummenhofer, T., & Zinke, T. (2014). Resilience and Sustainability of Civil Infrastructure: Toward a Unified Approach. Journal of Infrastructure Systems, 20(2), 1–16. https://doi.org/10.1061/(asce)is.1943-555x.0000177
  30. Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The Promethee method. European Journal of Operational Research, 24(2), 228–238. https://doi.org/https://doi.org/10.1016/0377-2217(86)90044-5
  31. Brouwer, R., & Van Ek, R. (2004). Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands. Ecological Economics, 50(1–2), 1–21. https://doi.org/10.1016/j.ecolecon.2004.01.020
  32. Brucker, K. De, Verbeke, A., & Macharis, C. (2004). The applicability of multicriteria-analysis to the evaluation of intelligent transport systems (its). Research in Transportation Economics, 8, 151–179. https://doi.org/https://doi.org/10.1016/S0739-8859(04)08008-4
  33. Bruneau et al. (2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497
  34. Bruneau, M., & Reinhorn, A. (2007). Exploring the Concept of Seismic Resilience for Acute Care Facilities. Earthquake Spectra, 23(1), 41–62. https://doi.org/10.1193/1.2431396
  35. Cartes, P. C., Echaveguren Navarro, T., Giné, A. C., & Binet, E. A. (2021). A cost-benefit approach to recover the performance of roads affected by natural disasters. International Journal of Disaster Risk Reduction, 53(November 2020). https://doi.org/10.1016/j.ijdrr.2020.102014
  36. Chang, S. E., & Shinozuka, M. (2004). Measuring Improvements in the Disaster Resilience of Communities. Earthquake Spectra, 20(3), 739–755. https://doi.org/10.1193/1.1775796
  37. Chauhan, K., Peltokorpi, A., Lavikka, R., & Seppänen, O. (2022). To prefabricate or not? A method for evaluating the impact of prefabrication in building construction. Construction Innovation. https://doi.org/10.1108/CI-11-2021-0205
  38. Chen, L., & Bai, Q. (2019). Optimization in decision making in infrastructure asset management: A review. Applied Sciences (Switzerland), 9(7). https://doi.org/10.3390/app9071380
  39. Chester, M. V, Markolf, S., & Allenby, B. (2019). Infrastructure and the environment in the Anthropocene. Journal of Industrial Ecology, 23(5), 1006–1015. https://doi.org/10.1111/jiec.12848
  40. Council, N. R. (2012). Disaster resilience: A national imperative.
  41. Cunha, M., Marques, J., & Savić, D. (2020). A Flexible Approach for the Reinforcement of Water Networks Using Multi-Criteria Decision Analysis. Water Resources Management, 34(14), 4469–4490. https://doi.org/10.1007/s11269-020-02655-9
  42. Desalegn, H., & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1), e05865. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05865
  43. Dodgson, J. S., Spackman, M., Pearman, A., & Phillips, L. D. (2009). Multi-criteria analysis : a manual. In Appraisal (Vol. 11, Issues 1–3). https://doi.org/10.1002/mcda.399
  44. Dojutrek, M. S., Labi, S., & Dietz, J. E. (2016). A multi-criteria methodology for measuring the resilience of transportation assets. International Journal of Disaster Resilience in the Built Environment, 7(3), 290–301. https://doi.org/10.1108/IJDRBE-07-2014-0053
  45. EC. (2015). Economic Appraisal Tool fo Cohesion Policy 2014-2020: Guide to Cost-Benefit Analysis of Investment Projects. European Commission, December 2014. https://ec.europa.eu/regional_policy/sources/docgener/studies/pdf/cba_guide.pdf
  46. ECMT. (2001). Assessing the benefits of transport. European Conference of Ministers of Transport.
  47. Elkarmi, F., & Mustafa, I. (1993). Increasing the utilization of solar energy technologies (SET) in Jordan: Analytic hierarchy process. Energy Policy, 21(9), 978–984. https://doi.org/https://doi.org/10.1016/0301-4215(93)90186-J
  48. EUNET, 2001. (2001). Final Report – Executive Summary, 4th RTD Framework Programme of the European Commission. EUNET/SASI, Final Report – Executive Summary, 4th RTD Framework Programme of the European Commission, , 2001., 11.
