Literature review on the evaluation of resilience in infrastructure projects

Ali Shoaei, Vitor Sousa, Carlos Oliveira Cruz

Article ID: 9984
Vol 8, Issue 15, 2024


Abstract


Infrastructure decision-making has traditionally been focused on the use of cost-benefit analysis (CBA) and multicriteria decision analysis (MCDA). Nevertheless, there remains no consensus in the infrastructure sector regarding a favored approach that comprehensively integrates resilience principles with those tools. This review focuses on how resilience has been evaluated in infrastructure projects. Initially, 400 papers were sourced from Web of Science and Scopus. After a preliminary review, 103 papers were selected, and ultimately, the focus was narrowed down to 56 papers. The primary aim was to uncover limitations in both CBA and MCDA, exploring various strategies for amalgamating them and enhancing their potential to foster resilience, sustainability, and other infrastructure performance aspects. Results were classified based on different rationalities: i) objectivist, ii) conformist, iii) adjustive, and iv) reflexive. The analysis revealed that while both CBA and MCDA contribute to decision-making, their perceived strengths and weaknesses differ depending on the chosen rationality. Nonetheless, embracing a broader perspective, fostering participatory methods, and potentially integrating both approaches seem to offer more promising avenues for assessing the resilience of infrastructures. The goal of this research proposal is to devise an integrated approach for evaluating the long-term sustainability and resilience of infrastructure projects and constructed assets.


Keywords


cost-benefit; decision-support; evaluation; infrastructure; multi-criteria analysis; resilience

Full Text:

PDF


References


Achu, A. L., Thomas, J., & Reghunath, R. (2020). Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development, 10, 100365. https://doi.org/https://doi.org/10.1016/j.gsd.2020.100365

Adams, T. M., Bekkem, K. R., & Toledo-Durán, E. J. (2012). Freight Resilience Measures. Journal of Transportation Engineering, 138(11), 1403–1409. https://doi.org/10.1061/(asce)te.1943-5436.0000415

Adey, B. T., Martani, C., Kielhauser, C., Robles, I. U., Papathanasiou, N., Burkhalter, M., Beltran-Hernando, I., & Garcia-Sanchez, D. (2021). Estimating, and setting targets for, the resilience of transport infrastructure. Infrastructure Asset Management, 8(4), 167–190. https://doi.org/10.1680/jinam.20.00011

Almohaimeed, S. A., Suryanarayanan, S., & O’neill, P. (2021). Simulation studies to quantify the impact of demand side management on environmental footprint. Sustainability (Switzerland), 13(17). https://doi.org/10.3390/su13179504

Alves, A., Gersonius, B., Sanchez, A., Vojinovic, Z., & Kapelan, Z. (2018). Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resources Management, 32(7), 2505–2522. https://doi.org/10.1007/s11269-018-1943-3

Andersson, H. (2018). Application of BCA in Europe-Experiences and Challenges. Journal of Benefit-Cost Analysis, 9(1), 84–96. https://doi.org/10.1017/bca.2018.5

Anwar, G. A., Dong, Y., & Li, Y. (2020). Performance-based decision-making of buildings under seismic hazard considering long-term loss, sustainability, and resilience. Structure and Infrastructure Engineering, 17(4), 454–470. https://doi.org/10.1080/15732479.2020.1845751

Arvin, M., Beiki, P., Hejazi, S. J., Sharifi, A., & Atashafrooz, N. (2023). Assessment of infrastructure resilience in multi-hazard regions: A case study of Khuzestan Province. International Journal of Disaster Risk Reduction, 88(December 2022), 103601. https://doi.org/10.1016/j.ijdrr.2023.103601

Asadi, E., Shen, Z., Zhou, H., Salman, A., & Li, Y. (2020). Risk-informed multi-criteria decision framework for resilience, sustainability and energy analysis of reinforced concrete buildings. Journal of Building Performance Simulation, 13(6), 804–823. https://doi.org/10.1080/19401493.2020.1824016

Attoh-Okine, N. O., Cooper, A. T., & Mensah, S. A. (2009). Formulation of Resilience Index of Urban Infrastructure Using Belief Functions. {IEEE} Systems Journal, 3(2), 147–153. https://doi.org/10.1109/jsyst.2009.2019148

Bana e Costa, C. A., & Chagas, M. P. (2004). A career choice problem: An example of how to use MACBETH to build a quantitative value model based on qualitative value judgments. European Journal of Operational Research, 153(2), 323–331. https://doi.org/https://doi.org/10.1016/S0377-2217(03)00155-3

BANA E COSTA, C. A., DE CORTE, J.-M., & VANSNICK, J.-C. (2012). MACBETH. International Journal of Information Technology & Decision Making, 11(02), 359–387. https://doi.org/10.1142/s0219622012400068

Bank, E. I. (2013). The economic appraisal of investment projects at the EIB. European Investment Bank Luxembourg.

