Patterns of public interest in infectious diseases in South Korea, five other major countries, and worldwide: A Google trends analysis

Chae-Bong Kim, Dock-Hee Kim, Yeo-Wool Lee

Article ID: 9872
Vol 8, Issue 16, 2024

VIEWS - 34 (Abstract)

Abstract


Background: Various studies have demonstrated the usefulness of Google search data for public health-monitoring systems. The aim of this study is to be estimated interest of public in infectious diseases in infectious diseases in South Korea, the five other countries. Methods: We conducted cross-country comparisons for queries related to the H1N1 virus and Middle East respiratory syndrome coronavirus (MERS-CoV). We analyzed queries related to the novel coronavirus disease (COVID-19) from 20 January to 13 April 2020, and performed time-descriptive and correlation analyses on trend patterns. Results: Trends in H1N1, MERS-CoV, and COVID-19 queries in South Korea matched those in the five other countries and worldwide. The relative search volume (RSV) for the MERS-CoV virus increased as the cumulative number of confirmed cases in South Korea increased and decreased significantly as the number of confirmed cases decreased. The volume of COVID-19 queries dramatically increased as South Korea’s confirmed COVID-19 cases grew significantly at the community level. However, RSV remained stable over time. Conclusions: Google Trends provides real-time data based on search patterns related to infectious diseases, allowing for continuous monitoring of public reactions, disease spread, and changes in perceptions or concerns. We can use this information to adjust their strategies of the prevention of epidemics or provide timely updates to the public.


Keywords


infectious diseases; COVID-19; MERS-CoV; N1H1; health communication; Google

Full Text:

PDF


References


Alicino, C., Bragazzi, N. L., Faccio, V., Amicizia. D., Panatto, D., Gasparini, R., Icardi G, Orsi, A. Assessing Ebola-related web search behaviour: Insights and implications from an analytical study of Google Trends-based query volumes. Infect Dis Poverty, 2015; 4(1): 54. https://doi.org/10.1186/s40249-015-0090-9

Balkhy, H. H., Abolfotouh, M. A., Al-Hathlool, R. H., Al-Jumah, M. A. Awareness, attitudes, and practices related to the swine influenza pandemic among the Saudi public. BMC Infectious Diseases, 2020; 10(1): 42. https://doi.org/10.1186/1471-2334-10-42

Bousquet, J., O’Hehir, R. E., Anto, J. M., D’Amato, G., Mösges, R., Hellings, P. W., Van Eerd, M., Sheikh, A. Assessment of thunderstorm-induced asthma using Google Trends. J Allergy Clin Immunol, 2017; 140(3): 891–893. https://doi.org/10.1016/j.jaci.2017.04.042

Bragazzi, N. L., Alicino, C., Trucchi, C., Paganino, C., Barberis, I., Martini, M., Sticchi, L., Trinka, E., Brigo, F., Ansaldi, F., Icardi, G., Orsi, A. Global reaction to the recent outbreaks of Zika virus: Insights from a Big Data analysis. PloS one, 2017; 12(9): e0185263. https://doi.org/10.1371/journal.pone.0185263

Budd, J., Miller, B. S., Manning, E. M., Lampos, V., Zhuang, M., Edelstein, M., McKendry, R. A. Digital technologies in the public-health response to COVID-19. Nature medicine, 2020; 26(8): 1183-1192. https://doi.org/10.1038/s41591-020-1011-4

Cinarka, H., Uysal, M. A., Cifter, A., Niksarlioglu, E. Y., Çarkoğlu, A. The relationship between Google search interest for pulmonary symptoms and COVID-19 cases using dynamic conditional correlation analysis. Scientific Reports, 2021; 11(1): 14387. https://doi.org/10.1038/s41598-021-93836-y

Collinson, S., Khan, K., Heffernan, J. M. The effects of media reports on disease spread and important public health measurements. PLoS One, 2015; 10(11): e0141423. https://doi.org/10.1371/journal.pone.0141423