  49. European Commission. (2014). Guide to Cost-benefit Analysis of Investment Projects: Economic appraisal tool for Cohesion Policy 2014-2020. In Publications Office of the European Union (Issue December). https://doi.org/10.2776/97516
  50. F. Hutton Barron, B. E. B. (1996). The efficacy of SMARTER - Simple Multi-Attribute Rating Technique Extended to Ranking. Acta Psychologica, 93(1–3), 23–36. https://doi.org/10.1016/0001-6918(96)00010-8
  51. Faturechi, R., & Miller-Hooks, E. (2015). Measuring the Performance of Transportation Infrastructure Systems in Disasters: A Comprehensive Review. Journal of Infrastructure Systems, 21, 4014025. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000212
  52. Feofilovs, M., & Romagnoli, F. (2020). Assessment of Urban Resilience to Natural Disasters with a System Dynamics Tool: Case Study of Latvian Municipality. Environmental and Climate Technologies, 24(3), 249–264. https://doi.org/10.2478/rtuect-2020-0101
  53. Filippini, R., & Silva, A. (2014). A modeling framework for the resilience analysis of networked systems-of-systems based on functional dependencies. Reliability Engineering {&} System Safety, 125, 82–91. https://doi.org/10.1016/j.ress.2013.09.010
  54. Florio, M., Morretta, V., & Willak, W. (2018). Cost-Benefit Analysis and European Union Cohesion Policy: Economic Versus Financial Returns in Investment Project Appraisal. Journal of Benefit-Cost Analysis, 9(1), 147–180. https://doi.org/10.1017/bca.2018.4
  55. Flyvbjerg, B. (2014). What you Should Know about Megaprojects and Why: An Overview. Project Management Journal, 45(2), 6–19. https://doi.org/10.1002/pmj.21409
  56. Fountzoula, C., & Aravossis, K. (2022). Decision-Making Methods in the Public Sector during 2010–2020: A Systematic Review. Advances in Operations Research, 2022, 1750672. https://doi.org/10.1155/2022/1750672
  57. Gamper, C. D., & Turcanu, C. (2007). On the governmental use of multi-criteria analysis. Ecological Economics, 62(2), 298–307. https://doi.org/https://doi.org/10.1016/j.ecolecon.2007.01.010
  58. Gühnemann, A., Laird, J. J., & Pearman, A. D. (2012). Combining cost-benefit and multi-criteria analysis to prioritise a national road infrastructure programme. Transport Policy, 23, 15–24. https://doi.org/10.1016/j.tranpol.2012.05.005
  59. Ha, M.-H., Yang, Z., & Lam, J. S. L. (2019). Port performance in container transport logistics: A multi-stakeholder perspective. Transport Policy, 73, 25–40. https://doi.org/10.1016/j.tranpol.2018.09.021
  60. Henke, I., Cartenì, A., & Di Francesco, L. (2020). A sustainable evaluation processes for investments in the transport sector: A combined multi-criteria and cost–benefit analysis for a new highway in italy. Sustainability (Switzerland), 12(23), 1–27. https://doi.org/10.3390/su12239854
  61. Henn, L., Sloan, K., Charles, M. B., & Douglas, N. (2016). An appraisal framework for evaluating financing approaches for public infrastructure. Public Money and Management, 36(4), 273–280. https://doi.org/10.1080/09540962.2016.1162595
  62. Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering and System Safety, 145, 47–61. https://doi.org/10.1016/j.ress.2015.08.006
  63. Hwang, C.-L., & Yoon, K. (1981). Methods for Multiple Attribute Decision Making. In Lecture Notes in Economics and Mathematical Systems (pp. 58–191). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-48318-9_3
  64. Hwang, C. L., & Yoon, K. P. (1981). Multiple attribute decision making: methods and applications, a state-of-the-art survey. SpringerVerlang.
  65. Hwang, F. K. (1979). An O (n log n) algorithm for rectilinear minimal spanning trees. Journal of the ACM (JACM), 26(2), 177–182.