Barfod, M. B., & Salling, K. B. (2015). A new composite decision support framework for strategic and sustainable transport appraisals. Transportation Research Part A: Policy and Practice, 72, 1–15. https://doi.org/10.1016/j.tra.2014.12.001

Barfod, M. B., Salling, K. B., & Leleur, S. (2011). Composite decision support by combining cost-benefit and multi-criteria decision analysis. Decision Support Systems, 51(1), 167–175. https://doi.org/10.1016/j.dss.2010.12.005

Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2013). Resilience-based network component importance measures. Reliability Engineering & System Safety, 117, 89–97. https://doi.org/https://doi.org/10.1016/j.ress.2013.03.012

Baroud, H., Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2015). Inherent Costs and Interdependent Impacts of Infrastructure Network Resilience. Risk Analysis, 35(4), 642–662. https://doi.org/10.1111/risa.12223

Baroud, H., Barker, K., Ramirez-Marquez, J. E., & Rocco S., C. M. (2014). Importance measures for inland waterway network resilience. Transportation Research Part E: Logistics and Transportation Review, 62, 55–67. https://doi.org/https://doi.org/10.1016/j.tre.2013.11.010

Barzehkar, M., Parnell, K. E., Soomere, T., Dragovich, D., & Engström, J. (2021). Decision support tools, systems and indices for sustainable coastal planning and management: A review. Ocean and Coastal Management, 212(June). https://doi.org/10.1016/j.ocecoaman.2021.105813

Behzadian, M., Kazemzadeh, R. B., Albadvi, A., & Aghdasi, M. (2010). PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 200(1), 198–215. https://doi.org/https://doi.org/10.1016/j.ejor.2009.01.021

Belay, A. M., Torp, O., Thodesen, C., & Odeck, J. (2016). A framework for Organizing a Resilient Cost Benefit Analysis for Construction Projects. Procedia Engineering, 145(1877), 1169–1176. https://doi.org/10.1016/j.proeng.2016.04.151

Bell, D. E., Keeney, R. L., & Raiffa, H. (1977). Conflicting objectives in decisions. John Wiley & Sons.

Berche, B., von Ferber, C., Holovatch, T., & Holovatch, Y. (2009). Resilience of public transport networks against attacks. The European Physical Journal B, 71(1), 125–137. https://doi.org/10.1140/epjb/e2009-00291-3

Berle, Ø., Norstad, I., & Asbjørnslett, B. E. (2013). Optimization, risk assessment and resilience in LNG transportation systems. Supply Chain Management: An International Journal, 18(3), 253–264. https://doi.org/10.1108/SCM-03-2012-0109

Berle, Ø., Rice Jr., J. B., & Asbjørnslett, B. E. (2011). Failure modes in the maritime transportation system: a functional approach to throughput vulnerability. Maritime Policy & Management, 38(6), 605–632. https://doi.org/10.1080/03088839.2011.615870

Bhamra, R., Dani, S., & Burnard, K. (2011). Resilience: the concept, a literature review and future directions. International Journal of Production Research, 49(18), 5375–5393. https://doi.org/10.1080/00207543.2011.563826

Biringer, B., Vugrin, E., & Warren, D. (2013). Critical Infrastructure System Security and Resiliency. {CRC} Press. https://doi.org/10.1201/b14566

Blockley, D., Agarwal, J., & Godfrey, P. (2012). Infrastructure Resilience for High-Impact Low Chance Risks. ICE Proceedings Civil Engineering, 165, 13–19. https://doi.org/10.1680/cien.11.00046

Bocchini, P., Frangopol, D. M., Ummenhofer, T., & Zinke, T. (2014). Resilience and Sustainability of Civil Infrastructure: Toward a Unified Approach. Journal of Infrastructure Systems, 20(2), 1–16. https://doi.org/10.1061/(asce)is.1943-555x.0000177

Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The Promethee method. European Journal of Operational Research, 24(2), 228–238. https://doi.org/https://doi.org/10.1016/0377-2217(86)90044-5

Brouwer, R., & Van Ek, R. (2004). Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands. Ecological Economics, 50(1–2), 1–21. https://doi.org/10.1016/j.ecolecon.2004.01.020

Brucker, K. De, Verbeke, A., & Macharis, C. (2004). The applicability of multicriteria-analysis to the evaluation of intelligent transport systems (its). Research in Transportation Economics, 8, 151–179. https://doi.org/https://doi.org/10.1016/S0739-8859(04)08008-4

Bruneau et al. (2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497

Bruneau, M., & Reinhorn, A. (2007). Exploring the Concept of Seismic Resilience for Acute Care Facilities. Earthquake Spectra, 23(1), 41–62. https://doi.org/10.1193/1.2431396

Cartes, P. C., Echaveguren Navarro, T., Giné, A. C., & Binet, E. A. (2021). A cost-benefit approach to recover the performance of roads affected by natural disasters. International Journal of Disaster Risk Reduction, 53(November 2020). https://doi.org/10.1016/j.ijdrr.2020.102014

Chang, S. E., & Shinozuka, M. (2004). Measuring Improvements in the Disaster Resilience of Communities. Earthquake Spectra, 20(3), 739–755. https://doi.org/10.1193/1.1775796

Chauhan, K., Peltokorpi, A., Lavikka, R., & Seppänen, O. (2022). To prefabricate or not? A method for evaluating the impact of prefabrication in building construction. Construction Innovation. https://doi.org/10.1108/CI-11-2021-0205

Chen, L., & Bai, Q. (2019). Optimization in decision making in infrastructure asset management: A review. Applied Sciences (Switzerland), 9(7). https://doi.org/10.3390/app9071380

Chester, M. V, Markolf, S., & Allenby, B. (2019). Infrastructure and the environment in the Anthropocene. Journal of Industrial Ecology, 23(5), 1006–1015. https://doi.org/10.1111/jiec.12848

Council, N. R. (2012). Disaster resilience: A national imperative.