Cowper, A. Covid-19: Are we getting the communications right? BMJ 2020;368:m919. https://doi.org/10.1136/bmj.m919

Eames, K. T., Tilston, N. L., Brooks-Pollock, E., Edmunds, W. J. Measured dynamic social contact patterns explain the spread of H1N1v influenza. PLoS Comput Biol 2012; 8(3): e1002425. https://doi.org/10.1371/journal.pcbi.1002425

Fagherazzi, G., Goetzinger, C., Rashid, M. A., Aguayo, G. A., Huiart, L. Digital health strategies to fight COVID-19 worldwide: challenges, recommendations, and a call for papers. Journal of Medical Internet Research, 2020; 22(6): e19284. https://doi.org/10.2196/19284

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., Brilliant, L. Detecting influenza epidemics using search engine query data. Nature, 2009; 457(7232): 1012–1014. https://doi.org/10.1038/nature07634

Heymann, D. L., and Shindo, N. COVID-19: What is next for public health? The Lancet 2020; 395(10224): 542–545. https://doi.org/10.1016/s0140-6736(20)30374-3

Horby, P., Pham, Q. T., Hens, N., Nguyen, T. T., Le, Q. M., Dang, D. T., Nguyen, M. L., Nguyen, T. H., Alexander, N., Edmunds, W. J., Tran, N. D., Fox, A., Nguyen, T. H. Social contact patterns in Vietnam and implications for the control of infectious diseases. PloS One 2011; 6(2): e16965. https://doi.org/10.1371/journal.pone.0016965

Husain, I., Briggs, B., Lefebvre, C., Cline, D. M., Stopyra, J. P., O’Brien, M. C., Vaithi, R., Gilmore, S., Countryman, C. Fluctuation of public interest in COVID-19 in the United States: retrospective analysis of Google Trends search data. JMIR public health and surveillance, 2020; 6(3): e19969. https://doi.org/10.2196/19969

Ki, M. Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea. Epidemiol Health, 2020; e2020007. https://doi.org/10.4178/epih.e2020007

Knipe, D., Evans, H., Sinyor, M., Niederkrotenthaler, T., Gunnell, D., John, A. Tracking online searches for emotional wellbeing concerns and coping strategies in the UK during the COVID-19 pandemic: a Google Trends analysis. Wellcome open research, 2020; 5(220): 220. https://doi.org/10.12688/wellcomeopenres.16147.1

Kurian, S. J., Alvi, M. A., Ting, H. H., Storlie, C., Wilson, P. M., Shah, N. D., Liu, H., Bydon, M. Correlations between COVID-19 cases and google trends data in the United States: A state-by-state analysis. In Mayo Clinic Proceedings, 2020; 95(11): 2370-2381. https://doi.org/10.1016/j.mayocp.2020.08.022

Lazer, D., Kennedy, R., King, G., Vespignani, A. The parable of Google Flu: traps in big data analysis. Science, 2014; 343(6176): 1203–1205. https://doi.org/10.1126/science.1248506

Lee M. Diagnosis for imported cases of emerging and reemerging infectious diseases in Korea. Ewha Med J 2016; 39(2): 3744. https://doi.org/10.12771/emj.2016.39.2.37

Lee, P.I. and Hsueh, P. R. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J Microbiol Immunol Infect 2020. https://doi.org/10.1016/j.jmii.2020.02.001

Leung, K., Jit, M., Lau, E. H., Wu, J. T. Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong. Sci Rep 2017; 7(1): 1–12. https://doi.org/10.1038/s41598-017-08241-1

Majumder, M. S., Santillana, M., Mekaru, S. R., McGinnis, D. P., Khan, K., Brownstein, J. S. Utilizing nontraditional data sources for near real-time estimation of transmission dynamics during the 2015-2016 Colombian Zika virus disease outbreak. JMIR Public Health Surveil 2016; 2(1): e30. https://doi.org/10.2196/publichealth.5814