  66. Ivanov, D., Sokolov, B., & Dolgui, A. (2014). The Ripple effect in supply chains: trade-off ‘efficiency-flexibility-resilience’ in disruption management. International Journal of Production Research, 52(7), 2154–2172. https://doi.org/10.1080/00207543.2013.858836
  67. Janić, M. (2018). Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of {HSR} (high speed rail). Transportation, 45(4), 1101–1137. https://doi.org/10.1007/s11116-018-9875-6
  68. Janjua, S. Y., Sarker, P. K., & Biswas, W. K. (2020). Development of triple bottom line indicators for life cycle sustainability assessment of residential bulidings. Journal of Environmental Management, 264, 110476. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110476
  69. Jia, H., Liu, Z., Xu, C., Chen, Z., Zhang, X., Xia, J., & Yu, S. L. (2022). Adaptive pressure-driven multi-criteria spatial decision-making for a targeted placement of green and grey runoff control infrastructures. Water Research, 212(September 2021), 118126. https://doi.org/10.1016/j.watres.2022.118126
  70. Johansson, P.-O., & Kriström, B. (2015). Cost-benefit analysis for project appraisal. Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9781316392751
  71. Johnston, A., Slovinsky, P., & Yates, K. L. (2014). Assessing the vulnerability of coastal infrastructure to sea level rise using multi-criteria analysis in Scarborough, Maine (USA). Ocean and Coastal Management, 95, 176–188. https://doi.org/10.1016/j.ocecoaman.2014.04.016
  72. Josa, I., Pons, O., Fuente, A. de la, & Aguado, A. (2020). Multi-criteria decision-making model to assess the sustainability of girders and trusses: Case study for roofs of sports halls. Journal of Cleaner Production, 249, 119312. https://doi.org/10.1016/j.jclepro.2019.119312
  73. Kaaviya, R., & Devadas, V. (2021). Water resilience mapping of Chennai, India using analytical hierarchy process. Ecological Processes, 10(1), 1–22. https://doi.org/10.1186/s13717-021-00341-1
  74. Kabir, G., Sadiq, R., & Tesfamariam, S. (2014). A review of multi-criteria decision-making methods for infrastructure management. In Structure and Infrastructure Engineering (Vol. 10, Issue 9, pp. 1176–1210). Taylor & Francis. https://doi.org/10.1080/15732479.2013.795978
  75. Karamouz, M., Movahhed, M., & Elyasi, A. H. (2023). Financial allocation and network recovery for interdependent wastewater treatment infrastructure: development of resilience metrics. Sustainable and Resilient Infrastructure, 8(sup1), 262–288. https://doi.org/10.1080/23789689.2022.2148447
  76. Karamouz, M., Zoghi, A., & Mahmoudi, S. (2022). Flood Modeling in Coastal Cities and Flow through Vegetated BMPs: Conceptual Design. Journal of Hydrologic Engineering, 27(10). https://doi.org/10.1061/(asce)he.1943-5584.0002206
  77. Keeney, R. (1994). R.L. Keeney, H. Raiffa: Decisions with multiple objectives{textendash}preferences and value tradeoffs, Cambridge University Press, Cambridge {&} New York, 1993, 569 pages, {ISBN} 0-521-44185-4 (hardback), 0-521-43883-7 (paperback). Behavioral Science, 39(2), 169–170. https://doi.org/10.1002/bs.3830390206
  78. Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge university press.
  79. Khan Babar, A. H., & Ali, Y. (2022). Framework construction for augmentation of resilience in critical infrastructure: Developing countries a case in point. Technology in Society, 68(October 2021), 101809. https://doi.org/10.1016/j.techsoc.2021.101809
  80. Kim, Y., Eisenberg, D. A., Bondank, E. N., Chester, M. V., Mascaro, G., & Underwood, B. S. (2017). Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change. Climatic Change, 145(3–4), 397–412. https://doi.org/10.1007/s10584-017-2090-1
  81. König, P. D., & Wenzelburger, G. (2021). The legitimacy gap of algorithmic decision-making in the public sector: Why it arises and how to address it. Technology in Society, 67(July). https://doi.org/10.1016/j.techsoc.2021.101688
  82. Koopmans, C., & Mouter, N. (2020). Cost-benefit analysis. In Advances in Transport Policy and Planning (1st ed., Vol. 6, pp. 1–42). Elsevier Inc. https://doi.org/10.1016/bs.atpp.2020.07.005
  83. Leleur, S., Petersen, N., & Barfod, M. (2007). The COSIMA Approach to Transport Decision Making: Combining Cost-benefit and Multi-criteria Analysis for Comprehensive Project Appraisal.