Cunha, M., Marques, J., & Savić, D. (2020). A Flexible Approach for the Reinforcement of Water Networks Using Multi-Criteria Decision Analysis. Water Resources Management, 34(14), 4469–4490. https://doi.org/10.1007/s11269-020-02655-9

Desalegn, H., & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1), e05865. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05865

Dodgson, J. S., Spackman, M., Pearman, A., & Phillips, L. D. (2009). Multi-criteria analysis : a manual. In Appraisal (Vol. 11, Issues 1–3). https://doi.org/10.1002/mcda.399

Dojutrek, M. S., Labi, S., & Dietz, J. E. (2016). A multi-criteria methodology for measuring the resilience of transportation assets. International Journal of Disaster Resilience in the Built Environment, 7(3), 290–301. https://doi.org/10.1108/IJDRBE-07-2014-0053

EC. (2015). Economic Appraisal Tool fo Cohesion Policy 2014-2020: Guide to Cost-Benefit Analysis of Investment Projects. European Commission, December 2014. https://ec.europa.eu/regional_policy/sources/docgener/studies/pdf/cba_guide.pdf

ECMT. (2001). Assessing the benefits of transport. European Conference of Ministers of Transport.

Elkarmi, F., & Mustafa, I. (1993). Increasing the utilization of solar energy technologies (SET) in Jordan: Analytic hierarchy process. Energy Policy, 21(9), 978–984. https://doi.org/https://doi.org/10.1016/0301-4215(93)90186-J

EUNET, 2001. (2001). Final Report – Executive Summary, 4th RTD Framework Programme of the European Commission. EUNET/SASI, Final Report – Executive Summary, 4th RTD Framework Programme of the European Commission, , 2001., 11.

European Commission. (2014). Guide to Cost-benefit Analysis of Investment Projects: Economic appraisal tool for Cohesion Policy 2014-2020. In Publications Office of the European Union (Issue December). https://doi.org/10.2776/97516

F. Hutton Barron, B. E. B. (1996). The efficacy of SMARTER - Simple Multi-Attribute Rating Technique Extended to Ranking. Acta Psychologica, 93(1–3), 23–36. https://doi.org/10.1016/0001-6918(96)00010-8

Faturechi, R., & Miller-Hooks, E. (2015). Measuring the Performance of Transportation Infrastructure Systems in Disasters: A Comprehensive Review. Journal of Infrastructure Systems, 21, 4014025. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000212

Feofilovs, M., & Romagnoli, F. (2020). Assessment of Urban Resilience to Natural Disasters with a System Dynamics Tool: Case Study of Latvian Municipality. Environmental and Climate Technologies, 24(3), 249–264. https://doi.org/10.2478/rtuect-2020-0101

Filippini, R., & Silva, A. (2014). A modeling framework for the resilience analysis of networked systems-of-systems based on functional dependencies. Reliability Engineering {&} System Safety, 125, 82–91. https://doi.org/10.1016/j.ress.2013.09.010

Florio, M., Morretta, V., & Willak, W. (2018). Cost-Benefit Analysis and European Union Cohesion Policy: Economic Versus Financial Returns in Investment Project Appraisal. Journal of Benefit-Cost Analysis, 9(1), 147–180. https://doi.org/10.1017/bca.2018.4

Flyvbjerg, B. (2014). What you Should Know about Megaprojects and Why: An Overview. Project Management Journal, 45(2), 6–19. https://doi.org/10.1002/pmj.21409

Fountzoula, C., & Aravossis, K. (2022). Decision-Making Methods in the Public Sector during 2010–2020: A Systematic Review. Advances in Operations Research, 2022, 1750672. https://doi.org/10.1155/2022/1750672

Gamper, C. D., & Turcanu, C. (2007). On the governmental use of multi-criteria analysis. Ecological Economics, 62(2), 298–307. https://doi.org/https://doi.org/10.1016/j.ecolecon.2007.01.010

Gühnemann, A., Laird, J. J., & Pearman, A. D. (2012). Combining cost-benefit and multi-criteria analysis to prioritise a national road infrastructure programme. Transport Policy, 23, 15–24. https://doi.org/10.1016/j.tranpol.2012.05.005

Ha, M.-H., Yang, Z., & Lam, J. S. L. (2019). Port performance in container transport logistics: A multi-stakeholder perspective. Transport Policy, 73, 25–40. https://doi.org/10.1016/j.tranpol.2018.09.021

