Disaggregated effects of artificial intelligence, online and mobile banking on customer satisfaction in banks: An analysis using structural equation modelling
Vol 8, Issue 15, 2024
VIEWS - 46 (Abstract) 22 (PDF)
Abstract
In the Fourth Industrial Revolution (4IR) era, the rapid digitalisation of services poses both opportunities and challenges for the banking sector. This study addresses how adopting artificial intelligence (AI) and online and mobile banking advancements can influence customer satisfaction, particularly in Kaduna State, Nigeria. Despite significant investments in AI and digital banking technologies, banks often struggle to align these innovations with customer expectations and satisfaction. Using Structural Equation Modeling (SEM), this research investigates the impact of customer satisfaction with online banking (C_O) on AI integration (I_A) and mobile banking convenience (C_M). The SEM model reveals that customer satisfaction with online banking significantly influences AI integration (path coefficient of 0.40) and mobile banking convenience (path coefficient of 0.68). These results highlight a crucial problem: while technological advancements in banking are growing, their effectiveness is highly dependent on customer satisfaction with existing digital services. The study underscores the need for banks to prioritise enhancing online banking experiences as a strategic lever to improve AI integration and mobile banking convenience. Consequently, the research recommends that Nigerian banks develop comprehensive frameworks to evaluate and optimise their technology integration strategies, ensuring that technological innovations align with customer needs and expectations in the rapidly evolving digital landscape.
Keywords
Full Text:
PDFReferences
Adamu, A. A., & Mohamad, B. (2019). A reliable and valid measurement scale for assessing internal crisis communication. Journal of Communication Management, 23(2), 90-108. https://doi.org/10.1108/JCOM-07-2018-0068
Alalwan, A. A., Baabdullah, A. M., Rana, N. P., Tamilmani, K., & Dwivedi, Y. K. (2018). Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust. Technology in Society, 55, 100-110. https://doi.org/10.1016/j.techsoc.2018.06.007
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International journal of information management, 37(3), 99-110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Williams, M. D. (2016). Consumer adoption of mobile banking in Jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy. Journal of Enterprise Information Management, 29(1), 118-139. https://doi.org/10.1108/JEIM-04-2015-0035
Alt, R., Beck, R., & Smits, M. T. (2018). FinTech and the transformation of the financial industry. In (Vol. 28, pp. 235-243): Springer.
Amin, M., Rezaei, S., & Abolghasemi, M. (2014). User satisfaction with mobile websites: the impact of perceived usefulness (PU), perceived ease of use (PEOU) and trust. Nankai Business Review International, 5(3), 258-274. https://doi.org/10.1108/NBRI-01-2014-0005
Ashta, A., & Herrmann, H. (2021). Artificial intelligence and fintech: An overview of opportunities and risks for banking, investments, and microfinance. Strategic Change, 30(3), 211-222. https://doi.org/10.1002/jsc.2404
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., & Patil, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International journal of information management, 44, 38-52. https://doi.org/10.1016/j.ijinfomgt.2018.09.002
Belanche, D., Casaló, L. V., & Flavián, C. (2019). Artificial Intelligence in FinTech: understanding robo-advisors adoption among customers. Industrial Management & Data Systems, 119(7), 1411-1430. https://doi.org/10.1108/IMDS-08-2018-0368
Benedicktus, R. L., Brady, M. K., Darke, P. R., & Voorhees, C. M. (2010). Conveying trustworthiness to online consumers: Reactions to consensus, physical store presence, brand familiarity, and generalised suspicion. Journal of Retailing, 86(4), 322-335. https://doi.org/10.1016/j.jretai.2010.04.002
Bhatia, A., Chandani, A., Atiq, R., Mehta, M., & Divekar, R. (2021). Artificial intelligence in financial services: a qualitative research to discover robo-advisory services. Qualitative Research in Financial Markets, 13(5), 632-654. https://doi.org/10.1108/QRFM-10-2020-0199
Brown, T. A. (2015). Confirmatory factor analysis for applied research. Guilford publications.