  84. Li, Z., Zhang, X., Ma, Y., Feng, C., & Hajiyev, A. (2019). A multi-criteria decision making method for urban flood resilience evaluation with hybrid uncertainties. International Journal of Disaster Risk Reduction, 36(March), 101140. https://doi.org/10.1016/j.ijdrr.2019.101140
  85. Lindfors, A. (2021). Assessing sustainability with multi-criteria methods: A methodologically focused literature review. Environmental and Sustainability Indicators, 12(July), 100149. https://doi.org/10.1016/j.indic.2021.100149
  86. Lohman, H. A. C., Morgan, V. L., Li, Y., Zhang, X., Rowles, L. S., Cook, S. M., & Guest, J. S. (2023). DMsan: A Multi-Criteria Decision Analysis Framework and Package to Characterize Contextualized Sustainability of Sanitation and Resource Recovery Technologies. ACS Environmental Au, 3(3), 179–192. https://doi.org/10.1021/acsenvironau.2c00067
  87. Lounis, Z., & McAllister, T. P. (2016). Risk-Based Decision Making for Sustainable and Resilient Infrastructure Systems. Journal of Structural Engineering, 142(9), 1–14. https://doi.org/10.1061/(asce)st.1943-541x.0001545
  88. Macharis, C., & Bernardini, A. (2015). Reviewing the use of multi-criteria decision analysis for the evaluation of transport projects: Time for a multi-actor approach. Transport Policy, 37, 177–186. https://doi.org/10.1016/j.tranpol.2014.11.002
  89. Mackie, P., Worsley, T., & Eliasson, J. (2014). Transport appraisal revisited. Research in Transportation Economics, 47(1), 3–18. https://doi.org/10.1016/j.retrec.2014.09.013
  90. Mardani, A., Zavadskas, E. K., Govindan, K., Amat Senin, A., & Jusoh, A. (2016). VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. Sustainability, 8(1). https://doi.org/10.3390/su8010037
  91. Mardani, A., Zavadskas, E. K., Khalifah, Z., Jusoh, A., & Nor, K. M. D. (2016). Multiple criteria decision-making techniques in transportation systems: a systematic review of the state of the art literature. Transport, 31(3), 359–385. https://doi.org/10.3846/16484142.2015.1121517
  92. Marleau Donais, F., Abi-Zeid, I., Waygood, E., & Lavoie, R. (2019). A review of cost–benefit analysis and multicriteria decision analysis from the perspective of sustainable transport in project evaluation. EURO Journal on Decision Processes, 7. https://doi.org/10.1007/s40070-019-00098-1
  93. Marlow, D. R., Beale, D. J., & Burn, S. (2010). A pathway to a more sustainable water sector: sustainability-based asset management. Water Science and Technology, 61(5), 1245–1255. https://doi.org/10.2166/wst.2010.043
  94. Martani, C., Adey, B. T., Robles, I., Gennaro, F. di, Pardi, L., Beltran-Hernando, I., Toribio-Diaz, C., Redondo, N. J., & Díaz, A. A. M. (2021). Estimating the resilience of, and targets for, a transport system using expert opinion. Infrastructure Asset Management, 8(4), 191–208. https://doi.org/10.1680/jinam.20.00029
  95. Masood, T., Israr, A., Zubair, M., & Qazi, U. W. (2023). Assessing challenges to sustainability and resilience of energy supply chain in Pakistan: a developing economy from Triple Bottom Line and UN SDGs’ perspective. International Journal of Sustainable Energy, 42(1), 268–288. https://doi.org/10.1080/14786451.2023.2189489
  96. Mechler, R., Czajkowski, J., Kunreuther, H., Michel-Kerjan, E., Botzen, W., Keating, A., McQuistan, C., Cooper, N., & OtextquoterightDonnell, L. (2014). Making communities more flood resilient: The role of cost benefit analysis and other decision-support tools in disaster risk reduction. Zurich Flood Resilience Alliance.