Henke, I., Cartenì, A., & Di Francesco, L. (2020). A sustainable evaluation processes for investments in the transport sector: A combined multi-criteria and cost–benefit analysis for a new highway in italy. Sustainability (Switzerland), 12(23), 1–27. https://doi.org/10.3390/su12239854

Henn, L., Sloan, K., Charles, M. B., & Douglas, N. (2016). An appraisal framework for evaluating financing approaches for public infrastructure. Public Money and Management, 36(4), 273–280. https://doi.org/10.1080/09540962.2016.1162595

Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering and System Safety, 145, 47–61. https://doi.org/10.1016/j.ress.2015.08.006

Hwang, C.-L., & Yoon, K. (1981). Methods for Multiple Attribute Decision Making. In Lecture Notes in Economics and Mathematical Systems (pp. 58–191). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-48318-9_3

Hwang, C. L., & Yoon, K. P. (1981). Multiple attribute decision making: methods and applications, a state-of-the-art survey. SpringerVerlang.

Hwang, F. K. (1979). An O (n log n) algorithm for rectilinear minimal spanning trees. Journal of the ACM (JACM), 26(2), 177–182.

Ivanov, D., Sokolov, B., & Dolgui, A. (2014). The Ripple effect in supply chains: trade-off ‘efficiency-flexibility-resilience’ in disruption management. International Journal of Production Research, 52(7), 2154–2172. https://doi.org/10.1080/00207543.2013.858836

Janić, M. (2018). Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of {HSR} (high speed rail). Transportation, 45(4), 1101–1137. https://doi.org/10.1007/s11116-018-9875-6

Janjua, S. Y., Sarker, P. K., & Biswas, W. K. (2020). Development of triple bottom line indicators for life cycle sustainability assessment of residential bulidings. Journal of Environmental Management, 264, 110476. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110476

Jia, H., Liu, Z., Xu, C., Chen, Z., Zhang, X., Xia, J., & Yu, S. L. (2022). Adaptive pressure-driven multi-criteria spatial decision-making for a targeted placement of green and grey runoff control infrastructures. Water Research, 212(September 2021), 118126. https://doi.org/10.1016/j.watres.2022.118126

Johansson, P.-O., & Kriström, B. (2015). Cost-benefit analysis for project appraisal. Cambridge University Press. https://doi.org/https://doi.org/10.1017/CBO9781316392751

Johnston, A., Slovinsky, P., & Yates, K. L. (2014). Assessing the vulnerability of coastal infrastructure to sea level rise using multi-criteria analysis in Scarborough, Maine (USA). Ocean and Coastal Management, 95, 176–188. https://doi.org/10.1016/j.ocecoaman.2014.04.016

Josa, I., Pons, O., Fuente, A. de la, & Aguado, A. (2020). Multi-criteria decision-making model to assess the sustainability of girders and trusses: Case study for roofs of sports halls. Journal of Cleaner Production, 249, 119312. https://doi.org/10.1016/j.jclepro.2019.119312

Kaaviya, R., & Devadas, V. (2021). Water resilience mapping of Chennai, India using analytical hierarchy process. Ecological Processes, 10(1), 1–22. https://doi.org/10.1186/s13717-021-00341-1

Kabir, G., Sadiq, R., & Tesfamariam, S. (2014). A review of multi-criteria decision-making methods for infrastructure management. In Structure and Infrastructure Engineering (Vol. 10, Issue 9, pp. 1176–1210). Taylor & Francis. https://doi.org/10.1080/15732479.2013.795978

Karamouz, M., Movahhed, M., & Elyasi, A. H. (2023). Financial allocation and network recovery for interdependent wastewater treatment infrastructure: development of resilience metrics. Sustainable and Resilient Infrastructure, 8(sup1), 262–288. https://doi.org/10.1080/23789689.2022.2148447

Karamouz, M., Zoghi, A., & Mahmoudi, S. (2022). Flood Modeling in Coastal Cities and Flow through Vegetated BMPs: Conceptual Design. Journal of Hydrologic Engineering, 27(10). https://doi.org/10.1061/(asce)he.1943-5584.0002206

Keeney, R. (1994). R.L. Keeney, H. Raiffa: Decisions with multiple objectives{textendash}preferences and value tradeoffs, Cambridge University Press, Cambridge {&} New York, 1993, 569 pages, {ISBN} 0-521-44185-4 (hardback), 0-521-43883-7 (paperback). Behavioral Science, 39(2), 169–170. https://doi.org/10.1002/bs.3830390206

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge university press.