Ming, W. K., Huang, F., Chen, Q., Liang, B., Jiao, A., Liu, T., Wu, H., Akinwunmi, B., Li, J., Liu, G., Zhang, C. J. P., Liu, Q. Understanding health communication through Google Trends and news coverage for COVID-19: multinational study in eight countries. JMIR public health and surveillance, 2021; 7(12): e26644. https://doi.org/10.2196/26644

Nuti, S. V., Wayda, B., Ranasinghe, I., Wang, S., Dreyer, R. P., Chen, S. I., Murugiah, K. The use of Google Trends in health care research: a systematic review. PloS One 2014;9(10): 1–49. e109583. https://doi.org/10.1371/journal.pone.0109583

Oboho, I. K., Tomczyk, S. M., Al-Asmari, A. M., Banjar, A. A., Al-Mugti, H., Aloraini, M. S., Alkhaldi, K. Z., Almohammadi, E. L., Alraddadi, B. M., Gerber, S. I., Swerdlow, D. L., Watson, J. T., Madani, T. A. 2014 MERS-CoV Outbreak in Jeddah—A link to health care facilities. New Engl J Med 2015; 372(9): 846–854. https://doi.org/10.1056/nejmoa1408636

Olson, D. R., Konty, K. J., Paladini, M., Viboud, C., Simonsen, L. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales. PLoS Comp Biol 2013; 9(10). https://doi.org/10.1371/journal.pcbi.1003256

Riou. J., Althaus, C. L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance, 2020; 25(4). https://doi.org/10.2807/1560-7917.es.2020.25.4.2000058

Saegner, T., Austys, D. Forecasting and surveillance of COVID-19 spread using Google trends: literature review. International journal of environmental research and public health, 2022; 19(19): 12394. https://doi.org/10.3390/ijerph191912394

Santangelo, O. E., Provenzano, S., Piazza, D., Giordano, D., Calamusa, G., Firenze, A. Digital epidemiology: assessment of measles infection through Google Trends mechanism in Italy. Annali di Igiene, Medicina Preventiva e di Comunita, 2019; 31(4). https://doi:10.7416/ai.2019.2300

Shariatpanahi, S. P., Jafari, A., Sadeghipour, M., Azadeh-Fard, N., Majidzadeh-A, K., Farahmand, L., Ansari, A. M. Assessing the effectiveness of disease awareness programs: Evidence from Google Trends data for the world awareness dates. Telematics and Informatics 2017; 34(7):904-913. https://doi.org/10.1016/j.tele.2017.03.007

Shin, S. Y., Seo, D. W., An, J., Kwak, H., Kim, S. H., Gwack, J., Jo, M. W. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea. Scientific reports, 2016; 6(1): 32920. https://doi.org/10.1038/srep32920

Towers, S., Afzal, S., Bernal, G., Bliss, N., Brown, S., Espinoza, B., Mass media and the contagion of fear: The case of Ebola in America. PLoS One, 2015;10(6): e0129179. https://doi.org/10.1371/journal.pone.0129179

Wong, Z. S., Zhou, J., Zhang, Q. Artificial intelligence for infectious disease big data analytics. Infect Dis Health 2019; 24(1): 44–48. https://doi.org/10.1016/j.idh.2018.10.002

Yoo, W., Choi, D. H., Park, K. The effects of SNS communication: How expressing and receiving information predict MERS-preventive behavioral intentions in South Korea. Comp Human Beh 2016; 62: 34–43. https://doi.org/10.1016/j.chb.2016.03.058

Yousefinaghani, S., Dara, R., Mubareka, S., Sharif, S. Prediction of COVID-19 waves using social media and Google search: a case study of the US and Canada. Frontiers in public health, 2021; 9: 656635. https://doi.org/10.3389/fpubh.2021.656635

Zhang, L. Blind spots in fighting the outbreak of coronavirus disease 2019. Explor Res Hypoth Med 2020; 5(1): 6–7. https://doi.org/10.14218/erhm.2020.00012




DOI: https://doi.org/10.24294/jipd9872

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Chae-Bong Kim, Dock-Hee Kim, Yeo-Wool Lee

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.