  97. Medjoudj, R., Aissani, D., & Haim, K. D. (2013). Power customer satisfaction and profitability analysis using multi-criteria decision making methods. International Journal of Electrical Power & Energy Systems, 45(1), 331–339. https://doi.org/https://doi.org/10.1016/j.ijepes.2012.08.062
  98. Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and Urban Planning, 147, 38–49. https://doi.org/10.1016/j.landurbplan.2015.11.011
  99. Melkonyan, A., Gruchmann, T., Lohmar, F., & Bleischwitz, R. (2022). Decision support for sustainable urban mobility: A case study of the Rhine-Ruhr area. Sustainable Cities and Society, 80(March), 103806. https://doi.org/10.1016/j.scs.2022.103806
  100. Messner, F., Zwirner, O., & Karkuschke, M. (2006). Participation in multi-criteria decision support for the resolution of a water allocation problem in the Spree River basin. Land Use Policy, 23(1), 63–75. https://doi.org/10.1016/j.landusepol.2004.08.008
  101. Mishan, E. J., & Quah, E. (2007). Cost-Benefit Analysis 5th edition by E.J. Mishan and Euston QUah. Routledge. https://www.routledge.com/Cost-Benefit-Analysis/Inman-Quah/p/book/9780415349918
  102. Omer, M., Mostashari, A., Nilchiani, R., & Mansouri, M. (2012). A framework for assessing resiliency of maritime transportation systems. Maritime Policy & Management, 39(7), 685–703. https://doi.org/10.1080/03088839.2012.689878
  103. Opricovic, S. (1998). Multicriteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, Belgrade.
  104. Oses, U., Rojí, E., Cuadrado, J., & Larrauri, M. (2018). Multiple-Criteria Decision-Making Tool for Local Governments to Evaluate the Global and Local Sustainability of Transportation Systems in Urban Areas: Case Study. Journal of Urban Planning and Development, 144(1), 1–17. https://doi.org/10.1061/(asce)up.1943-5444.0000406
  105. Ouyang, N. L., Lu, S. L., Wu, B. F., Zhu, J. J., & Wang, H. (2011). Wetland Restoration Suitability Evaluation at the Watershed Scale- A Case Study in Upstream of the Yongdinghe River. Procedia Environmental Sciences, 10, 1926–1932. https://doi.org/https://doi.org/10.1016/j.proenv.2011.09.302
  106. Oxford Economics. (2017). Global infrastructure outlook. Global Infrastucture Hub: Sydney, Australia, 64. https://www.oxfordeconomics.com/recent-releases/99f4fa86-a314-4762-97c6-fac8bdcbe40a%0Ahttps://outlook.gihub.org/%0Ahttps://www.oxfordeconomics.com/recent-releases/Global-Infrastructure-Outlook
  107. Paradowski, B., Więckowski, J., & Dobryakova, L. (2020). Why TOPSIS does not always give correct results? Procedia Computer Science, 176, 3591–3600. https://doi.org/https://doi.org/10.1016/j.procs.2020.09.027
  108. Pazzini, M., Corticelli, R., Lantieri, C., & Mazzoli, C. (2023). Multi-Criteria Analysis and Decision-Making Approach for the Urban Regeneration: The Application to the Rimini Canal Port (Italy). Sustainability (Switzerland), 15(1). https://doi.org/10.3390/su15010772
  109. Rahat, R., Pradhananga, P., Calle Muller, C., & ElZomor, M. (2023). Multi-criteria evaluation of Safe-to-Fail flood solution alternatives for developing resilient coastal cities. Sustainable and Resilient Infrastructure, 00(00), 1–16. https://doi.org/10.1080/23789689.2023.2257503
  110. Reed, D. A., Kapur, K. C., & Christie, R. D. (2009). Methodology for Assessing the Resilience of Networked Infrastructure. {IEEE} Systems Journal, 3(2), 174–180. https://doi.org/10.1109/jsyst.2009.2017396
  111. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega (United Kingdom), 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009