Khan Babar, A. H., & Ali, Y. (2022). Framework construction for augmentation of resilience in critical infrastructure: Developing countries a case in point. Technology in Society, 68(October 2021), 101809. https://doi.org/10.1016/j.techsoc.2021.101809

Kim, Y., Eisenberg, D. A., Bondank, E. N., Chester, M. V., Mascaro, G., & Underwood, B. S. (2017). Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change. Climatic Change, 145(3–4), 397–412. https://doi.org/10.1007/s10584-017-2090-1

König, P. D., & Wenzelburger, G. (2021). The legitimacy gap of algorithmic decision-making in the public sector: Why it arises and how to address it. Technology in Society, 67(July). https://doi.org/10.1016/j.techsoc.2021.101688

Koopmans, C., & Mouter, N. (2020). Cost-benefit analysis. In Advances in Transport Policy and Planning (1st ed., Vol. 6, pp. 1–42). Elsevier Inc. https://doi.org/10.1016/bs.atpp.2020.07.005

Leleur, S., Petersen, N., & Barfod, M. (2007). The COSIMA Approach to Transport Decision Making: Combining Cost-benefit and Multi-criteria Analysis for Comprehensive Project Appraisal.

Li, Z., Zhang, X., Ma, Y., Feng, C., & Hajiyev, A. (2019). A multi-criteria decision making method for urban flood resilience evaluation with hybrid uncertainties. International Journal of Disaster Risk Reduction, 36(March), 101140. https://doi.org/10.1016/j.ijdrr.2019.101140

Lindfors, A. (2021). Assessing sustainability with multi-criteria methods: A methodologically focused literature review. Environmental and Sustainability Indicators, 12(July), 100149. https://doi.org/10.1016/j.indic.2021.100149

Lohman, H. A. C., Morgan, V. L., Li, Y., Zhang, X., Rowles, L. S., Cook, S. M., & Guest, J. S. (2023). DMsan: A Multi-Criteria Decision Analysis Framework and Package to Characterize Contextualized Sustainability of Sanitation and Resource Recovery Technologies. ACS Environmental Au, 3(3), 179–192. https://doi.org/10.1021/acsenvironau.2c00067

Lounis, Z., & McAllister, T. P. (2016). Risk-Based Decision Making for Sustainable and Resilient Infrastructure Systems. Journal of Structural Engineering, 142(9), 1–14. https://doi.org/10.1061/(asce)st.1943-541x.0001545

Macharis, C., & Bernardini, A. (2015). Reviewing the use of multi-criteria decision analysis for the evaluation of transport projects: Time for a multi-actor approach. Transport Policy, 37, 177–186. https://doi.org/10.1016/j.tranpol.2014.11.002

Mackie, P., Worsley, T., & Eliasson, J. (2014). Transport appraisal revisited. Research in Transportation Economics, 47(1), 3–18. https://doi.org/10.1016/j.retrec.2014.09.013

Mardani, A., Zavadskas, E. K., Govindan, K., Amat Senin, A., & Jusoh, A. (2016). VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. Sustainability, 8(1). https://doi.org/10.3390/su8010037

Mardani, A., Zavadskas, E. K., Khalifah, Z., Jusoh, A., & Nor, K. M. D. (2016). Multiple criteria decision-making techniques in transportation systems: a systematic review of the state of the art literature. Transport, 31(3), 359–385. https://doi.org/10.3846/16484142.2015.1121517

Marleau Donais, F., Abi-Zeid, I., Waygood, E., & Lavoie, R. (2019). A review of cost–benefit analysis and multicriteria decision analysis from the perspective of sustainable transport in project evaluation. EURO Journal on Decision Processes, 7. https://doi.org/10.1007/s40070-019-00098-1

Marlow, D. R., Beale, D. J., & Burn, S. (2010). A pathway to a more sustainable water sector: sustainability-based asset management. Water Science and Technology, 61(5), 1245–1255. https://doi.org/10.2166/wst.2010.043

Martani, C., Adey, B. T., Robles, I., Gennaro, F. di, Pardi, L., Beltran-Hernando, I., Toribio-Diaz, C., Redondo, N. J., & Díaz, A. A. M. (2021). Estimating the resilience of, and targets for, a transport system using expert opinion. Infrastructure Asset Management, 8(4), 191–208. https://doi.org/10.1680/jinam.20.00029

Masood, T., Israr, A., Zubair, M., & Qazi, U. W. (2023). Assessing challenges to sustainability and resilience of energy supply chain in Pakistan: a developing economy from Triple Bottom Line and UN SDGs’ perspective. International Journal of Sustainable Energy, 42(1), 268–288. https://doi.org/10.1080/14786451.2023.2189489

Mechler, R., Czajkowski, J., Kunreuther, H., Michel-Kerjan, E., Botzen, W., Keating, A., McQuistan, C., Cooper, N., & OtextquoterightDonnell, L. (2014). Making communities more flood resilient: The role of cost benefit analysis and other decision-support tools in disaster risk reduction. Zurich Flood Resilience Alliance.