Cheah, J.-H., Sarstedt, M., Ringle, C. M., Ramayah, T., & Ting, H. (2018). Convergent validity assessment of formatively measured constructs in PLS-SEM: On using single-item versus multi-item measures in redundancy analyses. International journal of contemporary hospitality management, 30(11), 3192-3210. https://doi.org/10.1108/IJCHM-10-2017-0649
Chebat, J.-C., & Slusarczyk, W. (2005). How emotions mediate the effects of perceived justice on loyalty in service recovery situations: an empirical study. Journal of Business Research, 58(5), 664-673. https://doi.org/10.1016/j.jbusres.2003.09.005
Chhatwani, M. (2022). Does robo-advisory increase retirement worry? A causal explanation. Managerial Finance, 48(4), 611-628. https://doi.org/10.1108/MF-05-2021-0195
Davis, F. D., Bagozzi, R., & Warshaw, P. (1989). Technology acceptance model. J Manag Sci, 35(8), 982-1003. https://link.springer.com/book/10.1007/978-3-030-45274-2
Dharmavaram, V., & Nittala, R. (2018). Service quality and customer satisfaction in online banking. International Journal of Online Marketing (IJOM), 8(2), 45-56. https://doi.org/10.4018/IJOM.2018040103
Filiz, I., Judek, J. R., Lorenz, M., & Spiwoks, M. (2022). Algorithm aversion as an obstacle in the establishment of robo advisors. Journal of Risk and Financial Management, 15(8), 353. https://doi.org/10.3390/jrfm15080353
Geebren, A., Jabbar, A., & Luo, M. (2021). Examining the role of consumer satisfaction within mobile eco-systems: Evidence from mobile banking services. Computers in Human Behavior, 114, 106584. https://doi.org/10.1016/j.chb.2020.106584
Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2018). On the fintech revolution: Interpreting the forces of innovation, disruption, and transformation in financial services. Journal of management information systems, 35(1), 220-265. https://doi.org/10.1080/07421222.2018.1440766
Hair Jr, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101-110. https://doi.org/10.1016/j.jbusres.2019.11.069
Hair, J. F. (2009). Multivariate data analysis. https://digitalcommons.kennesaw.edu/facpubs/2925/
Hamidi, H., & Safareeyeh, M. (2019). A model to analyse the effect of mobile banking adoption on customer interaction and satisfaction: A case study of m-banking in Iran. Telematics and informatics, 38, 166-181. https://doi.org/10.1016/j.tele.2018.09.008
Inegbedion, H., Inegbedion, E. E., Osifo, S. J., Eze, S. C., Ayeni, A., & Akintimehin, O. (2020). Exposure to and usage of e-banking channels: Implications for bank customers’ awareness and attitude to e-banking in Nigeria. Journal of Science and Technology Policy Management, 11(2), 133-148. https://doi.org/10.1108/JSTPM-02-2019-0024
Isagah, T., & Musabila, A. (2020). Recommendations for artificial intelligence implementation in African governments: results from researchers and practitioners of AI/ML. Proceedings of the 13th International Conference on Theory and Practice of Electronic Governance
Iyer, P., Davari, A., & Mukherjee, A. (2018). Investigating the effectiveness of retailers’ mobile applications in determining customer satisfaction and repatronage intentions? A congruency perspective. Journal of Retailing and Consumer Services, 44, 235-243. https://doi.org/10.1016/j.jretconser.2018.07.017
Jöreskog, K. G., Olsson, U. H., Y. Wallentin, F., Jöreskog, K. G., Olsson, U. H., & Wallentin, F. Y. (2016). Confirmatory factor analysis (CFA). Multivariate analysis with LISREL, 283-339. https://doi.org/10.1007/978-3-319-33153-9_7
Jun, M., & Palacios, S. (2016). Examining the key dimensions of mobile banking service quality: an exploratory study. International Journal of Bank Marketing, 34(3), 307-326. https://doi.org/10.1108/IJBM-01-2015-0015
Jung, D., Dorner, V., Glaser, F., & Morana, S. (2018). Robo-advisory: digitalisation and automation of financial advisory. Business & Information Systems Engineering, 60, 81-86. https://doi.org/10.1007/s12599-018-0521-9
Kanu, C., & Nwali, A. C. (2019). Financial instability and performance of banking sector in Nigeria: an evaluation. African Journal of Accounting, Auditing and Finance, 6(3), 236-259. https://doi.org/10.1504/AJAAF.2019.099165