  112. Rezvani, S. M., de Almeida, N. M., Falcão, M. J., & Duarte, M. (2022). Enhancing urban resilience evaluation systems through automated rational and consistent decision-making simulations. Sustainable Cities and Society, 78(June 2021). https://doi.org/10.1016/j.scs.2021.103612
  113. Rezvani, S. M. H. S., de Almeida, N. M., & Falcão, M. J. (2023). Climate Adaptation Measures for Enhancing Urban Resilience. Buildings, 13(9), 2163. https://doi.org/10.3390/buildings13092163
  114. Riabacke, M., Danielson, M., & Ekenberg, L. (2012). State-of-the-Art Prescriptive Criteria Weight Elicitation. Advances in Decision Sciences, 2012, 276584. https://doi.org/10.1155/2012/276584
  115. Roy, B. (1996). Multicriteria Methodology for Decision Aiding. In Nonconvex Optimization and Its Applications. Springer US. https://doi.org/10.1007/978-1-4757-2500-1
  116. Saarikoski, H., Mustajoki, J., Barton, D. N., Geneletti, D., Langemeyer, J., Gomez-Baggethun, E., Marttunen, M., Antunes, P., Keune, H., & Santos, R. (2016). Multi-Criteria Decision Analysis and Cost-Benefit Analysis: Comparing alternative frameworks for integrated valuation of ecosystem services. Ecosystem Services, 22, 238–249. https://doi.org/10.1016/j.ecoser.2016.10.014
  117. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/https://doi.org/10.1016/0022-2496(77)90033-5
  118. Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of Operational Research, 145(1), 85–91. https://doi.org/10.1016/S0377-2217(02)00227-8
  119. Saaty, T. L. (2006). The Analytic Network Process BT - Decision Making with the Analytic Network Process: Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks (T. L. Saaty & L. G. Vargas (eds.); pp. 1–26). Springer US. https://doi.org/10.1007/0-387-33987-6_1
  120. Sailing, K. B., & Landex, A. (2006). Computer based ex-ante evaluation of the planned railway line between Copenhagen and Ringsted by use of a Decision Support System named COSIMA-DSS. WIT Transactions on the Built Environment, 88, 65–74. https://doi.org/10.2495/CR060071
  121. Salling, Kim B, Jensen, A. V, & Leleur, S. (2005). COSIMA-DSS Evaluation system: A new decision support system for large-scale transport infrastructure projects.
  122. Salling, Kim Bang, & Pryn, M. R. (2015). Sustainable transport project evaluation and decision support: Indicators and planning criteria for sustainable development. International Journal of Sustainable Development and World Ecology, 22(4), 346–357. https://doi.org/10.1080/13504509.2015.1051497
  123. San-José Lombera, J.-T., & Garrucho Aprea, I. (2010). A system approach to the environmental analysis of industrial buildings. Building and Environment, 45(3), 673–683. https://doi.org/https://doi.org/10.1016/j.buildenv.2009.08.012
  124. Shahtaheri, Y., Flint, M. M., & de la Garza, J. M. (2018). Sustainable Infrastructure Multi-Criteria Preference Assessment of Alternatives for Early Design. Automation in Construction, 96(August), 16–28. https://doi.org/10.1016/j.autcon.2018.08.022
  125. Sheng, Z. (2017). Mega Infrastructure Construction Management Theories: Overview. In Fundamental Theories of Mega Infrastructure Construction Management (pp. 49–75). Springer International Publishing. https://doi.org/10.1007/978-3-319-61974-3_3
  126. Shishegaran, A., Shishegaran, A., Mazzulla, G., & Forciniti, C. (2020). A novel approach for a sustainability evaluation of developing system interchange: The case study of the sheikhfazolah-yadegar interchange, Tehran, Iran. International Journal of Environmental Research and Public Health, 17(2), 1–25. https://doi.org/10.3390/ijerph17020435
  127. Sijtsma, F. J. (2006). Project evaluation, sustainability and accountability : combining cost-benefit analysis (CBA) and multi-criteria analysis (MCA). In Stichting Ruimtelijke Economie Groningen, Rijksuniversiteit Groningen.