Medjoudj, R., Aissani, D., & Haim, K. D. (2013). Power customer satisfaction and profitability analysis using multi-criteria decision making methods. International Journal of Electrical Power & Energy Systems, 45(1), 331–339. https://doi.org/https://doi.org/10.1016/j.ijepes.2012.08.062

Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and Urban Planning, 147, 38–49. https://doi.org/10.1016/j.landurbplan.2015.11.011

Melkonyan, A., Gruchmann, T., Lohmar, F., & Bleischwitz, R. (2022). Decision support for sustainable urban mobility: A case study of the Rhine-Ruhr area. Sustainable Cities and Society, 80(March), 103806. https://doi.org/10.1016/j.scs.2022.103806

Messner, F., Zwirner, O., & Karkuschke, M. (2006). Participation in multi-criteria decision support for the resolution of a water allocation problem in the Spree River basin. Land Use Policy, 23(1), 63–75. https://doi.org/10.1016/j.landusepol.2004.08.008

Mishan, E. J., & Quah, E. (2007). Cost-Benefit Analysis 5th edition by E.J. Mishan and Euston QUah. Routledge. https://www.routledge.com/Cost-Benefit-Analysis/Inman-Quah/p/book/9780415349918

Omer, M., Mostashari, A., Nilchiani, R., & Mansouri, M. (2012). A framework for assessing resiliency of maritime transportation systems. Maritime Policy & Management, 39(7), 685–703. https://doi.org/10.1080/03088839.2012.689878

Opricovic, S. (1998). Multicriteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, Belgrade.

Oses, U., Rojí, E., Cuadrado, J., & Larrauri, M. (2018). Multiple-Criteria Decision-Making Tool for Local Governments to Evaluate the Global and Local Sustainability of Transportation Systems in Urban Areas: Case Study. Journal of Urban Planning and Development, 144(1), 1–17. https://doi.org/10.1061/(asce)up.1943-5444.0000406

Ouyang, N. L., Lu, S. L., Wu, B. F., Zhu, J. J., & Wang, H. (2011). Wetland Restoration Suitability Evaluation at the Watershed Scale- A Case Study in Upstream of the Yongdinghe River. Procedia Environmental Sciences, 10, 1926–1932. https://doi.org/https://doi.org/10.1016/j.proenv.2011.09.302

Oxford Economics. (2017). Global infrastructure outlook. Global Infrastucture Hub: Sydney, Australia, 64. https://www.oxfordeconomics.com/recent-releases/99f4fa86-a314-4762-97c6-fac8bdcbe40a%0Ahttps://outlook.gihub.org/%0Ahttps://www.oxfordeconomics.com/recent-releases/Global-Infrastructure-Outlook

Paradowski, B., Więckowski, J., & Dobryakova, L. (2020). Why TOPSIS does not always give correct results? Procedia Computer Science, 176, 3591–3600. https://doi.org/https://doi.org/10.1016/j.procs.2020.09.027

Pazzini, M., Corticelli, R., Lantieri, C., & Mazzoli, C. (2023). Multi-Criteria Analysis and Decision-Making Approach for the Urban Regeneration: The Application to the Rimini Canal Port (Italy). Sustainability (Switzerland), 15(1). https://doi.org/10.3390/su15010772

Rahat, R., Pradhananga, P., Calle Muller, C., & ElZomor, M. (2023). Multi-criteria evaluation of Safe-to-Fail flood solution alternatives for developing resilient coastal cities. Sustainable and Resilient Infrastructure, 00(00), 1–16. https://doi.org/10.1080/23789689.2023.2257503

Reed, D. A., Kapur, K. C., & Christie, R. D. (2009). Methodology for Assessing the Resilience of Networked Infrastructure. {IEEE} Systems Journal, 3(2), 174–180. https://doi.org/10.1109/jsyst.2009.2017396

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega (United Kingdom), 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009

Rezvani, S. M., de Almeida, N. M., Falcão, M. J., & Duarte, M. (2022). Enhancing urban resilience evaluation systems through automated rational and consistent decision-making simulations. Sustainable Cities and Society, 78(June 2021). https://doi.org/10.1016/j.scs.2021.103612

Rezvani, S. M. H. S., de Almeida, N. M., & Falcão, M. J. (2023). Climate Adaptation Measures for Enhancing Urban Resilience. Buildings, 13(9), 2163. https://doi.org/10.3390/buildings13092163

Riabacke, M., Danielson, M., & Ekenberg, L. (2012). State-of-the-Art Prescriptive Criteria Weight Elicitation. Advances in Decision Sciences, 2012, 276584. https://doi.org/10.1155/2012/276584

Roy, B. (1996). Multicriteria Methodology for Decision Aiding. In Nonconvex Optimization and Its Applications. Springer US. https://doi.org/10.1007/978-1-4757-2500-1

Saarikoski, H., Mustajoki, J., Barton, D. N., Geneletti, D., Langemeyer, J., Gomez-Baggethun, E., Marttunen, M., Antunes, P., Keune, H., & Santos, R. (2016). Multi-Criteria Decision Analysis and Cost-Benefit Analysis: Comparing alternative frameworks for integrated valuation of ecosystem services. Ecosystem Services, 22, 238–249. https://doi.org/10.1016/j.ecoser.2016.10.014

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/https://doi.org/10.1016/0022-2496(77)90033-5

Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of Operational Research, 145(1), 85–91. https://doi.org/10.1016/S0377-2217(02)00227-8

Saaty, T. L. (2006). The Analytic Network Process BT - Decision Making with the Analytic Network Process: Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks (T. L. Saaty & L. G. Vargas (eds.); pp. 1–26). Springer US. https://doi.org/10.1007/0-387-33987-6_1

Sailing, K. B., & Landex, A. (2006). Computer based ex-ante evaluation of the planned railway line between Copenhagen and Ringsted by use of a Decision Support System named COSIMA-DSS. WIT Transactions on the Built Environment, 88, 65–74. https://doi.org/10.2495/CR060071

Salling, Kim B, Jensen, A. V, & Leleur, S. (2005). COSIMA-DSS Evaluation system: A new decision support system for large-scale transport infrastructure projects.