Khanal, M., Khadka, S. R., Subedi, H., Chaulagain, I. P., Regmi, L. N., & Bhandari, M. (2023). Explaining the factors affecting customer satisfaction at the fintech firm F1 soft by using PCA and XAI. FinTech, 2(1), 70-84. https://doi.org/10.3390/fintech2010006
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Koksal, M. H. (2016). The intentions of Lebanese consumers to adopt mobile banking. International Journal of Bank Marketing, 34(3), 327-346. https://doi.org/10.1108/IJBM-03-2015-0025
Krupa, D., & Buszko, M. (2023). Age-dependent differences in using FinTech products and services—Young customers versus other adults. Plos One, 18(10), e0293470. https://doi.org/10.1371/journal.pone.0293470
Kumar, R. P., Banerjee, A., Al-Salti, Z., & Ananda, S. (2023). Technology acceptance model and customer engagement: mediating role of customer satisfaction. Journal of Financial Services Marketing, 1-15. https://doi.org/10.1057/s41264-023-00256-2
Kurshan, E., Chen, J., Storchan, V., & Shen, H. (2021). On the current and emerging challenges of developing fair and ethical AI solutions in financial services. Proceedings of the second ACM international conference on AI in finance
LaNasa, S. M., Cabrera, A. F., & Trangsrud, H. (2009). The construct validity of student engagement: A confirmatory factor analysis approach. Research in Higher Education, 50, 315-332. https://doi.org/10.1007/s11162-009-9123-1
Lantang, A. P., Pangemanan, S. S., & Tielung, M. V. (2021). THE INFULENCE OF EASE OF USE AND FACILITY TOWARDS CUSTOMER SATISFACTION ON FINTECH DIGITAL PAYMENT. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 9(4), 406-414. https://doi.org/10.35794/emba.v9i4.36303
Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking. Journal of Business Research, 69(7), 2432-2439. https://doi.org/10.1016/j.jbusres.2016.01.013
Laukkanen, T., & Kiviniemi, V. (2010). The role of information in mobile banking resistance. International Journal of Bank Marketing, 28(5), 372-388. https://doi.org/10.1108/02652321011064890
Lee, M. S., McGoldrick, P. J., Keeling, K. A., & Doherty, J. (2003). Using ZMET to explore barriers to the adoption of 3G mobile banking services. International Journal of Retail & Distribution Management, 31(6), 340-348. https://doi.org/10.1108/09590550310476079
Ling, G. M., Fern, Y. S., Boon, L. K., & Huat, T. S. (2016). Understanding customer satisfaction of internet banking: A case study in Malacca. Procedia Economics and Finance, 37, 80-85. https://doi.org/10.1016/S2212-5671(16)30096-X
Luo, H., Liu, X., Lv, X., Hu, Y., & Ahmad, A. J. (2024). Investors’ Willingness to Use Robo-Advisors: Extrapolating Influencing Factors Based on the Fiduciary Duty of Investment Advisors. International Review of Economics & Finance, 103411. https://doi.org/10.1016/j.iref.2024.103411
Maxham III, J. G., & Netemeyer, R. G. (2002). Modeling customer perceptions of complaint handling over time: the effects of perceived justice on satisfaction and intent. Journal of Retailing, 78(4), 239-252. https://doi.org/10.1016/S0022-4359(02)00100-8
Mehrotra, A. (2019). Artificial intelligence in financial services–need to blend automation with human touch. 2019 International Conference on Automation, Computational and Technology Management (ICACTM)
Mogaji, E., & Nguyen, N. P. (2022). Managers’ understanding of artificial intelligence in relation to marketing financial services: insights from a cross-country study. International Journal of Bank Marketing, 40(6), 1272-1298. https://doi.org/10.1108/IJBM-09-2021-0440
Murinde, V., Rizopoulos, E., & Zachariadis, M. (2022). The impact of the FinTech revolution on the future of banking: Opportunities and risks. International review of financial analysis, 81, 102103. https://doi.org/10.1016/j.irfa.2022.102103
Ngubelanga, A., & Duffett, R. (2021). Modeling mobile commerce applications’ antecedents of customer satisfaction among millennials: An extended tam perspective. Sustainability, 13(11), 5973. https://doi.org/10.3390/su13115973
Nourallah, M. (2022). Mobile bank applications: antecedents and consequences of young bank customer loyalty. International Journal of Management Practice, 15(1), 131-149. https://doi.org/10.1504/IJMP.2022.119920
O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & quantity, 41, 673-690. https://doi.org/10.1007/s11135-006-9018-6