  128. Silva, R. R. da, Santos, G. D., & Setti, D. (2022). A multi-criteria approach for urban mobility project selection in medium-sized cities. Sustainable Cities and Society, 86(July), 104096. https://doi.org/10.1016/j.scs.2022.104096
  129. Singh, P., Amekudzi-Kennedy, A., Ashuri, B., Chester, M., Labi, S., & Wall, T. A. (2023). Developing adaptive resilience in infrastructure systems: an approach to quantify long-term benefits. Sustainable and Resilient Infrastructure, 8(sup1), 26–47. https://doi.org/10.1080/23789689.2022.2126631
  130. Sjöstrand, K., Lindhe, A., Söderqvist, T., & Rosén, L. (2018). Sustainability assessments of regional water supply interventions – Combining cost-benefit and multi-criteria decision analyses. Journal of Environmental Management, 225(July), 313–324. https://doi.org/10.1016/j.jenvman.2018.07.077
  131. Sparrevik, M., Barton, D. N., Bates, M. E., & Linkov, I. (2012). Use of stochastic multi-criteria decision analysis to support sustainable management of contaminated sediments. Environmental Science and Technology, 46(3), 1326–1334. https://doi.org/10.1021/es202225x
  132. Sudha Rani, N. N. V, Satyanarayana, A. N. V, & Bhaskaran, P. K. (2015). Coastal vulnerability assessment studies over India: a review. Natural Hazards, 77(1), 405–428. https://doi.org/10.1007/s11069-015-1597-x
  133. Teotónio, I., Cabral, M., Cruz, C. O., & Silva, C. M. (2020). Decision support system for green roofs investments in residential buildings. Journal of Cleaner Production, 249. https://doi.org/10.1016/j.jclepro.2019.119365
  134. Teotónio, I., Oliveira Cruz, C., Matos Silva, C., & Lopes, R. F. R. (2023). Bridging CBA and MCA for evaluating green infrastructure: Proposal of a new evaluation model (MAGICA). Socio-Economic Planning Sciences, 85(April 2020). https://doi.org/10.1016/j.seps.2022.101446
  135. Thacker, S., Adshead, D., Fay, M., Hallegatte, S., Harvey, M., Meller, H., O’Regan, N., Rozenberg, J., Watkins, G., & Hall, J. W. (2019). Infrastructure for sustainable development. Nature Sustainability, 2(4), 324–331. https://doi.org/10.1038/s41893-019-0256-8
  136. Tischler, S. (2017). Finding the right way - A new approach for route selection procedures? Transportation Research Procedia, 25, 2809–2823. https://doi.org/10.1016/j.trpro.2017.05.247
  137. Tiwari, D. N., Loof, R., & Paudyal, G. N. (1999). Environmental-economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agricultural Systems, 60(2), 99–112. https://doi.org/10.1016/S0308-521X(99)00021-9
  138. Tripathy, P., Khambete, A. K., & Chauhan, K. A. (2019). An Innovative Approach to Assess Sustainability of Urban Mobility—Using Fuzzy MCDM Method. In Innovative Research in Transportation Infrastructure (pp. 55–63). Springer Singapore. https://doi.org/10.1007/978-981-13-2032-3_6
  139. Tsamboulas, D., & Mikroudis, G. (2000). EFECT - evaluation framework of environmental impacts and costs of transport initiatives. Transportation Research Part D: Transport and Environment, 5(4), 283–303. https://doi.org/10.1016/S1361-9209(99)00038-3
  140. Tscheikner-Gratl, F., Egger, P., Rauch, W., & Kleidorfer, M. (2017). Comparison of Multi-Criteria Decision Support Methods for Integrated Rehabilitation Prioritization. Water, 9(2). https://doi.org/10.3390/w9020068
  141. Uddin, M. S., & Warnitchai, P. (2020). Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system. Natural Hazards, 102(3), 1475–1496. https://doi.org/10.1007/s11069-020-03981-2
  142. Vaidya, O., & Kumar Sushil. (2006). Analytic Hierarchy Process: An Overview of Applications. European Journal of Operational Research, 169, 1–29. https://doi.org/10.1016/j.ejor.2004.04.028
  143. Véron-Okamoto, A., & Sakamoto, K. (2014). Toward a Sustainability Appraisal Framework for Transport (SDWP 31). ADB Sustainable Development Working Paper Series, 31, 24. https://www.adb.org/sites/default/files/publication/31198/sdwp-031.pdf