Salling, Kim Bang, & Pryn, M. R. (2015). Sustainable transport project evaluation and decision support: Indicators and planning criteria for sustainable development. International Journal of Sustainable Development and World Ecology, 22(4), 346–357. https://doi.org/10.1080/13504509.2015.1051497

San-José Lombera, J.-T., & Garrucho Aprea, I. (2010). A system approach to the environmental analysis of industrial buildings. Building and Environment, 45(3), 673–683. https://doi.org/https://doi.org/10.1016/j.buildenv.2009.08.012

Shahtaheri, Y., Flint, M. M., & de la Garza, J. M. (2018). Sustainable Infrastructure Multi-Criteria Preference Assessment of Alternatives for Early Design. Automation in Construction, 96(August), 16–28. https://doi.org/10.1016/j.autcon.2018.08.022

Sheng, Z. (2017). Mega Infrastructure Construction Management Theories: Overview. In Fundamental Theories of Mega Infrastructure Construction Management (pp. 49–75). Springer International Publishing. https://doi.org/10.1007/978-3-319-61974-3_3

Shishegaran, A., Shishegaran, A., Mazzulla, G., & Forciniti, C. (2020). A novel approach for a sustainability evaluation of developing system interchange: The case study of the sheikhfazolah-yadegar interchange, Tehran, Iran. International Journal of Environmental Research and Public Health, 17(2), 1–25. https://doi.org/10.3390/ijerph17020435

Sijtsma, F. J. (2006). Project evaluation, sustainability and accountability : combining cost-benefit analysis (CBA) and multi-criteria analysis (MCA). In Stichting Ruimtelijke Economie Groningen, Rijksuniversiteit Groningen.

Silva, R. R. da, Santos, G. D., & Setti, D. (2022). A multi-criteria approach for urban mobility project selection in medium-sized cities. Sustainable Cities and Society, 86(July), 104096. https://doi.org/10.1016/j.scs.2022.104096

Singh, P., Amekudzi-Kennedy, A., Ashuri, B., Chester, M., Labi, S., & Wall, T. A. (2023). Developing adaptive resilience in infrastructure systems: an approach to quantify long-term benefits. Sustainable and Resilient Infrastructure, 8(sup1), 26–47. https://doi.org/10.1080/23789689.2022.2126631

Sjöstrand, K., Lindhe, A., Söderqvist, T., & Rosén, L. (2018). Sustainability assessments of regional water supply interventions – Combining cost-benefit and multi-criteria decision analyses. Journal of Environmental Management, 225(July), 313–324. https://doi.org/10.1016/j.jenvman.2018.07.077

Sparrevik, M., Barton, D. N., Bates, M. E., & Linkov, I. (2012). Use of stochastic multi-criteria decision analysis to support sustainable management of contaminated sediments. Environmental Science and Technology, 46(3), 1326–1334. https://doi.org/10.1021/es202225x

Sudha Rani, N. N. V, Satyanarayana, A. N. V, & Bhaskaran, P. K. (2015). Coastal vulnerability assessment studies over India: a review. Natural Hazards, 77(1), 405–428. https://doi.org/10.1007/s11069-015-1597-x

Teotónio, I., Cabral, M., Cruz, C. O., & Silva, C. M. (2020). Decision support system for green roofs investments in residential buildings. Journal of Cleaner Production, 249. https://doi.org/10.1016/j.jclepro.2019.119365

Teotónio, I., Oliveira Cruz, C., Matos Silva, C., & Lopes, R. F. R. (2023). Bridging CBA and MCA for evaluating green infrastructure: Proposal of a new evaluation model (MAGICA). Socio-Economic Planning Sciences, 85(April 2020). https://doi.org/10.1016/j.seps.2022.101446

Thacker, S., Adshead, D., Fay, M., Hallegatte, S., Harvey, M., Meller, H., O’Regan, N., Rozenberg, J., Watkins, G., & Hall, J. W. (2019). Infrastructure for sustainable development. Nature Sustainability, 2(4), 324–331. https://doi.org/10.1038/s41893-019-0256-8

Tischler, S. (2017). Finding the right way - A new approach for route selection procedures? Transportation Research Procedia, 25, 2809–2823. https://doi.org/10.1016/j.trpro.2017.05.247