Okolo, C. T., Aruleba, K., & Obaido, G. (2023). Responsible AI in Africa—Challenges and opportunities. Responsible AI in Africa: Challenges and opportunities, 35-64. https://doi.org/10.1007/978-3-031-08215-3
Ong, K. S., Nguyen, B., & Syed Alwi, S. F. (2017). Consumer-based virtual brand personality (CBVBP), customer satisfaction and brand loyalty in the online banking industry. International Journal of Bank Marketing, 35(3), 370-390. https://doi.org/10.1108/IJBM-04-2016-0054
Osuma, G. O., Babajide, A. A., Ikpefan, O. A., Nwuba, E. B., & Jegede, P. W. (2019). Effects of Global Decline in Oil Price on the Financial Performance of selected Deposit Money Banks in Nigeria. International Journal of Energy Economics and Policy, 9(3), 187-195. https://doi.org/10.32479/ijeep.7514
Ozili, P. K. (2024). Artificial intelligence and central bank digital currency. In Global Developments in Central Bank Digital Currency (pp. 117-125). IGI Global. https://doi.org/10.4018/979-8-3693-5588-6.ch008
Patil, K., & Kulkarni, M. S. (2019). Artificial intelligence in financial services: Customer chatbot advisor adoption. Int. J. Innov. Technol. Explor. Eng, 9(1), 4296-4303. https://doi.org/10.35940/ijitee.A4928.119119
Rahman, M., Ming, T. H., Baigh, T. A., & Sarker, M. (2023). Adoption of artificial intelligence in banking services: an empirical analysis. International Journal of Emerging Markets, 18(10), 4270-4300. https://doi.org/10.1108/IJOEM-06-2020-0724
Rehman, U., & Ha, K. S. (2021). Factors Influencing Fintech’s Customer Loyalty for Cross Border Payments: Mediating Customer Satisfaction. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 16(6), 287-297. https://koreascience.kr/article/JAKO202108761153861.page
Santos, K. O. B., Carvalho, F. M., & Araújo, T. M. d. (2016). Internal consistency of the self-reporting questionnaire-20 in occupational groups. Revista de saude publica, 50(00), 6. https://doi.org/10.1590/S1518-8787.2016050006100
Shaikh, A. A., & Karjaluoto, H. (2015). Mobile banking adoption: A literature review. Telematics and informatics, 32(1), 129-142. https://doi.org/10.1016/j.tele.2014.05.003
Siyal, A. W., Donghong, D., Umrani, W. A., Siyal, S., & Bhand, S. (2019). Predicting mobile banking acceptance and loyalty in Chinese bank customers. Sage Open, 9(2), 2158244019844084. https://doi.org/10.1177/2158244019844084
Tabak, B. M., Fazio, D. M., & Cajueiro, D. O. (2013). Systemically important banks and financial stability: The case of Latin America. Journal of banking & finance, 37(10), 3855-3866. https://doi.org/10.1016/j.jbankfin.2013.06.003
Taylor, A. K., & Cotter, T. S. (2014). Human-machine intelligence interaction in aviation. Proceedings of the American Society for Engineering Management, 1, 1-8.
Usman, O., Monoarfa, T., & Marsofiyati, M. (2020). E-Banking and mobile banking effects on customer satisfaction. Accounting, 6(6), 1117-1128. https://doi.org/10.5267/j.ac.2020.7.006
Vocke, C., Constantinescu, C., & Popescu, D. (2019). Application potentials of artificial intelligence for the design of innovation processes. Procedia CIRP, 84, 810-813. https://doi.org/10.1016/j.procir.2019.04.230
Yoon, C. (2010). Antecedents of customer satisfaction with online banking in China: The effects of experience. Computers in Human Behavior, 26(6), 1296-1304. https://doi.org/10.1016/j.chb.2010.04.001
Zavolokina, L., Dolata, M., & Schwabe, G. (2017). FinTech transformation: How IT-enabled innovations shape the financial sector. Enterprise Applications, Markets and Services in the Finance Industry: 8th International Workshop, FinanceCom 2016, Frankfurt, Germany, December 8, 2016, Revised Papers 8
Zhu, H., Pysander, E.-L. S., & Söderberg, I.-L. (2023). Not transparent and incomprehensible: A qualitative user study of an AI-empowered financial advisory system. Data and Information Management, 7(3), 100041. https://doi.org/10.1016/j.dim.2023.100041
Zhu, H., Vigren, O., & Söderberg, I.-L. (2024). Implementing artificial intelligence empowered financial advisory services: A literature review and critical research agenda. Journal of Business Research, 174, 114494. https://doi.org/10.1016/j.jbusres.2023.114494
DOI: https://doi.org/10.24294/jipd9941
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Godswill Osuma, Ntokozo Nzimande
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.