  144. Voogd, H. (1983). Multicriteria Evaluation for Urban and Regional Planning. Pion Ltd.
  145. Wan, C., Yang, Z., Zhang, D., Yan, X., & Fan, S. (2018). Resilience in transportation systems: a systematic review and future directions. Transport Reviews, 38(4), 479–498. https://doi.org/10.1080/01441647.2017.1383532
  146. Wang, S., Gu, X., Luan, S., & Zhao, M. (2021). Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory. International Journal of Critical Infrastructure Protection, 35, 100459. https://doi.org/10.1016/j.ijcip.2021.100459
  147. Ward, E. J., Dimitriou, H. T., & Dean, M. (2016). Theory and background of multi-criteria analysis: Toward a policy-led approach to mega transport infrastructure project appraisal. Research in Transportation Economics, 58, 21–45. https://doi.org/10.1016/j.retrec.2016.08.003
  148. Xu, L., Marinova, D., & Guo, X. (2015). Resilience thinking: a renewed system approach for sustainability science. Sustainability Science, 10(1), 123–138. https://doi.org/10.1007/s11625-014-0274-4
  149. Yang, W., & Zhang, J. (2021). Assessing the performance of gray and green strategies for sustainable urban drainage system development: A multi-criteria decision-making analysis. Journal of Cleaner Production, 293, 126191. https://doi.org/10.1016/j.jclepro.2021.126191
  150. Yang, Z., Barroca, B., Laffréchine, K., Weppe, A., Bony-Dandrieux, A., & Daclin, N. (2023). A multi-criteria framework for critical infrastructure systems resilience. International Journal of Critical Infrastructure Protection, 42(October 2022). https://doi.org/10.1016/j.ijcip.2023.100616
  151. Yannis, G., Kopsacheili, A., Dragomanovits, A., & Petraki, V. (2020). State-of-the-art review on multi-criteria decision-making in the transport sector. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 413–431. https://doi.org/10.1016/j.jtte.2020.05.005
  152. Yazdani, M., & Graeml, F. (2014). VIKOR and its Applications: A State-of-the-Art Survey. International Journal of Strategic Decision Sciences, 5, 56–83. https://doi.org/10.4018/ijsds.2014040105
  153. Yuan, Z., Wen, B., He, C., Zhou, J., Zhou, Z., & Xu, F. (2022). Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review. International Journal of Environmental Research and Public Health, 19(11). https://doi.org/10.3390/ijerph19116572
  154. Zabihi, H., Alizadeh, M., Wolf, I. D., Karami, M., Ahmad, A., & Salamian, H. (2020). A GIS-based fuzzy-analytic hierarchy process (F-AHP) for ecotourism suitability decision making: A case study of Babol in Iran. Tourism Management Perspectives, 36, 100726. https://doi.org/https://doi.org/10.1016/j.tmp.2020.100726
  155. Zhang, W., Wang, N., & Nicholson, C. (2017). Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering, 13(11), 1404–1413. https://doi.org/10.1080/15732479.2016.1271813
  156. Zhu, Q., & Leibowicz. (2022). A Markov Decision Process Approach for Cost‐Benefit Analysis of Infrastructure Resilience upgrades (p. Risk Analysis, 42(7), 1585–1602.). https://doi.org/10.1111/risa.13838


DOI: https://doi.org/10.24294/jipd9984

Refbacks



Copyright (c) 2024 Ali Shoaei, Vitor Sousa, Carlos Oliveira Cruz

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.