Tiwari, D. N., Loof, R., & Paudyal, G. N. (1999). Environmental-economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agricultural Systems, 60(2), 99–112. https://doi.org/10.1016/S0308-521X(99)00021-9

Tripathy, P., Khambete, A. K., & Chauhan, K. A. (2019). An Innovative Approach to Assess Sustainability of Urban Mobility—Using Fuzzy MCDM Method. In Innovative Research in Transportation Infrastructure (pp. 55–63). Springer Singapore. https://doi.org/10.1007/978-981-13-2032-3_6

Tsamboulas, D., & Mikroudis, G. (2000). EFECT - evaluation framework of environmental impacts and costs of transport initiatives. Transportation Research Part D: Transport and Environment, 5(4), 283–303. https://doi.org/10.1016/S1361-9209(99)00038-3

Tscheikner-Gratl, F., Egger, P., Rauch, W., & Kleidorfer, M. (2017). Comparison of Multi-Criteria Decision Support Methods for Integrated Rehabilitation Prioritization. Water, 9(2). https://doi.org/10.3390/w9020068

Uddin, M. S., & Warnitchai, P. (2020). Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system. Natural Hazards, 102(3), 1475–1496. https://doi.org/10.1007/s11069-020-03981-2

Vaidya, O., & Kumar Sushil. (2006). Analytic Hierarchy Process: An Overview of Applications. European Journal of Operational Research, 169, 1–29. https://doi.org/10.1016/j.ejor.2004.04.028

Véron-Okamoto, A., & Sakamoto, K. (2014). Toward a Sustainability Appraisal Framework for Transport (SDWP 31). ADB Sustainable Development Working Paper Series, 31, 24. https://www.adb.org/sites/default/files/publication/31198/sdwp-031.pdf

Voogd, H. (1983). Multicriteria Evaluation for Urban and Regional Planning. Pion Ltd.

Wan, C., Yang, Z., Zhang, D., Yan, X., & Fan, S. (2018). Resilience in transportation systems: a systematic review and future directions. Transport Reviews, 38(4), 479–498. https://doi.org/10.1080/01441647.2017.1383532

Wang, S., Gu, X., Luan, S., & Zhao, M. (2021). Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory. International Journal of Critical Infrastructure Protection, 35, 100459. https://doi.org/10.1016/j.ijcip.2021.100459

Ward, E. J., Dimitriou, H. T., & Dean, M. (2016). Theory and background of multi-criteria analysis: Toward a policy-led approach to mega transport infrastructure project appraisal. Research in Transportation Economics, 58, 21–45. https://doi.org/10.1016/j.retrec.2016.08.003

Xu, L., Marinova, D., & Guo, X. (2015). Resilience thinking: a renewed system approach for sustainability science. Sustainability Science, 10(1), 123–138. https://doi.org/10.1007/s11625-014-0274-4

Yang, W., & Zhang, J. (2021). Assessing the performance of gray and green strategies for sustainable urban drainage system development: A multi-criteria decision-making analysis. Journal of Cleaner Production, 293, 126191. https://doi.org/10.1016/j.jclepro.2021.126191

Yang, Z., Barroca, B., Laffréchine, K., Weppe, A., Bony-Dandrieux, A., & Daclin, N. (2023). A multi-criteria framework for critical infrastructure systems resilience. International Journal of Critical Infrastructure Protection, 42(October 2022). https://doi.org/10.1016/j.ijcip.2023.100616

Yannis, G., Kopsacheili, A., Dragomanovits, A., & Petraki, V. (2020). State-of-the-art review on multi-criteria decision-making in the transport sector. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 413–431. https://doi.org/10.1016/j.jtte.2020.05.005

Yazdani, M., & Graeml, F. (2014). VIKOR and its Applications: A State-of-the-Art Survey. International Journal of Strategic Decision Sciences, 5, 56–83. https://doi.org/10.4018/ijsds.2014040105

Yuan, Z., Wen, B., He, C., Zhou, J., Zhou, Z., & Xu, F. (2022). Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review. International Journal of Environmental Research and Public Health, 19(11). https://doi.org/10.3390/ijerph19116572

Zabihi, H., Alizadeh, M., Wolf, I. D., Karami, M., Ahmad, A., & Salamian, H. (2020). A GIS-based fuzzy-analytic hierarchy process (F-AHP) for ecotourism suitability decision making: A case study of Babol in Iran. Tourism Management Perspectives, 36, 100726. https://doi.org/https://doi.org/10.1016/j.tmp.2020.100726

Zhang, W., Wang, N., & Nicholson, C. (2017). Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering, 13(11), 1404–1413. https://doi.org/10.1080/15732479.2016.1271813

Zhu, Q., & Leibowicz. (2022). A Markov Decision Process Approach for Cost‐Benefit Analysis of Infrastructure Resilience upgrades (p. Risk Analysis, 42(7), 1585–1602.). https://doi.org/10.1111/risa.13838




DOI: https://doi.org/10.24294/jipd9984

Refbacks



Copyright (c) 2024 Ali Shoaei, Vitor Sousa, Carlos Oliveira Cruz

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.